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Coincidence Points for Hybrid Mappings

1 Introduction

There have been several extensions of known fixed point theorems in which a mapping takes

each point of a metric space into a closed (resp. closed and bounded) subset of the same

(cf. [3, 4, 5, 7, 10, 11]). Hybrid fixed point theory for nonlinear mappings is relatively a recent

development within the ambit of fixed point theory of point to set mappings (multivalued

mappings) with a wide range of applications (see, for instance, [2, 8, 12, 13, 14, 15, 16]).

Recently, in an attempt to improve /generalize certain results of Naidu, Sastry and Prasad

[11] and Kaneko [4] and others, Chang [1] obtained some fixed point theorems for a hybrid

of multivalued and singlevalued mappings.

However, his main theorem (see Theorem A below) admits a counter example. Our main

purpose in this paper is to present a correct version of this result which, in turn, generalizes

several known results in this direction.

Let (X, d) be a metric space. We shall use the following notations and definitions:

CL(X) = {A : A is a nonempty closed subset of X},
CB(X) = {A : A is a nonempty closed and bounded subset of X},
N(ε, A) = {x ∈ X : d(x, a) < ε for some a ∈ A, ε > 0}, A ∈ CL(X),

EA,B = {ε > 0 : A ⊂ N(ε, B), B ⊂ N(ε, A)}, A,B ∈ CL(X),

H(A,B) =

inf EA,B if EA,B 6= φ

∞ if EA,B = φ ,

D(x,A) = inf{d(x, a) : a ∈ A}

for each A,B ∈ CL(X), and for each x ∈ X.

H is called the generalized Hausdorff metric for CL(X) induced by d. If H(A,B) is defined

for A,B ∈ CB(X), then H is called the Hausdorff metric induced by d (cf. Nadler [6]).
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Definition 1 ([4]) Mappings S : X → CB(X) and I : X → X are called compatible

if ISx ∈ CB(X) for all x ∈ X and H(SIxn, ISxn) → 0, as n → ∞ whenever {xn} is a

sequence in X such that Sxn →M ∈ CB(X) and Ixn → t ∈M as n→∞.

Following Singh and Mishra [16] (see also [3], [4] and [9]), we introduce the notion of R-

sequentially commuting mappings for a hybrid pair of single-valued and multi-valued maps.

Definition 2 Let K be a nonempty subset of a metric space X and I : K → X and

S : K → CL(X) be respectively single-valued and multi-valued mappings. Then I and

S will be called R-sequentially commuting on K if for a given sequence {xn} ⊂ K with

limn Ixn ∈ K, there exists R > 0 such that

limnD(Iy, SIxn) ≤ R limnD(Ixn, Sxn) (∗)

for each y ∈ K ∩ limn Sxn.

If xn = x(x ∈ K) for all n ∈ N (naturals), Ix ∈ K and (∗) holds for some R > 0, then I and

S have been defined to be pointwise R-weakly commuting at x ∈ K (see [16, Def. 1]). If it

holds for all x ∈ K, then I and S are called R-weakly commuting on K. Further, if R = 1,

we get the definition of weak commutativity of I and S on K due to Hadzic and Gajec [3].

If I, S : X → X, then as mentioned in [16], we recover the definitions of pointwise R-weak

commutativity and R-commutativity of single-valued self-maps due to Pant [9] and all the

remarks as given in [16] apply.

We now introduce the following.

Definition 3 Maps I : K → X and S : K → CL(X) are to be called sequentially

commuting (or s-commuting) at a point x ∈ K if

I(limn Sxn) ⊂ SIx (∗∗)

whenever there exists a sequence {xn} ⊂ K such that limn Ixn = x ∈ limn Sxn ∈ CL(X).

If xn = x for all n ∈ N, then the maps I and S will be said to be weakly s-commuting at a

point x ∈ K.

The following example shows that s-commutativity of I and S is indeed more general than

their R-sequential commutativity (and hence their pointwise R-commutativity and compat-

ibility).

