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ABSTRACT. In this paper, we investigate the structure of an infinitely often differentiable

real function f defined on the interval [0, 1]. We show that for such a function the set

{t : ∃n ∈ N0 : f (n)(t) = 0, f (n+1)(t) 6= 0 } is at most countable, and if f is not a polynomial

then the set {t : f (n)(t) 6= 0, ∀n ∈ N0} has the power c.
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In this paper we investigate real functions f on [0, 1] which are infinitely often differentiable,

where in the endpoints we consider the one-side derivatives. For such a given f we define

the sets

E = {t : ∃n ∈ N0 : f (n)(t) = 0 } (1)

and their complement

D = {t : f (n)(t) 6= 0, ∀n ∈ N0}, (2)

i.e. E ∪ D = [0, 1]. Obviously, if f is a polynomial then E = [0, 1]. But it holds also the

conversion:

Theorem 1 ([3], [5]) Let f be an infinitely often differentiable real function over

[0, 1]. If E = [0, 1] then f is a polynomial.

Obviously, for a polynomial f the set D from (2) is empty, so that D = ∅ if and only if f

is a polynomial according to Theorem 1. In this paper we investigate the case D 6= ∅ and

prove a general assertion concerning the structure of an infinitely often differentiable real

function (Proposition 3). Theorem 1 is an immediately consequence of Proposition 3. The

main results of this note are Theorem 6 and 7 which are proved by means of Proposition 3.

In order to prove Proposition 3 we need some preparations.
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Lemma 2 Every closed set F ⊆ [0, 1] has a unique representation as union of three

disjoint sets

F = A0 ∪B0 ∪ C0 (3)

where A0 is an open set, B0 is a nowhere dense perfect set and C0 is at most countable,

where A0, B0 and C0 can be empty.

Proof: We assume that the closed set F is not countable. Then, owing to the Theorem of

Cantor-Bendixsohn, cf. [6], p. 55, it is representable in the form

F = P0 ∪ Q0

where P0 is a nonempty perfect set and where Q0 is at most countable. If P0 is nowhere

dense then it follows (3) with A0 = ∅, B0 = P0 and C0 = Q0. Assume that P0 is dense in

the intervals [an, bn] (n ∈ N0) where these intervals are maximal then we put

A0 =
⋃
n

(an, bn) (4)

which is an open set with A0 ⊆ P0 since P0 is closed. Consequently, the set F1 = P0 \ A0 is

nowhere dense and closed, and it holds A0∩ F1 = ∅. If F1 is countable then (3) is valid with

A0 from (4), B0 = ∅ and C0 = F1 ∪ Q0. If the closed set F1 is not countable then, again by

the Theorem of Cantor-Bendixsohn, it is representable as

F1 = P1 ∪ Q1

where P1 is a nonempty perfect set and where Q1 is at most countable. In this case (3) is

valid with A0 from (4), B0 = P1 and C0 = Q0 ∪ Q1.

Assume that besides of (3) for F there exist a further representation

F = A1 ∪B1 ∪ C1. (5)

If A0 6= A1 then we can assume that there exist a point x0 ∈ A0 \A1. This means that there

exist an interval (α, β) ⊂ A0 \A1. Since F \A1 = B1 ∪C1 is a set of first category and (α, β)

is a set of second category by a Theorem of Baire, cf. e.g. [4], the relation (α, β) ⊆ F \ A1

is impossible. This implies that the case A0 6= A1 cannot be. In the case A0 = A1 the set

P = F \A0 = F \A1 is closed. Therefore it holds B0 = B1 since this set is exactly equal to

the set of all points of condensation of P , cf. [6]. Finally, it follows C0 = C1, too �

On the structure of an infinitely often differentiable function we have the
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Proposition 3 Let f be an infinitely often differentiable real function over [0, 1]. Then

the set E of all points t for which there exists an integer n ∈ N0 such that f (n)(t) = 0 has a

unique representation as union of three disjoint sets

E = A ∪B ∪ C (6)

which have the following form: A is an open set, i.e.

A =
⋃
j

(αj, βj), (7)

B is the union of at most countably many nowhere dense perfect sets Bn with Bn ⊆ Bn+1,

and C is at most countable, where A, B and C can be empty. In the case A 6= ∅ the function

f is a polynomial on each interval [αj, βj].

Proof: Obviously, E is the union of the sets En = {t : f (n)(t) = 0} (n ∈ N0), which are

closed owing to the continuity of f (n). Hence, according to Lemma 2 for each n ∈ N0 the set

En is representable as union of three disjoint sets

En = An ∪Bn ∪ Cn (8)

where An is an open set, Bn is a nowhere dense perfect set and Cn is at most countable,

where An, Bn and Cn can be empty. Hence, for the union E of all En is representable as (6)

where A and B are the union of all An, Bn, respectively, and

C =
⋃
n

Cn \ (A ∪B)

is at most countable. Thus A is an open set which has the form (7) where the components

(αi, βi) are pairwise disjoint, and A ∩ C = B ∩ C = ∅.

