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ABSTRACT. In this note we prove that all positive solutions of the difference equations

xn+1 =
1 + xn

∑k
i=1 xn−i

xn + xn−1 + xn

∑k
i=2 xn−i

, n = 0, 1, ...,

where k ∈ N, converge to the positive equilibrium x̄ = 1. The result generalizes the main

theorem in the paper: Li Xianyi and Zhu Deming, Global asymptotic stability in a rational

equation, J. Differ. Equations Appl. 9 (9), (2003), 833-839. We present a very short proof

of the theorem. Also, we find the asymptotics of some of the positive solutions.
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1 Introduction

In [11], Xianyi and Deming prove that the positive equilibrium of the difference equation

xn+1 =
xnxn−1 + 1

xn + xn−1

, n = 0, 1, 2, ... (1)

with positive initial values x−1, x0, is globally asymptotically stable.

In [1], Kruse and Nesemann, among other things, proved the following theorem:

Theorem A Consider the difference equation

xn+r = f(xn+r−1, ..., xn), n = 0, 1, ... (2)

where r ∈ N, f : (0,∞)r → (0,∞) is a continuous function with some unique positive

equilibrium x̄. Suppose that there is an m ∈ N such that for all solutions (xn) of Eq. (2)

(xn − xn+m)

(
x̄2

xn

− xn+m

)
≤ 0

with equality if and only if xn = x̄. Then x̄ is globally asymptotically stable.
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In this note we consider a family of difference equations of the form

xn+1 =
1 + xn

∑k
i=1 xn−i

xn + xn−1 + xn

∑k
i=2 xn−i

, n = 0, 1, ..., (3)

where k ∈ N and the initial conditions x−k, x−k+1, ..., x0 are positive numbers. From the

equation

x̄ =
kx̄2 + 1

(k − 1)x̄2 + 2x̄
(4)

we see that x̄ = 1 is a unique positive equilibrium of Eq. (3).

We show that the positive solutions of Eq. (3) have some similar properties with the positive

solutions of Eq. (1) and give a very short proof of the following result:

Theorem 1 The positive equilibrium point x̄ of Eq. (3) is globally asymptotically stable.

This theorem generalizes the main result in [11], since for k = 1 Eq. (3) becomes Eq. (1).

For some other globally convergence results and their applications, see, for example, [5, 6,

7, 8, 9, 10].

In the last section we find the asymptotics of some solutions of Eq. (1).

2 Some properties of the positive solutions of Eq. (3)

In this section we prove several results concerning the positive solutions of Eq. (3).

Lemma 1 A positive solution (xn)∞n=−k of Eq. (3) is eventually equal to 1 if and only if

(x−1 − 1)(x0 − 1) = 0. (5)

Proof: Assume that Eq. (5) holds. Then by Eq. (3), it is easy to see that the following

conclusion is true: if x−1 = 1 or x0 = 1, then xn = 1 for n ≥ 1.

Conversely, assume that (x−1 − 1)(x0 − 1) 6= 0. We show

xn 6= 1 for any n ≥ 1 (6)

Let xN = 1 with minimally chosen N ≥ 1.

Clearly

1 = xN =
1 + xN−1

∑k
i=1 xN−1−i

xN−1 + xN−2 + xN−1

∑k
i=2 xN−1−i

which implies (1− xN−1)(1− xN−2) = 0 and consequently xN−1 = 1 or xN−2 = 1, a contra-

diction with the choice of N and the condition (x−1 − 1)(x0 − 1) 6= 0.



A Note on Global Asymptotic Stability of a Family of Rational Equations 43

Lemma 2 Let (xn)∞n=−k be a positive solution of Eq. (3) which is not eventually equal to

1. Then the following statements are true:

(i) (xn+1 − xn)(xn − 1) < 0 for n ≥ 0,

(ii) (xn+1 − 1)(xn − 1)(xn−1 − 1) > 0 for n ≥ 0.

