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ABSTRACT. We investigate the boundedness, the global stability, and the periodic nature

of the nonnegative solutions of the equation in the title with nonnegative parameters
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1 Introduction and Preliminaries

In this paper we consider the third order nonlinear rational difference equation

xn+1 =
bx2

n−1

A+Bxn−2

, n = 0, 1, ... (1)

where the parameters A, B, and b and the initial conditions x−2, x−1 and x0 are arbitrary

non-negative real numbers. We investigate the boundedness, the global stability and the

periodic nature of the solutions of the Eq. (1).

Recently there has been a great interest in studying rational [1, 2, 5, 7] and nonrational

nonlinear difference equations [3, 5, 8, 9, 10, 11, 12], see also the references therein. Some

of the results recently obtained in this field can be applied in studying some mathematical

biology models, population dynamic etc., see [3, 4, 12].

Consider the difference equation

xn+1 = f(xn, xn−1, xn−2) (2)

with x−2, x−1, x0 ∈ I (where I is some interval of real numbers).

The linearized equation of Eq. (2) about an equilibrium x̄ is the linear difference equation

yn+1 = c1yn + c2yn−1 + c3yn−2, n = 0, 1, ... (3)
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where

c1 =
∂f

∂x
(x̄, x̄, x̄), c2 =

∂f

∂y
(x̄, x̄, x̄), c2 =

∂f

∂z
(x̄, x̄, x̄)

The characteristic equation of Eq. (3) is

λ3 − c1λ
2 − c2λ− c3 = 0. (4)

Theorem A ([6, Theorem 1]) (Linearized Stability Theorem) The following statements

are true.

a) If all roots of Eq. (4) have modulus less than one, then the equilibrium x̄ of Eq. (2) is

locally asymptotically stable.

b) If at least one of the roots of Eq. (4) has modulus greater than one, then the equilibrium

x̄ of Eq. (2) is unstable.

A necessary and sufficient condition for all roots of Eq. (4) to have modulus less than one is

the following:

|c1 + c3| < 1− c2, |c1 − 3c3| < 3 + c2, and c23 − c2 − c1c3 < 1.

In this case, the locally asymptotically stable equilibrium x̄ is called a sink.

The equilibrium x̄ of Eq. (2) is called a saddle point if there exits a root of Eq. (4) with

absolute value less than one and a root of Eq. (4) with absolute value greater than one. In

particular a saddle point equilibrium is unstable.

2 The case AB = 0

In this section we shortly discuss the case when one of the parameters in the Eq. (1) is zero,

where we have the following two nontrivial cases:

xn+1 =
bx2

n−1

Bxn−2

, n = 0, 1, ... (5)

xn+1 =
b

A
x2

n−1, n = 0, 1, ... (6)

In each of the above equations we assume that all parameters in the equations are positive.

Equations (5) and (6) are nonlinear third and second order respectively, and the change

of variables xn = eyn reduce the equations (5) and (6) to a third and second order linear

difference equation respectively, which can be solved. The details we leave to the reader.
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3 Main Results

In this section we investigate the dynamics of Eq. (1) under the assumption that all param-

eters in Eq. (1) are positive and the initial conditions are nonnegative.

The change of variables xn = A
B
yn reduces Eq. (1) to the difference equation

yn+1 =
ry2

n−1

1 + yn−2

, n = 0, 1, ... (7)

where r = b
B
.

It is easy to see that ȳ1 = 0 is always an equilibrium point and when r > 1 we have also a

positive equilibrium point ȳ2 = 1
r−1

.

3.1 An Oscillation Result

Lemma 1 Assume that r > 1 and let {yn}∞n=−2 be a solution of Eq. (7) such that either

y−2, y0 ≥ ȳ2 and y−1 < ȳ2 (8)

or

y−2, y0 < ȳ2 and y−1 ≥ ȳ2 (9)

then {yn}∞n=−2 oscillates about ȳ2 with semi-cycle of length one.

Proof: We will assume that (8) holds. The case where (9) holds is similar and will be

omitted. From (7) we obtain

y1 =
ry−1

1 + y−2

<
rȳ2

1 + ȳ2

= ȳ2 and y2 =
ry0

1 + y−1

>
rȳ2

1 + ȳ2

= ȳ2.

Using induction the result follows.

3.2 Existence of Prime Period-Two Solutions

In this subsection, we show that Eq. (7) has prime period-two solutions.

Theorem 2 Eq. (7) has eventually nonnegative prime period-two solutions if and only

if either

y−1 = 0 and y0 =
1

r
(10)

or

y0 = 0 and
y2
−1

1 + y−2

=
1

r2
, (11)

the period-two solution must be in the form

..., 0,
1

r
, 0,

1

r
, ... . (12)
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Proof: Assume that

..., φ, ψ, φ, ψ, ...

is a nonnegative prime period-two solution of Eq. (7).

Then

φ =
rφ2

1 + ψ
and ψ =

rψ2

1 + φ
. (13)

Hence φ− ψ = r(φ2 − ψ2), and consequently

φ+ ψ =
1

r
. (14)

From Eqs.(13) and (14) we get the period-two solution in form (12). If y2k+1 = 0 for some

k ∈ N then from (7), it follows that y2n−1 = 0, n = 0, 1, ... , y2n = 1/r, n = 1, 2, ..., and y−2

is arbitrary. If y2l = 0 for some l ∈ N, then y2n = 0, n = 1, 2, ..., y2n−1 = 1/r, n = 1, 2, ...,

and
ry2
−1

1+y−2
= y1 = 1

r
, as desired.