For t ∈ An and t ∈ Bn we have f (n+1)(t) = 0 so that An ⊆ An+1 and Bn ⊆ Bn+1, respectively.

Hence, An ∩Bn = ∅ for all n implies that A ∩B = ∅, too.

The sets An, Bn and Cn are unique determined according to Lemma 2. This implies the

uniqueness of A, B and C in (6).

Finally let be A 6= ∅. We remember that Am ⊆ An for n > m. Assume that In = (an, bn)

and Im = (am, bm) are components of An and Am, respectively, then either In = Im or

In ∩ Im = ∅. This follows from the fact that f (n−1)(t) = c 6= 0 for t ∈ In and f (n−1)(t) = 0

for t ∈ Im. Consequently, f is a polynomial on each interval [αj, βj]. �

Remarks 4 1. In case E = [0, 1] we have A = (0, 1), C = {0, 1}, and f is a polynomial

on [0, 1] so that Theorem 1 is a consequence of Proposition 3.
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2. In case A 6= ∅ the endpoints of each component (αi, βi) belong to E. Between two

intervals (αi, βi), (αj, βj) of A there exists at least one point t0 /∈ E. If namely

(αi, βj) ⊆ E where αi < αj then, owing to Theorem 1, the function f is equal to a

polynomial of degree n. Hence, (αi, βj) ⊆ An which is impossible in view of the unique

representation of An according to Proposition 3.

Let us consider some examples for the different possibilities of the sets E, A, B, C in

Proposition 3. Obviously, if f is a polynomial then E = [0, 1], A = (0, 1), B = ∅ and

C = {0, 1}, but also the case E = ∅ is possible, e.g. for f(t) = et. For further possibilities

let us consider the homogeneous integral-functional equation

φ(t) = b

at∫
at−a+1

φ(τ)dτ

(
b =

a

a− 1

)
(9)

with the real variable t and a parameter a > 1, cf. [1], [2]. The solutions of (9) were studied

for a = 3 in Wirsching [9], for a = 2 in Schnabl [7] and Volk [8], and for a > 3
2

in Wirsching

[10]. In [1] it was shown that for a > 1 equation (9) has a C∞-solution with the support

[0, 1] which is uniquely determined by the normalization

1∫
0

φ(t)dt = 1. (10)

In case a = 2 the solution φ has the property φ(n)(t) = 0 if and only if t = k
2n with

k ∈ 0, 1, . . . , 2n, cf. [2], formula (4.8), so that in this case we have A = B = ∅ and C is

the countable set of all dyadic rational numbers in [0, 1]. In case a > 2 the solution φ is a

polynomial on each component of an open Cantor set G with Lebesgue measure |G| = 1,

and the set of all t /∈ G with φ(n)(t) = 0 with a certain n ∈ N is countable, cf. formula (4.7)

in [2]. Hence, in this case we have A = G, i.e. A = [0, 1], B = ∅ and C is the set of all

endpoints of the components of G.

The following example shows that also the case B 6= ∅ is possible.

Example 5 Let f0 be any infinitely often differentiable function over [0, 1] with f0(t) > 0

for 0 < t < 1 and f
(k)
0 (0) = f

(k)
0 (1) = 0 for all k ∈ N0, e.g.

f0(t) = e
1

t(1−t) . (11)

For a given nowhere dense perfect set B0 ⊆ [0, 1] with 0, 1 ∈ B0 the open complement

G = [0, 1] \ B0 is representable as union of pairwise disjoint intervals (aj, bj) (j ∈ N). We

define a function f by f(t) = 0 for t ∈ B0 and by

f(t) = cjf0

(
t− aj

bj − aj

)
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for aj < t < bj, and

cj =
1

j Mj

(12)

where

Mj = max
k∈{0,...,j}

max
aj<t<bj

1

(bj − aj)k min (t− aj, bj − t)

∣∣∣∣f (k)
0

(
t− aj

bj − aj

)∣∣∣∣ . (13)

The number Mj exists in view of the continuity of f
(k)
0 and f

(k+1)
0 (0) = f

(k+1)
0 (1) = 0 so that

cj > 0 for all j. Consequently, it holds E0 = B0. Obviously, for aj < t < bj and k ∈ N0 it

holds

f (k)(t) =
cj

(bj − aj)k
f

(k)
0

(
t− aj

bj − aj

)
. (14)

We show by induction with respect to k that f (k)(t) = 0 for t ∈ B0. This is true for k = 0

according to the definition of f . Assume that this is true for a fixed k. Let t0 ∈ B0 and

tn 6= t0 a sequence which converges to t0. If tn ∈ B0 then

f (k)(tn)− f (k)(t0)

tn − t0
= 0.

Hence, it suffices to consider the case that tn ∈ [0, 1] \ B0 for all n ∈ N, i.e. tn ∈ (ajn , bjn).