Example 1 Let X = [0,∞) with the usual metric d and define I : X → X and S : X →
CL(X) by

Ix =

0, if x ∈ [0, 1]

x, if x ∈ (1,∞) ,
Sx = [x,∞) .



Coincidence Points for Hybrid Mappings 69

Then for the sequence {xn} ⊂ X defined by xn = 1 + 1
n
, we have 1 = limn Ixn ∈ [1,∞) =

limn Sxn ∈ CL(X) and I(limn Sxn) = {0} ∪ (1,∞) ⊂ [0,∞) = SI1. Therefore, I and S are

s-commuting but (∗) is not satisfied for y = 1 ∈ [1,∞) = limn Sxn.

Definition 4 ([1]) Let R+ denote the set of all non-negative real numbers, and let A ⊂
R+. A function ϕ : A→ R+ is upper semicontinuous from the right if lim

x→u+
supϕ(x) ≤ ϕ(u)

for all u ∈ A.

A function ϕ : R+ → R+ is said to satisfy (Φ)-conditions if:

(i) ϕ is upper semi-continuous from the right on (0,∞) with ϕ(t) < t for all t > 0, and

(ii) there exists a real number s > 0 such that ϕ is non-decreasing on (0, s] and
∞∑

n=1

ϕn(t) <

∞ for all t ∈ (0, s], where ϕn denotes the composition of ϕ with itself n times and

ϕ0(t) = t.

Let Γ denote the set of all functions which satisfy the (Φ)-condition.

The following lemmas will be useful in proving our main results.

Lemma 1 Let (X, d) be a metric space and I, J : X → X and S, T : X → CL(X) be

such that S(X) ⊂ J(X) and T (X) ⊂ I(X) and for all x, y ∈ X,

H(Sx, Ty) ≤ ϕ(aL(x, y) + (1− a)N(x, y)) , (1)

where a ∈ [0, 1], ϕ : R+ → R+ is upper semi-continuous from the right on (0,∞) with

ϕ(t) < t for all t > 0, and

L(x, y) = max{d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]} ,

N(x, y) = [max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty), D(Ix, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2 .

Then inf
x∈X

D(Ix, Sx) = 0 = inf
x∈X

D(Jx, Tx).

Proof: Due to symmetry, we may suppose that

inf
x∈X

D(Ix, Sx) = inf
x∈X

D(Jx, Tx) = δ .

If δ > 0, then ϕ(δ) < δ. Since ϕ is upper semi-continuous from the right, there exists ε > 0

such that ϕ(t) < δ for all t ∈ [δ, δ + ε). Pick x0 ∈ X such that D(Ix0, Sx0) < δ + ε. By

S(X) ⊂ J(X), there exists x1 ∈ X such that Jx1 ∈ Sx0 and d(Ix0, Jx1) < δ + ε.
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Consider

δ ≤ D(Jx1, Tx1) ≤ H(Sx0, Tx1) ≤ ϕ(aL(x0, x1) + (1− a)N(x0, x1)) ,

where

L(x0, x1) = max{d(Ix0, Jx1), D(Ix0, Sx0), D(Jx1, Tx1),
1

2
[D(Ix0, Tx1) +D(Jx1, Sx0)]}

= max{d(Ix0, Jx1), D(Jx1, Tx1)}

and

N(x0, x1) = [max{d2(Ix0, Jx1), D(Ix0, Sx0)D(Jx1, Tx1), D(Ix0, Tx1)D(Jx1, Sx0),

1

2
D(Ix0, Sx0)D(Jx1, Sx0),

1

2
D(Jx1, Tx1)D(Ix0, Tx1)}]1/2

≤ [max{d2(Ix0, Jx1), d(Ix0, Jx1)D(Jx1, Tx1)}]1/2

≤ [max{d2(Ix0, Jx1), d(Ix0, Jx1)D(Jx1, Tx1), D
2(Jx1, Tx1)}]1/2

≤ [max{d2(Ix0, Jx1), D
2(Jx1, Tx1)}]1/2

= max{d(Ix0, Jx1), D(Jx1, Tx1)} .

