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On the dual König property of the order-interval hy-
pergraph of a new class of poset

ABSTRACT. Let P be a finite poset. We consider the hypergraph H(P ) whose vertices

are the elements of P and whose edges are the maximal intervals of P . It is known that

H(P ) has the König and dual König properties for the class of series-parallel posets. Here

we introduce a new class which contains series-parallel posets and for which the dual König

property is satisfied. For the class of N-free posets, again a generalization of series-parallel

posets, we give a counterexample to see that the König property is not satisfied.

1 Introduction

Let P be a finite poset. A subset I of P of the form I = {v ∈ P : p ≤ v ≤ q} (denoted [p, q])

is called an interval. It is maximal if p (resp. q) is a minimal (resp. maximal) element of P .

Denote by I(P ) the family of maximal intervals of P . The hypergraph H(P ) = (P, I(P )),

briefly denoted H = (P, I), whose vertices are the elements of P and whose edges are the

maximal intervals of P is said to be the order-interval hypergraph of P . The line-graph L(H)

of H is a graph whose vertices are points e1, . . . , em representing the edges I1, . . . , Im of H,

the vertices ei, ej being adjacent iff Ii∩Ij 6= ∅. The dual H∗ of the order-interval hypergraph

H is a hypergraph whose vertices e1, . . . , em correspond to intervals of P and whose edges

are Xi = {ej : xi ∈ Ij}.

Let α, ν, τ and ρ be the independence, matching, edge-covering and vertex-covering number

of a hypergraph H, respectively. H has the König property if ν(H) = τ(H) and it has

the dual König property if ν(H∗) = τ(H∗), i.e α(H) = ρ(H) since α(H) = ν(H∗) and

ρ(H) = τ(H∗). This class of hypergraphs has been studied intensively in the past and one

finds interesting results from an algorithmic point of view as well as min-max relations [2]-[6],

[9].

1This work is partially supported by a grant of the DAAD



20 I. Bouchemakh

A poset P is said to be a series-parallel poset, if it can be constructed from singletons using

only two operations: disjoint sum and linear sum. It may be characterized by the fact that

it does not contain the poset N of Figure 3 as an induced subposet [13], [14].

Let P be a finite poset. The graph GP = (P,EP ), with xy ∈ EP if x < y or y < x is the

comparability graph of the poset P . G = (V,E) is a comparability graph if there is a poset

P such that G ∼ GP .

It is known that the cographs, i.e. graphs without an induced path of length 4, are com-

parability graphs of series-parallel posets [7]. The cographs belong to the class of distance-

hereditary graphs, which has been studied in graph theory [7]. A possible definition of a

distance-hereditary graph is as follows: G is a distance-hereditary graph iff G has no induced

gem, house, hole (cycle of length at least 4) and domino (see Figure 1).

gem house hole domino

Figure 1

We investigate a class of posets that contains the series-parallel posets and whose members

have comparability graphs which are distance-hereditary graphs or generalizations of them.

A poset P is in the class Q (resp. Q′) if it has no induced subposet isomorphic to P1, P2, P3

(resp. P1, P2, P3, P4) of Figure 2 and their duals, where P3 has n vertices, n ≥ 6. Obviously

the class Q′ is included in Q. We prove that if P is in Q, then H(P ) has the dual König

property.

P1 P2 P3 P4

Figure 2

We characterize the comparability graphs of the class of posets in Q′ in terms of four for-

bidden subgraphs.
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Proposition 1 Let G be the comparability graph of the poset P . Then G contains no

induced gem, house, domino and even hole if and only if P ∈ Q′.

Proof: We prove this result in four steps.

Step 1. The graph G contains no induced gem if and only if P contains neither P1 nor

P ∗
1 as an induced subposet. Indeed, assume that P has an induced P1 (resp. P ∗

1 ) and let

x, y, z, t, u be the elements of P1 such that x < y < z > t > x and t < u (resp. t > u). We

immediately deduce a gem with edges xy, xz, xt, xu, yz, zt and tu (resp. zy, zx, zt, zu,

yx, xt and tu) of G. Conversely, suppose that the graph G has an induced gem whose edges

are xy, xz, xt, xu, yz, zt and tu. The subgraph of G induced by {x, y, z} (resp. {x, z, t})
is a triangle, hence x, y, z (resp. x, z, t) form a chain of P . As yt /∈ E, we obtain only six

possibilities: z < y < x > t > z or x < y < z > t > x or y, t < z < x or t, y < x < z or

x < z < y, t or z < x < y, t. In virtue of the existence of the triangle induced by {x, u, t},
we infer that the first case gives z < y < x > t > u, z, the second z > y > x < t < z, u, the

third t < u < x > z > t, y, the fifth t > u > x < z < y, t, without another comparability

relation, and the fourth and sixth lead to a contradiction. Hence, we have obtained in each

case either P1 or P ∗
1 .