Proof: From Eq. (3), we obtain

xn+1 − xn =
(1− xn)(1 + xn + xn

∑k
i=2 xn−i)

xn + xn−1 + xn

∑k
i=2 xn−i

, n = 0, 1, 2, ... (7)

and

xn+1 − 1 =
(xn − 1)(xn−1 − 1)

xn + xn−1 + xn

∑k
i=2 xn−i

, n = 0, 1, 2, ... (8)

From (7) and (8), inequalities (i) and (ii) follow according to Lemma 1.

Remark 1 From Lemma 2 we see that the signs of xn−1, n ≥ 1 of a positive solution (xn)

of Eq. (3) are determined by x−1 and x0. Hence in the investigation of the semicycle analysis

of positive solutions of Eq. (3) we will consider only the terms with the indices greater than

or equal to −1.

A positive semicycle of a solution (xn) of Eq.(3) consists of a “string” of terms {xl, xl+1,

..., xm}, all greater than or equal to x̄, with l ≥ −1 and m ≤ ∞ and such that

either l = −1, or l > −1 and xl−1 < x̄

and

either m = ∞, or m <∞ and xm+1 < x̄.

A negative semicycle of a solution (xn) of Eq. (3) consists of a “string” of terms {xl, xl+1,

..., xm}, all less than to x̄, with l ≥ −1 and m ≤ ∞ and such that

either l = −1, or l > −1 and xl−1 ≥ x̄

and

either m = ∞, or m <∞ and xm+1 ≥ x̄.

The first semicycle of a solution starts with the term x−1 and is positive if x−1 ≥ x̄ and

negative if x−1 < x̄.

Lemma 3 For Eq. (3), the following statements are true:

(i) There exists a positive solution with a semicycle of Eq. (3) which has an infinite number

of terms and monotonically tends to the positive equilibrium point x̄;
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(ii) Every negative semicycle of a solution of Eq. (3), except perhaps for the first, has

exactly two terms.

(iii) Every positive semicycle of an oscillatory solution of Eq. (3) has exactly one term.

Proof:

(i) If x−1 > 1 and x0 > 1, then by Lemma 2 (ii), it follows that xn > 1, n ≥ −1, i.e. this

positive semicycle has infinite number of terms. By Lemma 2 (i), we see that xn is

strictly decreasing for n ≥ 0. Hence, there is finite limn→∞xn = l > 0. From this and

(4) it follows that l = x̄ = 1.

(ii) If xs (s ≥ 0) is the first term of a negative semicycle, then from Lemma 2 (ii) we have

(xs+1 − 1)(xs − 1)(xs−1 − 1) > 0

and consequently xs+1 < 1.

From this and since

(xs+2 − 1)(xs+1 − 1)(xs − 1) > 0

it follows that xs+2 > 1, from which the result follows.

(iii) If xp (p ≥ 0) is the first term of a positive semicycle of an oscillatory solution of Eq. (3),

then from the inequality in Lemma 2 (ii) we have

(xp+1 − 1)(xp − 1)(xp−1 − 1) > 0.

Since xp−1 < 1 it follows that xp+1 < 1, as desired.

From Lemmas 1, 2 and 3 it follows the following corollary.

Corollary 1 Consider Eq. (3). Then a positive solution of Eq. (3) is either eventually

equal to 1, or greater than 1 and monotonically tends to 1, or an oscillatory solution of

Eq. (3), such that the positive semicycles of the solution have always one term, and the

negative semicycles, disregarding the first one, two terms.

3 Proof of Theorem 1

In this section we prove Theorem 1.

Proof: From (3) we have

1

xn

− xn+1 =
1

xn

− 1 + xn

∑k
i=1 xn−i

xn + xn−1 + xn

∑k
i=2 xn−i

=
(1− xn)(xn−1(1 + xn) + xn

∑k
i=2 xn−i)

xn(xn + xn−1 + xn

∑k
i=2 xn−i)

. (9)
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From (7) and (9) we have

(xn − xn+1)

(
1

xn

− xn+1

)
≤ 0, n = 0, 1, ... .

with equality if and only if xn = 1. From this and by Theorem A, we obtain that the positive

equilibrium x̄ = 1 is globally asymptotically stable, as desired.