3.3 Local and Global Stability

As we have already noted ȳ1 = 0 is always an equilibrium solution of Eq. (7). Furthermore

when r > 1, Eq. (7) also possesses the positive equilibrium ȳ2 = 1
r−1

.

Theorem 3 Consider Eq. (7). Then the following results hold:

(i) The zero equilibrium point is locally asymptotically stable.

(ii) Assume that r > 1 then the equilibrium point ȳ2 = 1
r−1

is unstable. In particular ȳ2 is

a saddle point.

Proof: The linearized equation associated with Eq. (7) about ȳi , i = 1, 2, has the form

zn+1 −
2rȳi

1 + ȳi

zn−1 +
rȳ2

i

(1 + ȳi)2
zn−2 = 0 , n = 0, 1, ... .

So the linearized equation of Eq. (7) about ȳ1 = 0 is zn+1 = 0, n = 0, 1, ..., and the

characteristic equation about ȳ1 = 0 is λ3 = 0 so proof of (i) follows immediately from

Theorem A.

The linearized equation of Eq. (7) about ȳ2 = 1
r−1

is zn+1 = 2zn−1 − 1
r
zn−2, n = 0, 1, ... ,

and the characteristic equation is

λ3 − 2λ+
1

r
= 0, with r > 1.

Set

f(λ) = λ3 − 2λ+
1

r
. (15)
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Then f(1) = −1 + 1
r
< 0 and limλ→+∞ f(λ) = +∞ , so f(λ) has at least a zero in (1,∞)

and the product of the moduli of the zeros of the function f is 1
r
< 1, hence there exists a

root in the unit disk. This completes the proof.

Theorem 4 The zero equilibrium point of Eq. (7) is globally asymptotically stable relative

to the set

S = [0,∞)× [0, 1/r]2 \ A. (16)

where

A = {(x, y, z)|(y, z) = (0, 1/r) or
(
y2/(1 + x), z

)
= (1/r2, 0)},

with (y−2, y−1, y0) ∈ S.

Proof: By Theorem 3 we know that ȳ1 = 0 is locally asymptotically stable equilibrium

point of Eq. (7), and so it suffices to show that ȳ1 = 0 is a global attractor of Eq. (7) relative

to S. So let {yn}∞n=−2 be a solution of Eq. (7), such that (y−2, y−1, y0) ∈ S. We show that

limn→∞ yn = 0. We have

y1 =
ry2

−1

1 + y−2

≤ ry2
−1 ≤ y−1 ≤

1

r

y2 =
ry2

0

1 + y−1

≤ ry2
0 ≤ y0 ≤

1

r
.

By induction we obtain

0 ≤ yn+1 =
ry2

n−1

1 + yn+2

≤ ry2
n−1 ≤ yn−1 ≤

1

r
, n = 0, 1, ...,

that is, 0 ≤ yn ≤ 1
r
, n = −1, 0, 1, ..., and {y2n}∞n=−1 and {y2n−1}∞n=0 are non-increasing and

bounded. Hence, there are finite limits

lim
n→∞

y2n = M and lim
n→∞

y2n−1 = L,

moreover, in view of (16), we have

M,L ∈ [0, 1/r). (17)

Letting n→∞ in (7) we obtain

M =
rM2

1 + L
and L =

rL2

1 +M
.

Now, we want to prove that M = L = 0. We consider the following cases:

(i) If M = 0 and L 6= 0 then L = 1
r
, which is a contradiction to (17).

(ii) If M 6= 0 and L = 0, then M = 1
r
, a contradiction.

(iii) If M 6= 0 and L 6= 0, then we have

1 + L = rM and 1 +M = rL

which implies L−M = r(M −L). Hence M = L = 1/(r−1), which is a contradiction. Thus

L = M = 0, as desired.
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3.4 Existence of Unbounded Solutions

In this subsection we show that when r > 1 Eq. (7) possesses unbounded solutions.

Theorem 5 Assume that r > 1. Then Eq. (7) possesses unbounded solution. In partic-

ular, every solution of Eq. (7) which oscillate about the equilibrium ȳ2 = 1
r−1

with semi-cycle

of length one is unbounded.

Proof: We prove that every solution {yn}∞n=−2.of Eq. (7) which oscillates with semi-cycles

of length one is unbounded (see Lemma 1 for the existence of such solutions). Let r > 1 and

without loss of generality that {yn}∞n=−2 is such that

y2n−1 < ȳ2 and y2n > ȳ2 for n ≥ 0.

Then

y2n+2 =
ry2

2n

1 + y2n−1

>
ry2

2n

1 + 1
r−1

= (r − 1)y2
2n > y2n.

and

y2n+3 =
ry2

2n+1

1 + y2n−2

<
ry2

2n+1

1 + 1
r−1

= (r − 1)y2
2n+1 < y2n+1

from which it follows that there are limn→∞ y2n = M and limn→∞ y2n+1 = m ∈ [0, ȳ2).

If M = ∞, there is nothing to prove. Hence, assume that M < ∞. As in the proof of

Theorem 3 we can see that m 6= 0 and M < ∞ is impossible. If m = 0 and M < ∞ then

M = 1
r
< 1

r−1
= ȳ2, a contradiction. Hence M = ∞, from which the result follows.
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[9] Stević, S. : On the recursive sequence xn+1 = g(xn, xn−1)/(A + xn),. Appl. Math.

Lett. 15, 305-308 (2002)
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