Rostock. Math. Kolloq. 59, 63–70 (2005)

Subject Classification (AMS) 45D05, 39B22, 34K15, 26A30, 41A15

Manfred Krüppel

On the Zeros of an Infinitely Often Differentiable Function and their Derivatives

ABSTRACT. In this paper, we investigate the structure of an infinitely often differentiable real function f defined on the interval [0, 1]. We show that for such a function the set $\{t : \exists n \in \mathbb{N}_0 : f^{(n)}(t) = 0, f^{(n+1)}(t) \neq 0\}$ is at most countable, and if f is not a polynomial then the set $\{t : f^{(n)}(t) \neq 0, \forall n \in \mathbb{N}_0\}$ has the power **c**.

KEY WORDS. C^{∞} -functions, derivatives of higher order, Cantor sets, Theorem of Cantor-Bendixsohn, sets of first category.

In this paper we investigate real functions f on [0, 1] which are infinitely often differentiable, where in the endpoints we consider the one-side derivatives. For such a given f we define the sets

$$E = \{t : \exists n \in \mathbb{N}_0 : f^{(n)}(t) = 0\}$$
(1)

and their complement

$$D = \{ t : f^{(n)}(t) \neq 0, \ \forall n \in \mathbb{N}_0 \},$$
(2)

i.e. $E \cup D = [0, 1]$. Obviously, if f is a polynomial then E = [0, 1]. But it holds also the conversion:

Theorem 1 ([3], [5]) Let f be an infinitely often differentiable real function over [0,1]. If E = [0,1] then f is a polynomial.

Obviously, for a polynomial f the set D from (2) is empty, so that $D = \emptyset$ if and only if f is a polynomial according to Theorem 1. In this paper we investigate the case $D \neq \emptyset$ and prove a general assertion concerning the structure of an infinitely often differentiable real function (Proposition 3). Theorem 1 is an immediately consequence of Proposition 3. The main results of this note are Theorem 6 and 7 which are proved by means of Proposition 3. In order to prove Proposition 3 we need some preparations.

Lemma 2 Every closed set $F \subseteq [0,1]$ has a unique representation as union of three disjoint sets

$$F = A_0 \cup B_0 \cup C_0 \tag{3}$$

where A_0 is an open set, B_0 is a nowhere dense perfect set and C_0 is at most countable, where A_0 , B_0 and C_0 can be empty.

Proof: We assume that the closed set F is not countable. Then, owing to the Theorem of Cantor-Bendixsohn, cf. [6], p. 55, it is representable in the form

$$F = P_0 \cup Q_0$$

where P_0 is a nonempty perfect set and where Q_0 is at most countable. If P_0 is nowhere dense then it follows (3) with $A_0 = \emptyset$, $B_0 = P_0$ and $C_0 = Q_0$. Assume that P_0 is dense in the intervals $[a_n, b_n]$ $(n \in \mathbb{N}_0)$ where these intervals are maximal then we put

$$A_0 = \bigcup_n \left(a_n, b_n \right) \tag{4}$$

which is an open set with $A_0 \subseteq P_0$ since P_0 is closed. Consequently, the set $F_1 = P_0 \setminus A_0$ is nowhere dense and closed, and it holds $A_0 \cap F_1 = \emptyset$. If F_1 is countable then (3) is valid with A_0 from (4), $B_0 = \emptyset$ and $C_0 = F_1 \cup Q_0$. If the closed set F_1 is not countable then, again by the Theorem of Cantor-Bendixsohn, it is representable as

$$F_1 = P_1 \cup Q_1$$

where P_1 is a nonempty perfect set and where Q_1 is at most countable. In this case (3) is valid with A_0 from (4), $B_0 = P_1$ and $C_0 = Q_0 \cup Q_1$.

