Feng Qi

An Integral Expression and Some Inequalities of Mathieu Type Series

ABSTRACT. Let r > 0 and $a = \{a_k > 0, k \in \mathbb{N}\}$ such that the series $g(x) = \sum_{k=1}^{\infty} e^{-a_k x}$ converges for x > 0, then the Mathieu type series $\sum_{k=1}^{\infty} \frac{a_k}{\left(a_k^2 + r^2\right)^2} = \frac{1}{2r} \int_0^{\infty} x g(x) \sin(rx) dx$.

If $a = \{a_k > 0, k \in \mathbb{N}\}$ is an arithmetic sequence, then some inequalities of Mathieu type series $\sum_{k=1}^{\infty} \frac{a_k}{\left(a_k^2 + r^2\right)^2}$ are obtained for r > 0.

KEY WORDS AND PHRASES. Mathieu type series, integral expression, Laplace transform, inequality

1 Introduction

In 1890, Mathieu defined S(r) in [14] as

$$S(r) = \sum_{k=1}^{\infty} \frac{2k}{(k^2 + r^2)^2}, \quad r > 0,$$
(1)

and conjectured that $S(r) < \frac{1}{r^2}$. We call formula (1) Mathieu's series.

In [3, 13], Berg and Makai proved

$$\frac{1}{r^2 + \frac{1}{2}} < S(r) < \frac{1}{r^2}.\tag{2}$$

H. Alzer, J. L. Brenner and O. G. Ruehr in [2] obtained

$$\frac{1}{r^2 + \frac{1}{2\zeta(3)}} < S(r) < \frac{1}{r^2 + \frac{1}{6}},\tag{3}$$

The author was supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo Institute of Technology, CHINA

where ζ denotes the zeta function and the number $\zeta(3)$ is the best possible.

The integral form of Mathieu's series (1) was given in [7, 8] by

$$S(r) = \frac{1}{r} \int_0^\infty \frac{x}{e^x - 1} \sin(rx) \, \mathrm{d}x. \tag{4}$$

Recently, the following results were obtained in [16, 18]:

(1) Let Φ_1 and Φ_2 be two integrable functions such that $\frac{x}{e^x-1} - \Phi_1(x)$ and $\Phi_2(x) - \frac{x}{e^x-1}$ are increasing. Then, for any positive number r, we have

$$\frac{1}{r} \int_0^\infty \Phi_2(x) \sin(rx) \, \mathrm{d}x \le S(r) \le \frac{1}{r} \int_0^\infty \Phi_1(x) \sin(rx) \, \mathrm{d}x. \tag{5}$$

(2) For positive number r > 0, we have

$$S(r) \le \frac{\left(1 + 4r^2\right)\left(e^{-\pi/r} - e^{-\pi/(2r)}\right) - 4\left(1 + r^2\right)}{\left(e^{-\pi/r} - 1\right)\left(1 + r^2\right)\left(1 + 4r^2\right)}.$$
 (6)

(3) For positive number r > 0, we have

$$S(r) < \frac{1}{r} \int_0^{\pi/r} \frac{x}{e^x - 1} \sin(rx) \, \mathrm{d}x < \frac{1 + \exp(-\frac{\pi}{2r})}{r^2 + \frac{1}{4}}.$$
 (7)

Remark 1 For $0 < r < 0.83273 \cdots$, inequality (6) is better than the right hand side inequality in (3). If $r > 1.57482 \cdots$, inequality (7) is better than (6). When $r < 1.574816 \cdots$, inequality (7) is not better than (6). When $0 < r < 0.734821 \cdots$, inequality (7) is better than the corresponding one in (3).

In [11, 16, 18], the following open problem was proposed by B.-N. Guo and F. Qi respectively: Let

$$S(r,t,\alpha) = \sum_{n=1}^{\infty} \frac{2n^{\alpha/2}}{(n^{\alpha} + r^2)^{t+1}}$$
 (8)

for t > 0, r > 0 and $\alpha > 0$. Can one obtain an integral expression of $S(r, t, \alpha)$? Give some sharp inequalities for the series $S(r, t, \alpha)$.