Step 2. The graph G contains no induced house if and only if P contains no P2 as an induced

subposet. Indeed, assume that P has an induced P2 and let x, y, z, t, u be the elements of P2

such that x < y < z > t < u > x. We immediately deduce a house with edges xy, yz, xz, zt,

tu and ux of G. Conversely, suppose that G has an induced house whose edges are xy, yz,

xz, zt, tu and ux. Since xy ∈ E, the elements x and y are comparable. First, assume that

x < y. As yz ∈ E, we have y < z or z < y. In fact z < y leads to a contradiction. To see

this, note that if z < y holds, then z < x < y or x < z < y. In the first case, from ux ∈ E,

we deduce u > x, i.e. u > z, or u < x, i.e. u < y, both impossible since uz and uy are not

edges of E. In the second case, zt ∈ E implies z < t, i.e., x < t or z > t, i.e. t < y, both

impossible since xt and ty are not edges of E. Hence z < y is impossible. From tz ∈ E and

yt /∈ E, we obtain x < y < z > t and these are the only comparability relations. As tu ∈ E
and uz /∈ E, we deduce t < u. Finally, the only possibility for the relation between x and u

is x < u. Hence, P2 is obtained as an induced subposet. Adopting the same argument for

y < x, we obtain P2 as an induced subposet with the ordering y < x < z > t < u > y.

Step 3. It is easy to see that G contains no induced even hole if and only if P does not

contain a P3 as an induced subposet.

Step 4. The graph G contains no induced domino if and only if P contains no P4 as an

induced subposet. Indeed, assume that P has an induced P4 and let x, y, z, t, u, v be elements

of P4 such that x < t, u and y < t, u, v and z < u, v. We immediately deduce a domino with

edges xt, ty, yv, vz, zu, ux and uy of G. Conversely, suppose that G has an induced domino
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whose edges are xt, ty, yv, vz, zu, ux and uy. Hence, ux, uy, uz ∈ E and xy, yz, xz /∈ E

lead to x, y, z < u or u < x, y, z with x ‖ y, y ‖ z and x ‖ z. We consider only the first

possibility because the other may be settled by duality. From yt ∈ E (resp. yv ∈ E) and

ut /∈ E (resp. uv /∈ E), we obtain y < t (resp. y < v). For the remaining edges xt and zv,

we have only the possibilities x < t and z < v. Obviously, there are no other comparability

relations between these elements.

By Proposition 1, the comparability graph of a poset in Q′ is a distance-hereditary graph,

because the comparability graph of any poset cannot contain an odd hole: Each transitive

orientation of an odd hole contains two consecutive arcs xy and yz which imply the chord

xz.

In order to prove the dual König property of H(P ) when P is in the class Q, let us introduce

two observations. We recall that the vertices of the line-graph L(H∗(P )) are the points of P

and two vertices are adjacent iff they belong to the same interval of P .

Observation 1 Assume that P has no induced subposet isomorphic to P1 and P ∗
1 . Let

u, v, w ∈ P with u ‖ v. If there exist two intervals I and I ′ such that u, v ∈ I and v, w ∈ I ′,
then u ∈ I ′.

Proof: Let I = [p, q] and I ′ = [p′, q′]. If u /∈ I ′, then u 6< q′ or p′ 6< u. In the first case, the

poset induced by {p, u, v, q, q′} and P1 are isomorphic. In the second case, the poset induced

by {p, p′, u, v, q} and P ∗
1 are isomorphic, both impossible.

By Observation 1, one can say that the existence of two edges uv and vw of the line-graph

L(H∗(P )) with the above mentioned properties enables us to affirm that uw is an edge, too.

Observation 2 Assume that P has no induced subposet isomorphic to P1, P
∗
1 and P3.