Obviously, we need to investigate only two cases: 1. the sequence jn is bounded and 2.

jn → ∞ as n → ∞. The first case is only possible if for n ≥ n0 all tn belong to the same

interval (aj, bj) and t0 is an endpoint of (aj, bj). Then we have

lim
n→∞

f (k)(tn)− f (k)(t0)

tn − t0
= 0

in view of f
(k+1)
0 (0) = f

(k+1)
0 (1) = 0. In the second case we can choose an integer n0 such

that jn ≥ k for n ≥ n0. From (14) and f (k)(t0) = 0 we obtain∣∣∣∣f (k)(tn)− f (k)(t0)

tn − t0

∣∣∣∣ =
cjn

(bjn − ajn)k |tn − t0|

∣∣∣∣f (k)
0

(
tn − ajn

bjn − ajn

)∣∣∣∣ .
Since |t0 − tn| ≥ min(tn − ajn , bjn − tn) we get for n ≥ n0 in view of (12), (13) and k ≤ jn

that ∣∣∣∣f (k)(tn)− f (k)(t0)

tn − t0

∣∣∣∣ ≤ 1

jn
→ 0

for n→∞. Altogether we obtain f (k+1)(t0) = 0. According to Proposition 3 it holds B0 ⊆ B

so that here we have an example for an infinitely often differentiable function f with B 6= ∅.

Theorem 6 Let f be an infinitely often differentiable real function over [0, 1]. Then the

set M = {t : ∃n ∈ N0 : f (n)(t) = 0, f (n+1)(t) 6= 0 } is at most countable.
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Proof: For n ∈ N0 let Mn the set of all points t ∈ [0, 1] with f (n)(t) = 0 and f (n+1)(t) 6= 0.

Hence, Mn ⊆ En with the notations of Proposition 3, cf. (8), where An is an open set. Let

(α, β) be a component of An then f is a polynomial of degree m. Hence, for n < m the

number of points t ∈ (α, β) with f (n)(t) = 0 is finite and for n ≥ m there is no point with

f (n+1)(t) 6= 0. It follows that Mn∩An is at most countable. For t ∈ Bn we have f (n+1)(t) = 0

so that Mn ∩Bn = ∅, i.e. Mn ⊆ An ∩ Cn. It follows that M is at most countable �

Obviously, for a polynomial f the set D = {t : f (n)(t) 6= 0, ∀n ∈ N0} is empty.

Theorem 7 Let f be an infinitely often differentiable real function over [0, 1]. If f is

not a polynomial then the set D = {t : f (n)(t) 6= 0, ∀n ∈ N0} has the power c.

Proof: Let D be a nonempty set. We apply Proposition 3 with the introduced notations.

Obviously, the set D is the complement of E so that E ⊂ [0, 1] since D 6= ∅. We consider

two cases:

1. Assume that there exists an interval I = (a, b) without points of A. Then according

to Proposition 3 it holds the disjoint decomposition

I = (I ∩B) ∪ (I ∩ C) ∪ (I ∩D)

where the first and the second set on the right-hand side are sets of first category.

Consequently, I ∩ D is a set of second category and so D has the power c, cf. [4],

10.12.

2. Assume that [0, 1] \A is nowhere dense in [0, 1], i.e. A = [0, 1] where because of D 6= ∅
the case A = (0, 1) is excluded in view of Remark 4.1. It follows from Proposition

3 that A is the union of countably many open intervals (αi, βi) which are pairwise

disjoint, cf. (7). Hence, the set [0, 1] \ A is a nowhere dense perfect set. Then there

exists a continuous increasing function g with g(0) = 0, g(1) = 1 and g(t) = gi for

t ∈ (αi, βi) with gi 6= gj for i 6= j where the countable set g(A) of all gi is dense in

[0, 1], cf. Cantor’s stair function. For the set

A∗ =
⋃
i

[αi, βi]

we have g(A∗) = g(A) = {gi} and the restriction of g to [0, 1] \ A∗ is even strictly

increasing and has the following property:

(i) The map g : ([0, 1] \ A∗) 7→ [0, 1] \ g(A∗) is bijektive.
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According to Remark 4 the set D from (2) is a subset of [0, 1] \ A∗. Next we show

that for all n the sets g(Bn) are nowhere dense. Assume that there exists an n such

that g(Bn) is dense in an interval (gi, gj) with i 6= j then [gi, gj] ⊆ g(Bn) since g(Bn)

is closed in view of the continuity of g. This implies owing to (i) that all points of the

set (αi, βj) \ A belong to Bn ⊆ E which is impossible, cf. Remark 4. Consequently,

g(Bn) is nowhere dense so that g(B) is a set of first category. This is true also for

the union g(A) ∪ g(B) ∪ g(C) since g(A) and g(C) are at most countable sets. This

implies that g(D) is a set of second category so that it has the power c, cf. [4]. Since

D ⊆ [0, 1] \ A∗ it follows from (i) that also the set D has the power c �
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