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Periodic Character of a Difference Equation

ABSTRACT. In this note we prove that every positive solution of the difference equation

xn+1 =
xn−1

p+ xn−1 + xn

, n = 0, 1...

where p ∈ [0,∞) and the initial conditions x−1, x0 are positive real numbers, converges

to a, not necessarily prime, periodic-two solution. This result confirms Conjecture 7.5.2

in [1] (with q = 1). Also, we show that the positive solutions of Eq.(1) converge to the

corresponding periodic-two solutions geometrically.
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1 Introduction

In this note we consider the periodic character of the difference equation

xn+1 =
xn−1

p+ xn−1 + xn

, n = 0, 1, . . . (1)

where p ∈ [0,∞) and the initial conditions x−1, x0 are positive real numbers. In fact we

consider the case p ∈ (0, 1) since when p ≥ 1 the zero equilibrium of Eq.(1) is obviously

global attractor of all positive solutions of Eq.(1), see [1, Theorem 7.4.1 (a)]. The case p = 0

was considered, for example, in [1, p. 61, (ii)].

Our motivation here stems from Conjecture 7.5.2 in [1]:

Conjecture 1 Assume that

p < 1

Show that every positive solution of Eq.(1) converges to a, not necessarily prime, periodic-two

solution.
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Note that when p < 1 all prime period-two solutions of Eq.(1) are given by

...φ, 1− p− φ, φ, 1− p− φ, ...

with

0 ≤ φ ≤ 1− p and φ 6= 1− p

2
,

see, [1, p. 134].

Recently there has been a great interest in studying the periodic nature of nonlinear difference

equations. For some recent results concerning, among other problems, the periodic nature

of scalar nonlinear difference equations see for example, [1, 2], [4]-[9] and references therein.

Our aim in this note is to confirm Conjecture 1. Also, we show that the positive solutions of

Eq.(1) converge to the corresponding periodic-two solutions geometrically and we look for

their asymptotics.

2 Main results

In this section we prove the main results in this note.

Theorem 1 Consider the difference Eq.(1) where p ∈ (0, 1) and initial conditions x−1, x0

are positive real numbers. Then every positive solution of Eq.(1) converges to a, not neces-

sarily prime, periodic-two solution (ρ0, ρ1), such that p+ ρ0 + ρ1 = 1. If p+ x0 + x−1 > 1 the

sequences x2n+i, (i = 1, 2) are decreasing, if p + x0 + x−1 < 1 the sequences x2n+i, (i = 1, 2)

are increasing, and if p+ x0 + x−1 = 1 the sequence xn is a periodic-two solution of Eq.(1).

Proof: By the change of variables xn = 1
zn
, Eq.(1) becomes

zn+1 =
zn + zn−1 + pznzn−1

zn

. (2)

From (2) we have

zn+1 − zn−1 =
zn + zn−1 + pznzn−1 − znzn−1

zn

=
zn + zn−1 + pznzn−1 − zn−1 − zn−2 − pzn−1zn−2

zn

=
(pzn−1 + 1)(zn − zn−2)

zn

and consequently

zn+1 − zn−1 = (z1 − z−1)
n∏

i=1

pzi−1 + 1

zi

. (3)
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From (3) we obtain that the signum of zn+1 − zn−1 remains invariant for n ∈ N and that

the sequences (z2n+i), i = 0, 1, are nondecreasing or nonincreasing at the same time which

implies that the sequences (x2n+i), i = 0, 1, are nonincreasing or nondecreasing at the same

time. Since

z1 − z−1 =
p+ x0 + x−1 − 1

x−1

we see from (3) that if p+ x0 + x−1 < 1, then the sequences (x2n+i), i = 0, 1 are increasing,

if p + x0 + x−1 > 1, the sequences (x2n+i), i = 0, 1 are decreasing and if p + x0 + x−1 = 1,

then (x−1, x0, x−1, x0, ...) is a periodic-two solution of Eq.(1).

First suppose that the sequences (x2n+i), i = 0, 1 are decreasing, that is p + x0 + x−1 > 1.

Then there are finite limits

lim
n→∞

x2n+i = ρi, i = 0, 1 .

It is clear that (ρ0, ρ1) is a two cycle of Eq.(1). Suppose that both of them are equal to zero.