4 Asymptotics of solutions of Eq. (3)

In this section we find the asymptotics of some solutions of Eq. (3). We use the method

described in [3], see also, [2] and [4].

4.1 Asymptotics of nonoscillatory solutions of Eq. (3)

According to Lemma 3 these solutions monotonically tend to 1 as n →∞. In order to find

the asymptotics we make the ansatz xn = 1 + yn with yn = o(1). Equation (3) implies

yn+1 =
ynyn−1

k + 1 + kyn +
∑k

i=1 yn−i + yn

∑k
i=2 yn−i

. (10)

Note that Eq. (10) can be approximated by the equation

yn+1 =
ynyn−1

k + 1
, (11)

where first we look for positive solutions yn which correspond to the condition xn > 1 for

n ≥ 0. Taking the logarithm of (11) and making the change zn = ln yn, we obtain

zn+1 − zn − zn−1 = − ln(k + 1). (12)

By standard methods it can be shown that the general solution of Eq. (12) has the form.

zn = c1

(
1 +

√
5

2

)n

+ c2

(
1−

√
5

2

)n

+ ln(k + 1).

Hence the general solution of Eq. (11) reads

yn = (k + 1)ec1

(
1+

√
5

2

)n

+c2

(
1−

√
5

2

)n

. (13)

For real constants cj this solution is positive, and it satisfies yn = o(1) if c1 < 0. Without

loss of generality we may assume that c1 = −1, which is shown by a suitable shift of n.

This motivated us to make the ansatz

yn = (k + 1)
(
e−ln + bψn

)
, (14)
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with ψn = exp(−aln), a > 1, where l = (1 +
√

5)/2.

Setting (14) into (10) and comparing the coeficients we obtain that a = 1 + l1−k and b = 1.

Now after a shift of n to n+ k in (10) we apply Theorem 2.1 in [3]. Let

ϕn = (k + 1)
(
e−ln + e−aln

)
and ψn = e−aln , (15)

where a and l are as above and let

F (w0, w1, ..., wk+1) = (k + 1 + kwk + wk−1 + (wk + 1)
k−2∑
i=0

wi)wk+1 − wkwk−1.

The partial derivatives of the function F are the following

Fw0 = Fw1 = · · · = Fwk−2
= wk+1(wk + 1),

Fwk−1
= wk+1 − wk, Fwk

= wk+1(k +
k−2∑
i=0

wi)− wk−1,

Fwk+1
= k + 1 + kwk + wk−1 + (wk + 1)

k−2∑
i=0

wi.

Hence

ψn+iFwi
(ϕn, ..., ϕn+k+1) ∼ ψn+iϕn+k+1 ∼ (k + 1)e−ln(ali+lk+1)

for i = 0, 1, ..., k − 2,

ψn+k−1Fwk−1
(ϕn, ..., ϕn+k+1) ∼ −ψn+k−1ϕn+k ∼ −(k + 1)e−ln(alk−1+lk),

ψn+kFwk
(ϕn, ..., ϕn+k+1) ∼ −ψn+kϕn+k−1 ∼ −(k + 1)e−ln(alk+lk−1)

and

ψn+k+1Fwk+1
(ϕn, ..., ϕn+k+1) ∼ (k + 1)ψn+k+1 = (k + 1)e−ln(alk+1).

Since a = 1 + l1−k it is easy to see that

lk+1 + 1 = alk−1 + lk = min{ali + lk+1, (i = 0, 1, ..., k − 2), alk−1 + lk, alk + lk−1, alk+1},

where the minimum is attained at the last but two position.

Thus, for fn = e−ln(lk+1+1) we obtain

ψn+iFwi
(ϕn, ..., ϕn+k+1) ∼ Aifn

where Ai = 0, i = 0, 1, 2, ..., k − 2, k, k + 1, and Ak−1 = −(k + 1).