In [20], the open problem stated above was considered and an integral expression of S(r, t, 2) was obtained: Let $\alpha > 0$ and $p \in \mathbb{N}$, then

$$S(\alpha, p, 2) = \sum_{n=1}^{\infty} \frac{2n}{(n^2 + \alpha^2)^{p+1}} = \frac{2}{(2\alpha)^p p!} \int_0^{\infty} \frac{t^p \cos(\frac{p\pi}{2} - \alpha t)}{e^t - 1} dt$$
$$-2\sum_{k=1}^p \frac{(k-1)(2\alpha)^{k-2p-1}}{k!(p-k+1)} {\binom{-(p+1)}{p-k}} \int_0^{\infty} \frac{t^k \cos[\frac{\pi}{2}(2p-k+1) - \alpha t]}{e^t - 1} dt. \quad (9)$$

Using the quadrature formulas, some new inequalities of Mathieu series (1) were established in [9]. By the help of Laplace transform, the open problem mentioned above was partially solved, for example, among other things, an integral expression for $S(r, \frac{1}{2}, 2)$ was given as follows:

$$S\left(r, \frac{1}{2}, 2\right) = \frac{2}{r} \int_0^\infty \frac{tJ_0(rt)}{e^t - 1} dt,$$
 (10)

where J_0 is Bessel function of order zero.

There has been a rich literature on the study of Mathieu's series, for example, [5, 6, 13, 19, 21, 22, 23], also see [4, 12, 15].

In this paper, we are about to investigate the following Mathieu type series

$$S(r,a) = \sum_{k=1}^{\infty} \frac{a_k}{(a_k^2 + r^2)^2},$$
(11)

where $a = \{a_k > 0, k \in \mathbb{N}\}$ is a sequence satisfying $\lim_{k \to \infty} a_k = \infty$, and obtain an integral expression and some inequalities of S(r, a) under some suitable conditions.

2 An integral expression of Mathieu type series (11)

Using Laplace transform of $x \sin(rx)$ we can immediately establish an integral expression of Mathieu type series (11).

Theorem 1 Let r > 0 and $a = \{a_k > 0, k \in \mathbb{N}\}$ be a sequence such that the series

$$g(x) \triangleq \sum_{k=1}^{\infty} e^{-a_k x} \tag{12}$$

converges for x > 0 and xg(x) is Lebesgue integrable in $[0, \infty)$. Then we have

$$S(r,a) = \frac{1}{2r} \int_0^\infty x g(x) \sin(rx) dx.$$
 (13)

Proof: In [1] and [10, p. 559], Laplace transform of $t \sin(\alpha t)$ is given by

$$\int_0^\infty t \sin(\alpha t) e^{-st} dt = \frac{2\alpha s}{(s^2 + \alpha^2)^2},$$
(14)

where $s = \sigma + i\omega$ is a complex variable, α a complex number, and $\sigma > |\text{Im }\alpha|$.

Applying (14) to the case $\alpha = r > 0$ and $s = a_k$, summing up, and interchanging between integral and summation produces

$$\int_0^\infty x g(x) \sin(rx) dx = \sum_{k=1}^\infty \int_0^\infty x \sin(rx) e^{-a_k x} dx$$

$$= 2r \sum_{k=1}^\infty \frac{a_k}{(a_k^2 + r^2)^2} = 2r S(r, a)$$
(15)

according to Lebesgue's dominanted convergence theorem. The proof is complete. \Box

Remark 2 If $a_k = k$ in (13), then we can easily obtain the formula (4) in [8].

Corollary 1 Let $a = \{a_k > 0, k \in \mathbb{N}\}$ be a sequence with $a_k = kd - c$ and d > 0. Then for any positive real number r > 0, we have

$$S(r,a) = \frac{1}{2r} \int_0^\infty \frac{xe^{cx}}{e^{dx} - 1} \sin(rx) dx.$$
 (16)

Proof: Since $a = \{a_k, k \in \mathbb{N}\}$ is an arithmetic sequence with difference d > 0, then $\{e^{-a_k x}\}_{k=1}^{\infty}$ is a positive geometric sequence with constant ratio $e^{-dx} < 1$ for x > 0, thus

$$g(x) = \sum_{k=1}^{\infty} e^{-a_k x} = e^{cx} \sum_{k=1}^{\infty} e^{-kdx} = \frac{e^{cx}}{e^{dx} - 1}.$$
 (17)

Then formula (16) follows from combination of (13) and (17) in view of d > c.