Let the ’zig zag’ u1 < u2 > u3 < · · · > ui−1 < ui, be given by i elements of P , linking u1 to

ui, where i is even, i ≥ 6. If u1 and ui belong to the same interval of P, then there exists at

least another comparability relation between u1, . . . , ui, different from u1 < ui and ui < u1.

Proof: If u1 > ui, then u1 > ui−1. If u1 ‖ ui, then from Observation 1, ui, u2 ∈ I1, where I1 is

the interval containing u1 and u2. If u1 < ui, then there exists at least another comparability

relation between u1, . . . , ui, different from u1 < ui and ui < u1, because otherwise the poset

induced by {u1, u2, . . . , ui} and P3 would be isomorphic.

Theorem 1 Let H(P ) be the order-interval hypergraph of a poset P of the class Q. Then

the line-graph L(H∗(P )) is perfect.

Proof: It is enough to verify that the line-graph L(H∗(P )) is a Meyniel graph, i.e. each

cycle of odd length at least 5 has at least two chords. Meyniel [11] proved the perfectness of

Meyniel graphs.
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Let C = (a1, . . . , ak) be a cycle of odd length k, k ≥ 5. Let us denote by Ii = [pi, qi] the

interval of P containing both ai and ai+1 and by I = [p, q] the interval of P containing both

a1 and ak.

Case 1. a1 ‖ a2. From Observation 1, we have a1a3 ∈ I2 and a2ak ∈ I.

Case 2. a1 < a2. We distinguish three subcases:

Case 2.1. a2 ‖ a3. From Observation 1, we have a1, a3 ∈ I1 and a2, a4 ∈ I3.

Case 2.2. a2 < a3. We immediately deduce the existence of the chord a1a3 of C. Let us

determine another chord.

Case 2.2.1. a3 < a4 or a3 ‖ a4. Then a2a4 is a chord of C. Indeed, a3 < a4 implies a2 < a4

and from Observation 1, a3 ‖ a4 leads to a2, a4 ∈ I2.

Case 2.2.2. a3 > a4. Then a3a5 is a chord of C if a4 > a5 or a4 ‖ a5. Indeed, a4 > a5

implies a3 > a5 and from Observation 1, a4 ‖ a5 leads to a3, a5 ∈ I3.

Now let a4 < a5. In the case k = 5, we have three possibilities: If a1 > a5 or a1 ‖ a5,

then a2a5 is a chord of C. Indeed, a1 > a5 implies a2 > a5 and from Observation 1, a1 ‖ a5

leads to a2, a5 ∈ I1. If a1 < a5, then we must have another comparability relation between

the elements a1, a2, a3, a4, a5, i.e. the existence of a new chord, because otherwise the poset

induced by {a1, a2, a3, a4, a5} and P2 would be isomorphic. In the case k > 5, consider the

’zig zag’ a1 < a3 > a4 < a5 > · · · > ai−1 < ai linking a1 to ai where i is a maximum odd

integer, 5 ≤ i ≤ k. If i = k, i.e a1, ai are in the same interval of P , we use Observation 2 to

affirm the existence of the second chord. If i < k, we have again three possibilities:

If ai+1 > ai or ai+1 ‖ ai, then ai−1ai+1 is a chord of C. Indeed, ai < ai+1 implies ai+1 > ai−1

and from Observation 1, ai ‖ ai+1 leads to ai−1, ai+1 ∈ Ii−1. If ai+1 < ai, the cases ai+1 > ai+2

and ai+1 ‖ ai+2 give a new chord aiai+2 since ai+2 < ai+1 implies ai+2 < ai and from

Observation 1, ai+1 ‖ ai+2 implies ai, ai+2 ∈ Ii.

Case 2.3. a2 > a3. We distinguish three subcases:

Case 2.3.1. a3 ‖ a4. From Observation 1, a2, a4 ∈ I2 and a3a5 ∈ I4.

Case 2.3.2. a3 > a4. Then a2a4 is a chord of C since a4 < a3 < a2. Now, if a4 > a5 or

a4 ‖ a5, we deduce the chord a3a5 since a4 > a5 implies a3 > a5 and from Observation 1,

a4 ‖ a5 implies a3, a5 ∈ I3. If a4 < a5, then the corresponding part of this case in Case 2.2.2.

remains valid here by considering the ’zig zag’ a1 < a2 > a4 < a5 > · · · > ai−1 < ai.