Hence,

δ ≤ D(Jx1, Tx1) ≤ ϕ(max{d(Ix0, Jx1), D(Jx1, Tx1)}) ,

which is a contradiction, since ϕ(d(Ix0, Jx1)) < δ and ϕ(D(Jx1, Tx1)) < D(Jx1, Tx1) prov-

ing that δ = 0.

Lemma 2 Let X, I, J , S, T and ϕ be as defined Lemma 1 such that the inequality

(1) holds. If Ix ∈ Sx for some x ∈ X, then there exists a y ∈ X such that Ix = Jy and

Jy ∈ Ty.

Proof: Suppose Ix ∈ Sx. Since S(X) ⊂ J(X), we may choose a y ∈ X such that

Jy = Ix ∈ Sx. By (1), we have

D(Jy, Ty) ≤ H(Sx, Ty) ≤ ϕ(aL(x, y) + (1− a)N(x, y)) ,

where

L(x, y) = max{d(Ix, Jy), D(Ix, Sx), D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]}

= D(Jy, Ty) ,

and

N(x, y) = [max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty), D(Jx, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2

= (1/
√

2)D(Jy, Ty) .
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Hence

D(Jy, Ty) ≤ ϕ([a+ (1− a)/
√

2)]D(Jy, Ty)) < D(Jy, Ty) ,

a contradiction, and so D(Jy, Ty) = 0, i.e., Jy ∈ Ty.

Remark 1 If the assumptions of Lemma 2 hold, then setting x2n = x and x2n−1 = y for

all n ∈ N and z = Ix we observe that Ix2n → z, Jx2n−1 → z, D(Ix2n, Sx2n) → 0 and

D(Jx2n−1, Tx2n−1) → 0 as n→∞.

Lemma 3 ([11]) Let ϕ : R+ → R+ be a non-decreasing function such that

(i) ϕ(t+) < t for all t > 0 and
∞∑

n=1

ϕn(t) <∞ for all t > 0.

Then there exists a strictly increasing function ψ : R+ → R+ such that

(ii) ϕ(t) < ψ(t) for all t > 0 and
∞∑

n=1

ψn(t) <∞ for all t > 0.

Lemma 4 ([1]) If ϕ ∈ Γ, then there exists a function ψ : R+ → R+ such that:

(i) ψ is upper semi-continuous from the right with ϕ(t) ≤ ψ(t) < t for all t > 0,

(ii) ψ is strictly increasing with ϕ(t) < ψ(t) for t ∈ (0, s], s > 0 and
∞∑

n=1

ψn(t) < ∞ for

t ∈ (0, s].

2 Main Results

The following theorem is the main result of Chang [1, Theorem 1].

Theorem A Let (X, d) be a complete metric space, let I, J be two functions from X into

X, and let S, T : X → CB(X) be two set-valued functions with SX ⊂ JX and TX ⊂ IX.

If there exists ϕ ∈ Γ such that for all x, y in X,

H(Sx, Ty) ≤ ϕ

(
max

{
d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),

1

2
[D(Ix, Ty) +D(Jy, Sx)]

})
,

(C)

then there exists a sequence {xn} in X such that Ix2n → z and Jx2n−1 → z for some z in

X and D(Ix2n, Sx2n) → 0, D(Jx2n−1, Tx2n−1) → 0 as n → ∞. Moreover, if Iz = z and T

and J are compatible, then z ∈ Sz and Jz ∈ Tz. That is, z is a common fixed point of I

and S, and z is a coincidence point of J and T .