Remark 3 In fact, in Corollary 1 and the following Theorem 2, Theorem 3 and Theorem 4, it suffices to consider the case d = 1, since from this one the general case arises by replacing c and r by $\frac{c}{d}$ and $\frac{r}{d}$, respectively, and dividing S(r, a) by d^3 .

3 Some inequalities of Mathieu type series (16)

The following result was obtained in [16, 18].

Lemma 1 ([16, 18]) For a given positive number T, let $\phi(x)$ be an integrable function such that $\phi(x) = -\phi(x+T)$ and $\phi(x) \geq 0$ for $x \in [0,T]$, and let f(x) and g(x) be two integrable functions on [0,2T] such that

$$f(x) - g(x) \ge f(x+T) - g(x+T) \tag{18}$$

on [0,T]. Then

$$\int_{0}^{2T} \phi(x)f(x) \, \mathrm{d}x \ge \int_{0}^{2T} \phi(x)g(x) \, \mathrm{d}x. \tag{19}$$

Now we give a general estimate of Mathieu type series (16) as follows.

Theorem 2 Let $a = \{a_k > 0, k \in \mathbb{N}\}$ such that $a_k = kd - c$ and d > 0. If Φ_1 and Φ_2 are two integrable functions such that $\frac{xe^{cx}}{e^{dx}-1} - \Phi_1(x)$ and $\Phi_2(x) - \frac{xe^{cx}}{e^{dx}-1}$ are increasing, then for r > 0,

$$\frac{1}{2r} \int_0^\infty \Phi_2(x) \sin(rx) \, \mathrm{d}x \le S(r, a) \le \frac{1}{2r} \int_0^\infty \Phi_1(x) \sin(rx) \, \mathrm{d}x. \tag{20}$$

Proof: The function $\phi(x) = \sin(rx)$ has a period $\frac{2\pi}{r}$, and $\phi(x) = -\phi\left(x + \frac{\pi}{r}\right)$.

Since $f(x) = \frac{xe^{cx}}{e^{dx}-1} - \Phi_1(x)$ is increasing, for any $\alpha > 0$, we have $f(x+\alpha) \ge f(x)$. Therefore, from Lemma 1, we obtain

$$\int_{2k\pi/r}^{2(k+1)\pi/r} \frac{xe^{cx}}{e^{dx} - 1} \sin(rx) \, dx \le \int_{2k\pi/r}^{2(k+1)\pi/r} \Phi_1(x) \sin(rx) \, dx. \tag{21}$$

Then, from formula (16), we have

$$S(r,a) = \frac{1}{2r} \sum_{k=0}^{\infty} \int_{2k\pi/r}^{2(k+1)\pi/r} \frac{xe^{cx}}{e^{dx} - 1} \sin(rx) dx$$

$$\leq \frac{1}{2r} \sum_{k=0}^{\infty} \int_{2k\pi/r}^{2(k+1)\pi/r} \Phi_1(x) \sin(rx) dx$$

$$= \frac{1}{2r} \int_0^{\infty} \Phi_1(x) \sin(rx) dx.$$
(22)

The right hand side of inequality (20) follows.

Similar arguments yield the left hand side of inequality (20).

Lemma 2 For x > 0, we have

$$\frac{1}{e^x} < \frac{x}{e^x - 1} < \frac{1}{e^{x/2}}. (23)$$

Proof: This follows from standard argument of calculus.

Theorem 3 Let $a = \{a_k > 0, k \in \mathbb{N}\}$ satisfying $a_k = kd - c$ and d > 0. If d > 2c, then for r > 0, we have

$$\frac{1}{d} \left\{ \frac{1 + e^{-\pi(d-c)/r}}{2\left[(d-c)^2 + r^2\right]\left(1 - e^{-2\pi(d-c)/r}\right)} - \frac{2\left[e^{-\pi(d-2c)/r} + e^{-\pi(d-2c)/(2r)}\right]}{\left[(d-2c)^2 + 4r^2\right]\left[1 - e^{-\pi(d-2c)/r}\right]} \right\}
\leq S(r,a)$$

$$\leq \frac{1}{d} \left\{ \frac{2\left[1 + e^{-\pi(d-2c)/(2r)}\right]}{\left[(d-2c)^2 + 4r^2\right]\left[1 - e^{-\pi(d-2c)/r}\right]} - \frac{e^{-2\pi(d-c)/r} + e^{-\pi(d-c)/r}}{2\left[(d-c)^2 + r^2\right]\left(1 - e^{-2\pi(d-c)/r}\right)} \right\}.$$
(24)