Case 2.3.3. a3 < a4. If a4 < a5, then a3 < a5, i.e. a3a5 is a chord of C. For obtaining

the second chord, we continue as in Case 2.2.2 (from the same situation a4 < a5). Here the

’zig zag’ is a1 < a2 > a3 < a5 > a6 < · · · > ai−1 < ai. If a4 ‖ a5, then from Observation 1,

we have on the one hand a3, a5 ∈ I3. On the other hand a1, a4 ∈ I if k = 5 and a4, a6 ∈ I5
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otherwise. If a4 > a5 and k = 5, then either a5 < a1 (resp. a1 < a5) or a1 ‖ a5. If a5 < a1

(resp. a1 < a5), not only a5 < a2 (resp. a1 < a4), i.e. a2a5 (resp. a1a4) is a chord of C
but again, it must exist another comparability relation between elements a1, . . . , a5 because

otherwise, the poset induced by these elements and P2 would be isomorphic. If a1 ‖ a5, we

have by Observation 1, a2, a5 ∈ I1 and a1, a4 ∈ I4, hence a2a5 and a1a4 are chords of C.

If a4 > a5 and k > 5, consider the ’zig zag’ a1 < a2 > a3 < · · · < ai−1 > ai, where i is a

maximum odd integer, 5 ≤ i < k.

If i = k, we have either, a1 > ai (resp. a1 < ai) or a1 ‖ ai. If a1 > ai (resp. a1 < ai ), a2ai

(resp. a1ai−1) is a chord of C. Moreover there exists another comparability relation between

elements a2, . . . , ai (resp. a1, . . . , ai−1) because otherwise the poset induced by these elements

and P3 would be isomorphic. If a1 ‖ ai, by Observation 1, a1, ai−1 ∈ Ii−1 and a2, ai ∈ I1.
If i < k, we have three subcases:

Case 2.3.3.1. ai+1 ‖ ai. Then from Observation 1, ai−1, ai+1 ∈ Ii−1 and ai, ai+2 ∈ Ii+1.

Case 2.3.3.2. ai+1 < ai. We immediately deduce ai+1 < ai−1, i.e. the chord ai−1ai+1 of C.

If ai+1 > ai+2, then aiai+2 is a chord of C. If ai+1 ‖ ai+2, then from Observation 1, aiai+2 ∈ Ii.
If ai+1 < ai+2, we continue as in Case 2.2.2. with the zig zag’ a1 < a2 > · · · < ai−1 > ai+1 <

ai+2.

Case 2.3.3.3. ai+1 > ai. If ai+1 < ai+2, then ai < ai+2 and hence aiai+2 is a chord of

C. In the case k = i + 2, we have either a1 < ai+2 which leads to the existence of another

comparability relation between the elements a1, . . . , ai, ai+2, i.e. a new chord, since otherwise

the poset induced by these elements and P3 would be isomorphic, or a1 > ai+2 or a1 ‖ ai+2.

These last possibilities give the chord a1ai+1 of C because ai+2 < a1 implies ai+1 < a1 and

from Observation 1, a1 ‖ ai+2 implies a1, ai+1 ∈ Ii+1.

In the case i + 2 < k, we consider the ’zig zag’ a1 < a2 > · · · < ai−1 > ai < ai+2

and we continue as in Case 2.2.2. by substituting the elements a3, . . . , ai−2, ai−1, ai by

a2, . . . , ai−1, ai, ai+2, respectively.

If ai+1 ‖ ai+2, then from Observation 1, ai, ai+2 ∈ Ii and a1, ai+1 ∈ I (resp. ai+1, ai+3 ∈ Ii+2)

if k = i+ 2 (resp. k > i+ 2).

Case 3. a2 < a1. By duality, this case is similar to Case 2.

Finally, we have obtained in each case at least two chords of C and the proof is complete.

Let H = (E1, . . . , Em) be a hypergraph. We say that H has the Helly property or is a Helly

hypergraph if every intersecting family of H is a star, i.e. for J ⊂ {1, . . . ,m}, Ei∩Ej 6= ∅, for

i, j ∈ J , implies ∩j∈JEj 6= ∅. A good characterization of a Helly hypergraph, due to Berge

and Duchet [1], is given by the following property:

For any three vertices a1, a2, a3 the family of edges containing at least two of the vertices ai
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has a non-empty intersection.