The following example shows that Theorem A in its present form is incorrect.
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Example 2 Let X = [0, 1] with absolute value metric d and let ϕ : R+ → R+ be defined

by ϕ(t) = t2 for t ∈ [0, 1) and ϕ(t) = 1/2 for t ≥ 1. Define I = J : X → X and

S = T : X → CB(X) by Ix = 1− x, x ∈ X and Sx = {0, 1/3, 2/3, 1} for all x ∈ X. Then

for each x, y ∈ X and ϕ ∈ Γ, we have

H(Sx, Ty) = 0

≤ ψ

(
max

{
d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),

1

2
[D(Ix, Ty) +D(Jy, Sx)]

})
and for the sequence {xn} ⊂ X defined by xn = 1/n for all n ∈ N, we have Sxn, Txn →
{0, 1/3, 2/3, 1} = M , Ixn, Jxn = 1 − 1/n → 1 ∈ M ⊂ X, D(Ix2n, Sx2n) → 0 and

D(Jx2n−1, Tx2n−1) → 0 as n → ∞. Also, z = 1/2 ∈ X is such that Iz = z and for

{xn} as defined above we have limnH(TJxn, JTxn) = 0, that is, T and J are compatible.

Thus, all the conditions of Theorem A are satisfied. Evidently, z /∈ Sz, Jz /∈ TZ, that is,

z = 1/2 is neither a common fixed point of I and S nor it is a coincidence point of J and T .

Before we present a corrected version of Theorem A, we have the following:

Theorem 1 Let (X, d) be a complete metric space, and let I, J : X → X, S, T : X →
CL(X). Let A be a nonempty subset of X such that I(A) and J(A) are closed subsets of

X, and Tx ⊆ I(A) and Sx ⊆ J(A) for all x ∈ A and there exists a ϕ ∈ Γ such that for all

x, y ∈ X, (1) holds. Then

(i) F = {Ix : x ∈ X and Ix ∈ Sx} 6= φ,

(ii) G = {Jx : x ∈ X and Jx ∈ Tx} 6= φ,

(iii) F = G if A = X.

Proof: Let ψ be the function satisfying the conclusion of Lemma 4. By (1), we have for

any x, y ∈ X, and Ix ∈ Ty,

D(Ix, Sx) ≤ H(Ty, Sx)

≤ ϕ(aL(x, y) + (1− a)N(x, y)),

where

L(x, y) = max{d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]}

≤ max{d(Ix, Jy), D(Ix, Sx), [d(Jy, Ix) +D(Ix, Ty)],

1

2
[D(Ix, Ty) + d(Ix, Jy) +D(Ix, Sx)]}

= max{d(Ix, Jy), D(Ix, Sx),
1

2
[d(Ix, Jy) +D(Ix, Sx)]}

= max{d(Ix, Jy), D(Ix, Sx)}
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and

N(x, y) = [max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty), D(Ix, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2

= max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty),
1

2
(Ix, Sx)D(Jy, Sx)}1/2

≤ [max{d2(Ix, Jy), d(Ix, Jy)D(Ix, Sx) ,

1

2
[d(Ix, Jy) +D(Ix, Sx)]D(Ix, Sx)}]1/2

≤ [max{d2(Ix, Jy), d(Ix, Jy)D(Ix, Sx), D2(Ix, Sx)}]1/2

= [max{d2(Ix, Jy), D2(Ix, Sx)}]1/2

= max{d(Ix, Jy), D(Ix, Sx)} .

Since D(Ix, Sx) ≤ ϕ(aD(Ix, Sx) + (1 − a)D(Ix, Sx)) is inadmissible for any a ∈ [0, 1],

D(Ix, Sx) ≤ ϕ(aD(Ix, Sx) + (1 − a)d(Ix, Jy)) is inadmissible for a = 1 and D(Ix, Sx) ≤
ϕ(ad(Ix, Jy) + (1− a)D(Ix, Sx)) is inadmissible for a = 0, it follows that

D(Ix, Sx) ≤ (ad(Ix, Jy) + (1− a)d(Ix, Jy))

= ϕ(d(Ix, Jy)) .

Similarly we can show that

D(Jy, Ty) ≤ ϕ(d(Ix, Jy)) if Jy ∈ Sx .

Pick x0 ∈ A such that D(Ix0, Sx0) < s. Since Sx0 ⊆ J(A), there exists x1 ∈ A such that

Jx1 ∈ Sx0. Then we have

D(Jx1, Tx1) ≤ H(Sx0, Tx1)

≤ ϕ(aL(x0, x1) + (1− a)N(x0, x1))

≤ ψ(aL(x0, x1) + (1− a)N(x0, x1)) .