Proof: For r > 0, using (16), by direct calculation, we have

$$S(r,a) = \frac{1}{2r} \sum_{k=0}^{\infty} \left[\int_{2k\pi/r}^{(2k+1)\pi/r} + \int_{(2k+1)\pi/r}^{(2k+2)\pi/r} \left| \frac{xe^{cx} \sin(rx)}{e^{dx} - 1} dx \right| \right].$$
 (25)

The inequality (23) gives us

$$\frac{r\left(1+e^{-\pi(d-c)/r}\right)}{d\left[(d-c)^{2}+r^{2}\right]\left(1-e^{-2\pi(d-c)/r}\right)} = \sum_{k=0}^{\infty} \int_{2k\pi/r}^{(2k+1)\pi/r} \frac{\sin(rx)}{de^{(d-c)x}} dx$$

$$\leq \sum_{k=0}^{\infty} \int_{2k\pi/r}^{(2k+1)\pi/r} \frac{xe^{cx}\sin(rx)}{e^{dx}-1} dx$$

$$\leq \sum_{k=0}^{\infty} \int_{2k\pi/r}^{(2k+1)\pi/r} \frac{\sin(rx)}{de^{(\frac{d}{2}-c)x}} dx = \frac{4r\left[1+e^{-\pi(d-2c)/(2r)}\right]}{d\left[(d-2c)^{2}+4r^{2}\right]\left[1-e^{-\pi(d-2c)/r}\right]}$$
(26)

and

$$-\frac{4r\left[e^{-\pi(d-2c)/r} + e^{-\pi(d-2c)/(2r)}\right]}{d\left[(d-2c)^2 + 4r^2\right]\left[1 - e^{-\pi(d-2c)/r}\right]} = \sum_{k=0}^{\infty} \int_{(2k+1)\pi/r}^{2(k+1)\pi/r} \frac{\sin(rx)}{de^{(\frac{d}{2}-c)x}} dx$$

$$\leq \sum_{k=0}^{\infty} \int_{(2k+1)\pi/r}^{2(k+1)\pi/r} \frac{xe^{cx}\sin(rx)}{e^{dx} - 1} dx$$

$$\leq \sum_{k=0}^{\infty} \int_{(2k+1)\pi/r}^{2(k+1)\pi/r} \frac{\sin(rx)}{de^{(d-c)x}} dx = -\frac{r\left(e^{-2\pi(d-c)/r} + e^{-\pi(d-c)/r}\right)}{d\left[(d-c)^2 + r^2\right]\left(1 - e^{-2\pi(d-c)/r}\right)}.$$
(27)

Substituting (26) and (27) into (25) yields (24). The proof is complete.

Theorem 4 Let $a = \{a_k > 0, k \in \mathbb{N}\}$ be a sequence such that $a_k = kd - c$ and d > 0. If d > 2c, then for any positive number r > 0, we have

$$S(r,a) < \frac{1}{2r} \int_0^{\pi/r} \frac{xe^{cx} \sin(rx)}{e^{dx} - 1} dx < \frac{2\left[1 + e^{\pi(2c - d)/(2r)}\right]}{d\left[(2c - d)^2 + 4r^2\right]}.$$
 (28)

Proof: It is easy to see that

$$\int_0^\infty \frac{xe^{cx}\sin(rx)}{e^{dx} - 1} dx = \sum_{k=0}^\infty \int_{k\pi/r}^{(k+1)\pi/r} \frac{xe^{cx}\sin(rx)}{e^{dx} - 1} dx,$$
 (29)

and

$$\frac{xe^{cx}}{e^{dx} - 1} = \frac{xe^{(c - \frac{d}{2})x}}{2\sinh\left(\frac{dx}{2}\right)}.$$
(30)

Since the functions $\frac{\sinh x}{x}$ and $e^{(\frac{d}{2}-c)x}$ are both increasing with x>0 for d>2c, then the function $\frac{xe^{cx}}{e^{dx}-1}$ is decreasing with x>0. Furthermore, $\lim_{x\to\infty}\frac{xe^{cx}}{e^{dx}-1}=0$.