Theorem 2 Let H(P ) be the order-interval hypergraph of a poset P which has no induced

subposet isomorphic to P1 and P ∗
1 . Then H∗(P ) is a Helly hypergraph.

Proof: In the class of order-interval hypergraphs of posets, H∗(P ) is a Helly hypergraph if

and only if H(P ) is a Helly hypergraph [5]. Consequently, we can verify this property for

the hypergraph H(P ).

Let I = {I1, . . . , Im} be the family of maximal intervals of P . We suppose that there exist

three vertices a1, a2, a3 of P such that ∩j∈JIj = ∅ where J = {j : |Ij ∩ {a1, a2, a3}| ≥ 2}.
Hence, |J | ≥ 3 and there exists three edges, say w.l.o.g I1 = [p1, q1], I2 = [p2, q2], I3 = [p3, q3],

such that:
a2, a3 ∈ I1 and a1 /∈ I1
a1, a3 ∈ I2 and a2 /∈ I2
a1, a2 ∈ I3 and a3 /∈ I3

From Observation 1, we have a1 ∈ I1 if a1 ‖ a2, and a2 ∈ I2 if a1 < a2 and a2 ‖ a3. If a1 < a2

and a2 < a3, we have immediately a2 ∈ I2. Again, we obtain a3 ∈ I3, if a1 < a2 and a3 < a2.

Indeed, we must have a1 ‖ a3 because a1 < a3 (resp. a3 < a1) implies p3 < a1 < a3 < a2 < q3

(resp. p1 < a3 < a1 < a2 < q1), i.e. a3 ∈ I3 (resp. a1 ∈ I1). Moreover, p2 6= p3, because

otherwise p3 = p2 < a3 < a2 < q3 and hence, a3 ∈ I3. Consequently, the poset induced by

{p2, p3, a1, a3, a2} and P ∗
1 are isomorphic. By duality, the remaining case, namely a2 < a1,

leads to a contradiction as well.

A hypergraph H is said to be normal if every partial hypergraph H′ has the coloured edge

property, i.e. it is possible to colour the edges of H′ with 4(H′) colours, where 4(H′)

represents the maximum degree of H′. Several sufficient conditions exist for a hypergraph to

have the König property [1]. One of them is its normality. A hypergraph H is normal iff it

satisfies the Helly property and the line-graph L(H) is a perfect graph. This characterization

enables us to derive the following corollary.

Corollary 3 Let H(P ) be the order-interval hypergraph of a poset P of the class Q.

Then every subhypergraph of H(P ) has the dual König property.

Proof: By Theorem 1 and Theorem 2, H∗(P ) is normal and consequently every partial

hypergraph is again normal. As the dual of a partial hypergraph ofH∗(P ) is a subhypergraph

of H(P ), we deduce that every subhypergraph of H(P ) has the dual König property.

2 N-free posets

Another natural and interesting generalization of series-parallel posets is the class of N-

free poset. A poset is called N-free iff its Hasse-diagram does not contain the N from
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Figure 3 as an induced subgraph [12], i.e. if there do not exist vertices v1, . . . , v4 such that

v1 ≺ v3 � v2 ≺ v4 and v1 ‖ v4.

There is a characterization of series-parallel posets within the class of N-free posets [8]. It

states that a poset P is a series-parallel iff P is N-free and does not contain the poset N’ of

Figure 3 as an induced subposet.

N N’

Figure 3

Unfortunately, if the poset P is N-free, the König property is not satisfied in general. The

poset of Figure 4, gives a counterexample since ν(H(P1)) = 1 and τ(H(P1)) = 2. Moreover,

H∗(P ) is not normal. To see this, consider the poset P2 of Figure 4. The line-graph L(H∗(P ))

contains an induced odd cycle C5 given by the vertices {2, 3, 4, 12, 13} and hence L(H∗(P ))

is not perfect.

Figure 4

P1 P2

2 3 4

5
8

6 7 9 10

11 12 13

1
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Département de Recherche Opérationnelle

B.P. 32 El-Alia, Bab-Ezzouar

Alger, Algérie