Assume that besides of (3) for F there exist a further representation

$$F = A_1 \cup B_1 \cup C_1. \tag{5}$$

If $A_0 \neq A_1$ then we can assume that there exist a point $x_0 \in A_0 \setminus A_1$. This means that there exist an interval $(\alpha, \beta) \subset A_0 \setminus A_1$. Since $F \setminus A_1 = B_1 \cup C_1$ is a set of first category and (α, β) is a set of second category by a Theorem of Baire, cf. e.g. [4], the relation $(\alpha, \beta) \subseteq F \setminus A_1$ is impossible. This implies that the case $A_0 \neq A_1$ cannot be. In the case $A_0 = A_1$ the set $P = F \setminus A_0 = F \setminus A_1$ is closed. Therefore it holds $B_0 = B_1$ since this set is exactly equal to the set of all points of condensation of P, cf. [6]. Finally, it follows $C_0 = C_1$, too

On the structure of an infinitely often differentiable function we have the

Proposition 3 Let f be an infinitely often differentiable real function over [0,1]. Then the set E of all points t for which there exists an integer $n \in \mathbb{N}_0$ such that $f^{(n)}(t) = 0$ has a unique representation as union of three disjoint sets

$$E = A \cup B \cup C \tag{6}$$

which have the following form: A is an open set, i.e.

$$A = \bigcup_{j} (\alpha_j, \beta_j), \tag{7}$$

B is the union of at most countably many nowhere dense perfect sets B_n with $B_n \subseteq B_{n+1}$, and C is at most countable, where A, B and C can be empty. In the case $A \neq \emptyset$ the function f is a polynomial on each interval $[\alpha_i, \beta_i]$.

Proof: Obviously, E is the union of the sets $E_n = \{t : f^{(n)}(t) = 0\}$ $(n \in \mathbb{N}_0)$, which are closed owing to the continuity of $f^{(n)}$. Hence, according to Lemma 2 for each $n \in \mathbb{N}_0$ the set E_n is representable as union of three disjoint sets

$$E_n = A_n \cup B_n \cup C_n \tag{8}$$

where A_n is an open set, B_n is a nowhere dense perfect set and C_n is at most countable, where A_n , B_n and C_n can be empty. Hence, for the union E of all E_n is representable as (6) where A and B are the union of all A_n , B_n , respectively, and

$$C = \bigcup_{n} C_n \setminus (A \cup B)$$

is at most countable. Thus A is an open set which has the form (7) where the components (α_i, β_i) are pairwise disjoint, and $A \cap C = B \cap C = \emptyset$.

For $t \in A_n$ and $t \in B_n$ we have $f^{(n+1)}(t) = 0$ so that $A_n \subseteq A_{n+1}$ and $B_n \subseteq B_{n+1}$, respectively. Hence, $A_n \cap B_n = \emptyset$ for all *n* implies that $A \cap B = \emptyset$, too.

The sets A_n , B_n and C_n are unique determined according to Lemma 2. This implies the uniqueness of A, B and C in (6).

Finally let be $A \neq \emptyset$. We remember that $A_m \subseteq A_n$ for n > m. Assume that $I_n = (a_n, b_n)$ and $I_m = (a_m, b_m)$ are components of A_n and A_m , respectively, then either $I_n = I_m$ or $\overline{I}_n \cap \overline{I}_m = \emptyset$. This follows from the fact that $f^{(n-1)}(t) = c \neq 0$ for $t \in \overline{I}_n$ and $f^{(n-1)}(t) = 0$ for $t \in \overline{I}_m$. Consequently, f is a polynomial on each interval $[\alpha_j, \beta_j]$.

Remarks 4 1. In case E = [0, 1] we have A = (0, 1), $C = \{0, 1\}$, and f is a polynomial on [0, 1] so that Theorem 1 is a consequence of Proposition 3.

2. In case $A \neq \emptyset$ the endpoints of each component (α_i, β_i) belong to E. Between two intervals $(\alpha_i, \beta_i), (\alpha_j, \beta_j)$ of A there exists at least one point $t_0 \notin E$. If namely $(\alpha_i, \beta_j) \subseteq E$ where $\alpha_i < \alpha_j$ then, owing to Theorem 1, the function f is equal to a polynomial of degree n. Hence, $(\alpha_i, \beta_j) \subseteq A_n$ which is impossible in view of the unique representation of A_n according to Proposition 3.