Therefore, the series in (29) is an alternating series whose moduli of the terms are decreasing to zero. As well known, such a series in (29) is always less than its first term $\int_0^{\pi/r} \frac{xe^{cx}\sin(rx)}{e^{dx}-1} dx$. Hence

$$\int_0^\infty \frac{xe^{cx}\sin(rx)}{e^{dx} - 1} \, \mathrm{d}x < \int_0^{\pi/r} \frac{xe^{cx}\sin(rx)}{e^{dx} - 1} \, \mathrm{d}x.$$
 (31)

Using inequality (23), we have

$$\int_0^{\pi/r} \frac{xe^{cx}\sin(rx)}{e^{dx} - 1} \, \mathrm{d}x < \int_0^{\pi/r} \frac{\sin(rx)}{de^{(\frac{d}{2} - c)x}} \, \mathrm{d}x = \frac{4r\left[1 + e^{\pi(2c - d)/(2r)}\right]}{d\left[(2c - d)^2 + 4r^2\right]}.$$
 (32)

Inequality (28) follows from combination of (31) and (32) with (16). \Box

Remark 4 If taking $a_k = k$ for $k \in \mathbb{N}$ or equivalently d = 1 and c = 0 in (20), (24) and (28), inequalities (5), (6) and (7) are deduced.

By exploiting a technique presented by E. Makai in [13], we obtain the following inequalities of Mathieu type series (11).

Theorem 5 Let $a = \{a_k > 0, k \in \mathbb{N}\}$ with $a_k = k - c$. If r > 0 satisfies $r^2 + c^2 > c$, then

$$\frac{1}{2r^2 + 2\left(c - \frac{1}{2}\right)^2 + \frac{1}{2}} < S(r, a) < \frac{1}{2r^2 + 2\left(c - \frac{1}{2}\right)^2 - \frac{1}{2}}.$$
 (33)

Proof: By standard argument, we obtain

$$\frac{1}{\left[(k-c) - \frac{1}{2}\right]^{2} + r^{2} - \frac{1}{4}} - \frac{1}{\left[(k-c) + \frac{1}{2}\right]^{2} + r^{2} - \frac{1}{4}}$$

$$= \frac{2(k-c)}{\left[(k-c)^{2} + r^{2} - (k-c)\right] \left[(k-c)^{2} + r^{2} + (k-c)\right]}$$

$$> \frac{2(k-c)}{\left[(k-c)^{2} + r^{2}\right]^{2} - (k-c)^{2}}$$

$$> \frac{2(k-c)}{\left[(k-c)^{2} + r^{2}\right]^{2}}$$

$$> \frac{2(k-c)}{\left[(k-c)^{2} + r^{2}\right]^{2} + r^{2} + \frac{1}{4}}$$

$$= \frac{2(k-c)}{\left[(k-c) - \frac{1}{2}\right]^{2} + r^{2} + \frac{1}{4}} \left\{ \left[(k-c) + \frac{1}{2}\right]^{2} + r^{2} + \frac{1}{4} \right\}$$

$$= \frac{1}{\left[(k-c) - \frac{1}{2}\right]^{2} + r^{2} + \frac{1}{4}} - \frac{1}{\left[(k-c) + \frac{1}{2}\right]^{2} + r^{2} + \frac{1}{4}},$$

summing up for $k = 1, 2, \dots$ yields inequalities in (33).

Remark 5 If letting c = 0, inequality (2) is deduced from (33).

Inequalities (24), (28) and (33) for every case do not include each other. This can be verified by using the well known software Mathematica [24].

It is also worthwhile to note that inequality

$$\frac{1}{c^2 + \frac{1}{2}} < \sum_{n=1}^{\infty} \frac{2n^{\alpha/2}}{(n^{\alpha} + c^2)^2} < \frac{1}{c^2}$$
 (35)

obtained in [16, 18] and mentioned in [17] is a wrong result.

Acknowledgements

The author would like to express many thanks to Professor L. Berg for his valuable observations, comments and corrections and his kind recommendation of the Rostocker Mathematisches Kolloquium.