Since (x2n+i), i = 0, 1 are decreasing from (1) we obtain

p+ xn−1 + xn > 1, n = 0, 1, ... . (4)

Letting n→∞ in (4) we obtain p ≥ 1 which is a contradiction. Hence (ρ0, ρ1) 6= (0, 0) and

as we mentioned above it is a two cycle of Eq.(1).

Without loss of generality we may assume that ρ1 6= 0. Then letting n→∞ in the equation

x2n+1 =
x2n−1

p+ x2n−1 + x2n

we obtain the equality p+ ρ0 + ρ1 = 1.

Now suppose that the sequences (x2n+i), i = 0, 1 are increasing, that is p + x0 + x−1 < 1.

Then there are finite or infinite limits

lim
n→∞

x2n+i = ρi, i = 0, 1 .

By a result of L. Berg [2, p. 1070] all solutions of Eq.(1) are bounded, hence ρi <∞, i = 0, 1.

On the other hand, since (x2n+i), i = 0, 1 are increasing ρ0 > x0 > 0 and ρ1 > x1 > 0.

Similarly as above we obtain that (ρ0, ρ1) is a two cycle of Eq.(1) and p+ ρ0 + ρ1 = 1.

Finally, for the initial conditions x−1 = x0 = (1 − p)/2, we have xn = (1 − p)/2, n ≥ −1,

which shows that there is a solution which converges to a not prime period-two solution.

Remark 1 Note that the condition p+x0 +x−1 > 1, (e.g. condition (4) for n = 0) implies

(4) for all greater n, that is, for n ≥ 1, moreover the sequence un = p + xn−1 + xn is also

decreasing.
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Also, the condition p+ x0 + x−1 < 1 and (1) imply that the sequence un = p+ xn−1 + xn is

increasing and

p+ xn−1 + xn < 1, n = 0, 1, ... .

From this and by Theorem 1 it follows that the distance from the point (xn−1, xn) to the

limit line p+ x+ y = 1, i.e.,

dn =
p+ xn + xn−1 − 1√

2
,

also converges monotonously to zero (we use here Hesse’s normal form).

For the readers who are interested in this area we leave the following open problem.

Open Problem 1 Let

..., ρ0, 1− p− ρ0, ρ0, 1− p− ρ0, ...

be a positive two cycle of Eq.(1). Find the basin of attraction of this two cycle.

The following result gives an estimation of the convergence rate of the positive solutions of

Eq.(1).

Theorem 2 Every positive solution of Eq.(1) converges to the corresponding periodic-

two solution (ρ0, ρ1) geometrically, that is, there is an M > 0 and q ∈ (0, 1) such that

|x2n − ρ0|+ |x2n+1 − ρ1| ≤Mq2n, n ≥ 0.

Proof: As we have seen in the proof of Theorem 1, using the change xn = 1
zn

we obtain

zn+1 − zn−1 =
(pzn−1 + 1)(zn − zn−2)

zn

.

If we go back to the sequence xn we have

p+ xn + xn−1 − 1

xn−1

=
p+ xn−1

xn−1

xn
p+ xn−1 + xn−2 − 1

xn−2

,

that is,

dn = (p+ xn−1)
xn

xn−2

dn−1,

where dn = p+xn+xn−1−1√
2

, and consequently

dn = (p+ xn−1)
xn

xn−2

(p+ xn−2)
xn−1

xn−3

dn−2 . (5)
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Let ε ∈ (0, (1− (1 + p)2/4)). Since the sequences (x2n+i), i = 0, 1, are convergent, from (5)

we have that for such chosen ε there is an n0 ∈ N such that

|dn| ≤ ( (p+ ρ0)(1− ρ0) + ε )|dn−2| ≤

((
1 + p

2

)2

+ ε

)
|dn−2|, (6)

for every n ≥ n0.

In view of the choice of ε we see that r =
(

1+p
2

)2
+ ε < 1. From this and (6), using the

following equality

|d2n+1| =
|x2n+1 − ρ1 + x2n − ρ0|√

2
=
|x2n+1 − ρ1|+ |x2n − ρ0|√

2

we see that for q =
√
r we can obtain the result easily. Note that in the last equality we

have used the fact that the sequences x2n+i, i = 0, 1, converge monotonously to ρi, i = 0, 1.

Corollary 1 The distance dn from the point (xn−1, xn) to the limit line p + x + y = 1,

converges to zero monotonously and geometrically.