Let us consider some examples for the different possibilities of the sets E, A, B, C in Proposition 3. Obviously, if f is a polynomial then E = [0,1], A = (0,1), $B = \emptyset$ and $C = \{0,1\}$, but also the case $E = \emptyset$ is possible, e.g. for $f(t) = e^t$. For further possibilities let us consider the homogeneous integral-functional equation

$$\phi(t) = b \int_{at-a+1}^{at} \phi(\tau) d\tau \qquad \left(b = \frac{a}{a-1}\right)$$
(9)

with the real variable t and a parameter a > 1, cf. [1], [2]. The solutions of (9) were studied for a = 3 in Wirsching [9], for a = 2 in Schnabl [7] and Volk [8], and for $a > \frac{3}{2}$ in Wirsching [10]. In [1] it was shown that for a > 1 equation (9) has a C^{∞} -solution with the support [0, 1] which is uniquely determined by the normalization

$$\int_{0}^{1} \phi(t)dt = 1.$$
 (10)

In case a = 2 the solution ϕ has the property $\phi^{(n)}(t) = 0$ if and only if $t = \frac{k}{2^n}$ with $k \in 0, 1, \ldots, 2^n$, cf. [2], formula (4.8), so that in this case we have $A = B = \emptyset$ and C is the countable set of all dyadic rational numbers in [0, 1]. In case a > 2 the solution ϕ is a polynomial on each component of an open Cantor set G with Lebesgue measure |G| = 1, and the set of all $t \notin G$ with $\phi^{(n)}(t) = 0$ with a certain $n \in \mathbb{N}$ is countable, cf. formula (4.7) in [2]. Hence, in this case we have A = G, i.e. $\overline{A} = [0, 1], B = \emptyset$ and C is the set of all endpoints of the components of G.

The following example shows that also the case $B \neq \emptyset$ is possible.

Example 5 Let f_0 be any infinitely often differentiable function over [0,1] with $f_0(t) > 0$ for 0 < t < 1 and $f_0^{(k)}(0) = f_0^{(k)}(1) = 0$ for all $k \in \mathbb{N}_0$, e.g.

$$f_0(t) = e^{\frac{1}{t(1-t)}}.$$
(11)

For a given nowhere dense perfect set $B_0 \subseteq [0,1]$ with $0,1 \in B_0$ the open complement $G = [0,1] \setminus B_0$ is representable as union of pairwise disjoint intervals (a_j, b_j) $(j \in \mathbb{N})$. We define a function f by f(t) = 0 for $t \in B_0$ and by

$$f(t) = c_j f_0 \left(\frac{t - a_j}{b_j - a_j}\right)$$

On the Zeros of an Infinitely Often Differentiable Function and their Derivatives

for $a_j < t < b_j$, and

$$c_j = \frac{1}{j \, M_j} \tag{12}$$

where

$$M_{j} = \max_{k \in \{0, \dots, j\}} \max_{a_{j} < t < b_{j}} \left| \frac{1}{(b_{j} - a_{j})^{k} \min(t - a_{j}, b_{j} - t)} \left| f_{0}^{(k)} \left(\frac{t - a_{j}}{b_{j} - a_{j}} \right) \right|.$$
(13)

The number M_j exists in view of the continuity of $f_0^{(k)}$ and $f_0^{(k+1)}(0) = f_0^{(k+1)}(1) = 0$ so that $c_j > 0$ for all j. Consequently, it holds $E_0 = B_0$. Obviously, for $a_j < t < b_j$ and $k \in \mathbb{N}_0$ it holds

$$f^{(k)}(t) = \frac{c_j}{(b_j - a_j)^k} f_0^{(k)} \left(\frac{t - a_j}{b_j - a_j}\right).$$
(14)