Now we prove that

F (ϕn, ..., ϕn+k+1) ∼ (k + 1)2e−(lk+1+1+l1−k)ln = o(fn). (16)
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For wi = ϕn+i = (k+1)si, i = 0, 1, ..., k+1, with si = e−ln+i
+ e−aln+i

let F = (k+1)2G with

G(s0, s1, ..., sk+1) = sk+1(1 + ksk + sk−1 + (1 + (k + 1)sk)
k−2∑
i=0

si)− sksk−1.

It follows

G(s0, s1, ..., sk+1) = sk+1(1 + s0 + s1)− sksk−1 + o
(
e(L+a)ln

)
with L = lk+1, since the terms sk+1sksi with i ≥ 0, the terms sk+1si for i ≥ 2, and the terms

sk+1sk for k ≥ 2 are contained in the remainder term. In the exponents of the terms of the

product sksk−1 there appear the factors of −ln

lk + lk−1 = L, (17)

lk + alk−1 = L+ 1, (18)

alk + lk−1 = L+ l (19)

and

alk + alk−1 = aL. (20)

The corresponding factors concerning the product sk+1(1 + s0 + s1) are

(17), (20), (18), L+ a, aL+ 1, a(L+ 1), (19), L+ al, aL+ l, a(L+ l).

The terms with a number cancel. The smallest term of the remaining ones is L + a. Hence

(16) is proved.

From all above mentioned the conditions of Theorem 2.1 in [3] are satisfied for m = k + 1,

hence for every ε > 0, Eq. (3) has a solution yn in the stripe ϕn − εψn ≤ yn ≤ ϕn + εψn for

sufficiently large n0 = n0(ε), with ϕn and ψn defined in (15).

4.2 Asymptotics of oscillatory solutions of Eq. (3)

The signs of the terms of a solution of Eq. (11) depend on the initial conditions y0 and y1.

It can easily be seen that the general nontrivial solution of Eq. (11) can be written as vnyn

where yn is the positive solution (13) and vn for n ≥ 0 one of the four 3-periodic sequences

in Table 1.

v
(i)
n v

(i)
0 v

(i)
1 v

(i)
2 v

(i)
3 v

(i)
4 v

(i)
5 v

(i)
6 v

(i)
7 v

(i)
8 . . .

v
(1)
n 1 1 1 1 1 1 1 1 1 . . .

v
(2)
n 1 -1 -1 1 -1 -1 1 -1 -1 . . .

v
(3)
n -1 1 -1 -1 1 -1 -1 1 -1 . . .

v
(4)
n -1 -1 1 -1 -1 1 -1 -1 1 . . .

Table 1. Values of the sequences v
(i)
n , i = 1, 2, 3, 4.
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These periodic sequences can be represented as vn = eiπtn where tn is one of the solutions

with integer values mod 2 of Fibonacci’s equation in Table 2.

t
(i)
n t

(i)
0 t

(i)
1 t

(i)
2 t

(i)
3 t

(i)
4 t

(i)
5 t

(i)
6 t

(i)
7 t

(i)
8 . . .

t
(1)
n 0 0 0 0 0 0 0 0 0 . . .

t
(2)
n 0 1 1 0 1 1 0 1 1 . . .

t
(3)
n 1 0 1 1 0 1 1 0 1 . . .

t
(4)
n 1 1 0 1 1 0 1 1 0 . . .

Table 2. t
(i)
n+1 = t

(i)
n + t

(i)
n−1 (mod 2), i = 1, 2, 3, 4.

With some more effort it can be shown analogously as before that Eq. (10) has also solutions

which behave asymptotically like the solutions vnyn of (11). This result matches with Lemma

2 (ii), which is equivalent to vn+1vnvn−1 > 0 for n ≥ 0, and it also matches with Lemma 3.
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[6] Stević, S. : A note on bounded sequences satisfying linear inequality. Indian J. Math.

43 (2), 223-230 (2001)
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