3 The case of nonnegative solutions of Eq.(1)

If x−1 = 0 or x0 = 0, from (1) we obtain x2n−1 = 0 or x2n = 0, for all n ≥ 0. Further, if

x−1 = 0 then Eq.(1) becomes

x2n =
x2n−2

p+ x2n−2

.

This is a Riccati equation (see [1, Section 1.6]) for x2n with the elementary solution

x2n =
x0(1− p)

x0 + (1− p− x0)pn
, n ≥ 0 . (7)

From (7) we see that limn→∞ x2n = 1 − p, so far as x0 is different from 0. Similarly we can

treat the case x0 = 0, x−1 6= 0. The case x0 = x−1 = 0 yields the constant solution xn = 0

for all n ≥ −1.

We believe that only these solutions satisfy the condition ρ0ρ1 = 0, where as before ρi, i = 0, 1

denote the limits limn→∞ x2n+i. Hence we leave the following conjecture:

Conjecture 1 ([3]) For positive initial values x−1 and x0 there are no solutions of Eq.(1)

such that ρ0ρ1 = 0.
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4 Asymptotically two-periodic solutions

Theorem 2 motivated us to study the asymptotics of the solutions of Eq.(1), as well as the

corresponding ones for the sequence dn.

Let un = x2n−1 and vn = x2n, then (1) can be written as the following system

un+1 =
un

p+ un + vn

vn+1 =
vn

p+ un+1 + vn

. (8)

We expect that the asymptotically two-periodic solutions have the following form (see [2,

p.1066])

un = ρ+
∞∑

k=1

akc
ktnk, and vn = 1− ρ− p+

∞∑
k=1

bkc
ktnk , (9)

where t ∈ (0, 1) is unknown and c an arbitrary real number.

Substituting (9) into system (8) and comparing the coefficients we obtain

a1t
n = a1t

n+1 + ρ(a1 + b1)t
n, and b1t

n = b1t
n+1 + (1− ρ− p)(a1t

n+1 + b1t
n),

which implies

(1− t− ρ)a1 = ρb1, and t(1− ρ− p)a1 = (ρ+ p− t)b1 . (10)

This system has a nontrivial solution a1, b1 if and only if its determinant vanishes, i.e

t2 − ( 1 + p+ ρ(1− ρ− p) )t+ (1− ρ)(ρ+ p) = 0 . (11)

The only solution of (11) with t contained in (0, 1) is t = (1−ρ)(ρ+p) and the corresponding

solution of system (10) is a1 = ρ, b1 = (1 − ρ)(1 − ρ − p) up to a constant factor c which

already appears in the series (9). Therefore

un = ρ+ ρctn +O(t2n), and vn = 1− ρ− p+ (1− ρ)(1− ρ− p)ctn +O(t2n) . (12)

The asymptotic formulas (12) for un and vn remain valid in the limit cases ρ = 0 and

ρ = 1− p, with t = p, where they express the asymptotic behaviour of the explicitly known

solutions with one vanishing initial value (see Section 3). Note that the asymptotic formulas

(12) can also be obtained in the case un = x2n and vn = x2n+1. We leave the following

conjecture:

Conjecture 2 Let p ∈ (0, 1) and (xn) be a nonnegative solution of Eq.(1) such that

(x2n−1, x2n) → (ρ, 1− ρ− p), as n→∞. Then
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(a) x2n−1 = ρ+ ρctn +O(t2n);

(b) x2n = 1− ρ− p+ (1− ρ)(1− ρ− p)ctn +O(t2n);

where t = (1− ρ)(ρ+ p) and the constant c depends on initial values x−1 and x0.

If this conjecture is true, then it follows:

Corollary 2 Let p ∈ (0, 1) and (xn) be a nonnegative solution of Eq.(1) such that

(x2n−1, x2n) → (ρ, 1 − ρ − p), as n → ∞. Then the distance dn from the point (xn−1, xn)

to the limit line p+ x+ y = 1, has the following asymptotics

dn =
c√
2
en(1− t)(

√
t)n +O(tn),

where t = (1 − ρ)(ρ + p), e2n = 1, e2n+1 = 1 − ρ, for n ≥ 0, and the constant c depends on

initial values x−1 and x0.
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Mathematical Institute of Serbian Academy of Science

Knez Mihailova 35/I

11000 Beograd

Serbia

e-mail: sstevic@ptt.yu

e-mail: sstevo@matf.bg.ac.yu