We show by induction with respect to k that $f^{(k)}(t) = 0$ for $t \in B_0$. This is true for k = 0according to the definition of f. Assume that this is true for a fixed k. Let $t_0 \in B_0$ and $t_n \neq t_0$ a sequence which converges to t_0 . If $t_n \in B_0$ then

$$\frac{f^{(k)}(t_n) - f^{(k)}(t_0)}{t_n - t_0} = 0.$$

Hence, it suffices to consider the case that $t_n \in [0,1] \setminus B_0$ for all $n \in \mathbb{N}$, i.e. $t_n \in (a_{j_n}, b_{j_n})$. Obviously, we need to investigate only two cases: **1.** the sequence j_n is bounded and **2.** $j_n \to \infty$ as $n \to \infty$. The first case is only possible if for $n \ge n_0$ all t_n belong to the same interval (a_j, b_j) and t_0 is an endpoint of (a_j, b_j) . Then we have

$$\lim_{n \to \infty} \frac{f^{(k)}(t_n) - f^{(k)}(t_0)}{t_n - t_0} = 0$$

in view of $f_0^{(k+1)}(0) = f_0^{(k+1)}(1) = 0$. In the second case we can choose an integer n_0 such that $j_n \ge k$ for $n \ge n_0$. From (14) and $f^{(k)}(t_0) = 0$ we obtain

$$\left|\frac{f^{(k)}(t_n) - f^{(k)}(t_0)}{t_n - t_0}\right| = \frac{c_{j_n}}{(b_{j_n} - a_{j_n})^k |t_n - t_0|} \left| f_0^{(k)} \left(\frac{t_n - a_{j_n}}{b_{j_n} - a_{j_n}}\right) \right|.$$

Since $|t_0 - t_n| \ge \min(t_n - a_{j_n}, b_{j_n} - t_n)$ we get for $n \ge n_0$ in view of (12), (13) and $k \le j_n$ that

$$\left|\frac{f^{(k)}(t_n) - f^{(k)}(t_0)}{t_n - t_0}\right| \le \frac{1}{j_n} \to 0$$

for $n \to \infty$. Altogether we obtain $f^{(k+1)}(t_0) = 0$. According to Proposition 3 it holds $B_0 \subseteq B$ so that here we have an example for an infinitely often differentiable function f with $B \neq \emptyset$.

Theorem 6 Let f be an infinitely often differentiable real function over [0,1]. Then the set $M = \{t : \exists n \in \mathbb{N}_0 : f^{(n)}(t) = 0, f^{(n+1)}(t) \neq 0\}$ is at most countable.

67

Proof: For $n \in \mathbb{N}_0$ let M_n the set of all points $t \in [0, 1]$ with $f^{(n)}(t) = 0$ and $f^{(n+1)}(t) \neq 0$. Hence, $M_n \subseteq E_n$ with the notations of Proposition 3, cf. (8), where A_n is an open set. Let (α, β) be a component of A_n then f is a polynomial of degree m. Hence, for n < m the number of points $t \in (\alpha, \beta)$ with $f^{(n)}(t) = 0$ is finite and for $n \ge m$ there is no point with $f^{(n+1)}(t) \neq 0$. It follows that $M_n \cap A_n$ is at most countable. For $t \in B_n$ we have $f^{(n+1)}(t) = 0$ so that $M_n \cap B_n = \emptyset$, i.e. $M_n \subseteq A_n \cap C_n$. It follows that M is at most countable \blacksquare

Obviously, for a polynomial f the set $D = \{t : f^{(n)}(t) \neq 0, \forall n \in \mathbb{N}_0\}$ is empty.

Theorem 7 Let f be an infinitely often differentiable real function over [0, 1]. If f is not a polynomial then the set $D = \{t : f^{(n)}(t) \neq 0, \forall n \in \mathbb{N}_0\}$ has the power \mathbf{c} .

Proof: Let *D* be a nonempty set. We apply Proposition 3 with the introduced notations. Obviously, the set *D* is the complement of *E* so that $E \subset [0, 1]$ since $D \neq \emptyset$. We consider two cases:

1. Assume that there exists an interval I = (a, b) without points of A. Then according to Proposition 3 it holds the disjoint decomposition

$$I = (I \cap B) \cup (I \cap C) \cup (I \cap D)$$

where the first and the second set on the right-hand side are sets of first category. Consequently, $I \cap D$ is a set of second category and so D has the power \mathbf{c} , cf. [4], 10.12.