References

- [1] Abramowitz, M., and Stegun, I. A. (Eds): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tebles. National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Washington, 1965, 1972
- [2] Alzer, H., Brenner, J. L., and Ruehr, O. G.: On Mathieu's inequality. J. Math. Anal. Appl. 218, 607 610 (1998)
- [3] Berg, L.: Über eine Abschätzung von Mathieu. Math. Nachr. 7, 257 259 (1952)
- [4] Bullen, P. S.: A Dictionary of Inequalities. Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison Wesley Longman Limited, 1998
- [5] Diananda, P. H.: On some inequalities related to Mathieu's. Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. No. 544 576, 77 80 (1976)
- [6] **Diananda, P. H.**: Some inequalities related to an inequality of Mathieu. Math. Ann. **250**, 95 98 (1980)
- [7] **Elbert, A.**: Asymptotic expansion and continued fraction for Mathieu's series. Period. Math. Hungar. **13**, no. 1, 1 8 (1982)
- [8] **Emersleben, O. E.:** Über die Reihe $\sum_{k=1}^{\infty} \frac{k}{(k^2+c^2)^2}$. Math. Ann. **125**, 165 171 (1952)
- [9] Gavrea, I.: Some remarks on Mathieu's series. Mathematical Analysis and Approximation Theory, Proc. of RoGer-2002, 113 –117, Editura Burg, 2002
- [10] **Group of compilation**: Shùxué Shŏucè (Handbook of Mathematics). The People's Education Press, Beijing, China, 1979 (Chinese)
- [11] **Guo, B.-N.**: Note on Mathieu's inequality. RGMIA Res. Rep. Coll. **3**, no. 3, Art. 5, 389 392 (2000) Available online at http://rgmia.vu.edu.au/v3n3.html

- [12] **Kuang, J.-Ch.**: Chángyòng Bùdĕngshì (Applied Inequalities). 2nd edition, Hunan Education Press, Changsha, China, 1993 (Chinese)
- [13] Makai, E.: On the inequality of Mathieu. Publ. Math. Debrecen 5, 204 205 (1957)
- [14] Mathieu, E.: Traité de physique mathématique, VI VII: Théorie de l'élasticité des corps solides. Gauthier-Villars, Paris 1890
- [15] Mitrinović, D. S., Pečarić, J. E., and Fink, A. M.: Classical and New Inequalities in Analysis. Chapter XXII, 629 634, Kluwer Academic Publishers, Dordrecht 1993
- [16] **Qi, F.**: Inequalities for Mathieu's series. RGMIA Res. Rep. Coll. 4, no. 2, Art. 3, 187 193 (2001) Available online at http://rgmia.vu.edu.au/v4n2.html
- [17] **Qi, F.**: Integral expression and inequalities of Mathieu type series. RGMIA Res. Rep. Coll. **6**, no. 2, Art. 8 (2003) Available online at http://rgmia.vu.edu.au/v6n2.html
- [18] Qi, F., and Chen, Ch.-P.: Notes on double inequalities of Mathieu's series. Internat. J. Pure Appl. Math. (2003), in press
- [19] **Russell, D. C.**: A note on Mathieu's inequality. Æquationes Math., **36**, 294 302 (1988)
- [20] **Tomovski, Ž.**, and **Trenčevski, K.**: On an open problem of Bai-Ni Guo and Feng Qi. J. Inequal. Pure Appl. Math. 4 (2003), no. 2, in press. Available online at http://jipam.vu.edu.au/v4n2/101_02.html
- [21] Wang, Ch.-L., and Wang, X.-H.: Refinements of Matheiu's inequality. Kēxué Tōngbào (Chinese Sci. Bull.) 26 (1981), no. 5, 315. (Chinese)
- [22] Wang, Ch.-L., and Wang, X.-H.: Refinements of Matheiu's inequality. Shùxué Yánjiū yù Pínglùn (J. Math. Res. Exposition) 1 (1981), no. 1, 315. (Chinese)
- [23] Wang, Ch.-L., and Wang, X.-H.: A refinement of the Mathieu inequality. Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. No. **716 734**, 22–24 (1981)
- [24] Wolfram Research, Inc.: Mathematica 4.0 for Microsoft Windows. Version Number 4.0.0.0.

received: Mai 28, 2003

Author:

Feng Qi Department of Applied Mathematics and Informatics Jiaozuo Institute of Technology Jiaozuo City Henan 454000 CHINA

e-mail: qifeng@jzit.edu.cn, fengqi618@member.ams.org

http://rgmia.vu.edu.au/qi.html