2. Assume that $[0,1] \setminus A$ is nowhere dense in [0,1], i.e. $\overline{A} = [0,1]$ where because of $D \neq \emptyset$ the case A = (0,1) is excluded in view of Remark 4.1. It follows from Proposition 3 that A is the union of countably many open intervals (α_i, β_i) which are pairwise disjoint, cf. (7). Hence, the set $[0,1] \setminus A$ is a nowhere dense perfect set. Then there exists a continuous increasing function g with g(0) = 0, g(1) = 1 and $g(t) = g_i$ for $t \in (\alpha_i, \beta_i)$ with $g_i \neq g_j$ for $i \neq j$ where the countable set g(A) of all g_i is dense in [0,1], cf. Cantor's stair function. For the set

$$A^* = \bigcup_i \left[\alpha_i, \beta_i\right]$$

we have $g(A^*) = g(A) = \{g_i\}$ and the restriction of g to $[0,1] \setminus A^*$ is even strictly increasing and has the following property:

(i) The map $g: ([0,1] \setminus A^*) \mapsto [0,1] \setminus g(A^*)$ is bijektive.

According to Remark 4 the set D from (2) is a subset of $[0,1] \setminus A^*$. Next we show that for all n the sets $g(B_n)$ are nowhere dense. Assume that there exists an n such that $g(B_n)$ is dense in an interval (g_i, g_j) with $i \neq j$ then $[g_i, g_j] \subseteq g(B_n)$ since $g(B_n)$ is closed in view of the continuity of g. This implies owing to (i) that all points of the set $(\alpha_i, \beta_j) \setminus A$ belong to $B_n \subseteq E$ which is impossible, cf. Remark 4. Consequently, $g(B_n)$ is nowhere dense so that g(B) is a set of first category. This is true also for the union $g(A) \cup g(B) \cup g(C)$ since g(A) and g(C) are at most countable sets. This implies that g(D) is a set of second category so that it has the power \mathbf{c} , cf. [4]. Since $D \subseteq [0,1] \setminus A^*$ it follows from (i) that also the set D has the power $\mathbf{c} \blacksquare$

References

- Berg, L., and Krüppel, M. : On the solution of an integral-functional equation with a parameter. Z. Anal. Anw. 17, 159-181 (1998)
- [2] Berg, L., and Krüppel, M. : Cantor sets and integral-functional equations. Z. Anal. Anw. 17, 997-1020 (1998)
- [3] Boghossian, A., and Johnson, P.D.: Pointwise conditions for analycity and polynomiality of infinitely differentiable functions. J. Anal. Appl. 140, 301-309 (1989)
- [4] Bögel, K., and Tasche, M. : Analysis in normierten Räumen. Akademie-Verlag Berlin, 1974
- [5] Gale, D. : Mathematical entertainment. Math. Intell. 13.1, 42 (1991)
- [6] Natanson, I.P. : Theorie der Funktionen einer reellen Veränderlichen. Akademie-Verlag Berlin, 1969
- [7] Schnabl, R. : Über eine C[∞]-Funktion. In: E. Hlawka (Ed.): Zahlentheoretische Analysis. Lecture Notes in Mathematics 1114, 134-142 (1985)
- [8] Volk, W.: Properties of subspaces generated by an infinitely often differentiable function and its translates. Z. Ang. Math. Mech. (ZAMM) 76 Suppl.1, 575-576 (1996)
- [9] Wirsching, G. J.: The Dynamical System Generated by the 3n+1 Function. Lecture Notes in Mathematics 1681 (1998)
- [10] Wirsching, G. J. : Balls in constrained urns and Cantor-like sets. Z. Anal. Anw. 17, 979-996 (1998)

received: May 30, 2005

Author:

Manfred Krüppel Universität Rostock Institut für Mathematik 18051 Rostock Germany

e-mail: manfred.krueppel@uni-rostock.de

70