Since Tx1 ⊆ I(A), we may choose x2 ∈ A such that Ix2 ∈ Tx2 and

d(Jx1, Ix2) ≤ ψ(aL(x0, x1) + (1− a)N(x0, x1)) .

Therefore

D(Ix2, Sx2) ≤ H(Sx2, Tx1)

≤ ϕ(aL(x2, x1) + (1− a)N(x2, x1))

< ψ(aL(x2, x1) + (1− a)N(x2, x1)) .
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Hence we can choose x3 ∈ A such that Jx3 ∈ Sx2 and d(Ix2, Jx3) ≤ ψ(aL(x2, x1)+

(1 − a)N(x2, x1)). Proceeding in this way, we can construct a sequence {xn}∞n=0 in A such

that Jx2n+1 ∈ Sx2n, Ix2n+2 ∈ Tx2n+1 (n = 0, 1, 2, . . . ) and

d(Ix2n, Jx2n+1) ≤ ψ(aL(x2n, x2n−1) + (1− a)N(x2n, x2n−1)) ,

d(Jx2n−1, Ix2n) ≤ ψ(aL(x2n−2, x2n−1) + (1− a)N(x2n−2, x2n−1))

for all n ∈ N (naturals). By the construction of {xn} we have

L(x2n, x2n−1) ≤ max{d(Ix2n, Jx2n−1), d(Ix2n, Jx2n+1)} ,
N(x2n, x2n−1) ≤ max{d(Ix2n, Jx2n−1), d(Ix2n, Jx2n+1)} ,

L(x2n−2, x2n−1) ≤ max{d(Ix2n−2, Jx2n−1), d(Ix2n, Jx2n+1)} and

N(x2n−2, x2n−1) ≤ max{d(Ix2n−2, Jx2n−1), d(Ix2n−2, Jx2n+1)} for all n ∈ N.

Since ψ is strictly increasing on (0, s] and ψ(t) < t for t > 0, we have

d(Ix2n, Jx2n+1) ≤ ψ(ad(Ix2n, Jx2n−1) + (1− a)d(Ix2n, Jx2n−1))

= ψ(d(Ix2n, Jx2n−1))

≤ d(Jx2n−1, Ix2n)ψ(ad(Ix2n−2, Jx2n−1) + (1− a)d(Ix2n−2, J2n−1))

= ψ(d(Ix2n−2, Jx2n−1)) for all n ∈ N.

Hence

d(Ix2n, Jx2n+1) ≤ ψ2n(d(Ix0, Jx1)) and

d(Jx2n−1, Ix2n) ≤ ψ2n−1(d(Ix0, Jx1)) for all n ∈ N.

Set y2n = Ix2n and y2n+1 = Jx2n+1 for all n ∈ N ∪ {0}. Then

d(yn, yn+1) ≤ ψn(d(y0, y1)) for all n ∈ N.

Since
∞∑

n=1

ψn(t) < ∞ for t ∈ (o, s] and d(y0, y1) = d(Ix0, Jx1) < s, it follows that

∞∑
n=1

d(yn, yn+1) is convergent. Hence by the completeness of X, {yn} converges to z for

some z ∈ X. Since {y2n} is a sequence in I(A) converging to z and I(A) is closed, it follows

that z ∈ I(A). So there exists a w ∈ X such that Iw = z. Now by (1), we have

D(Ix2n, Sw) ≤ H(Sw, Tx2n−1)

≤ ϕ(aL(w, x2n−1) + (1− a)N(w, x2n−1)) for all n ∈ N.

Making n→∞ in the above inequality, we obtain

D(z, Sw) ≤ ϕ(aD(z, Sw)+ + (1− a)D(z, Sw)+) = ϕ(D(z, Sw)+) .
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By the definition of ϕ, we have ϕ(t+) < t for all t ∈ (0,∞), it follows that D(z, Sw) = 0.

Hence Iw ∈ Sw and so

F = {Ix : x ∈ X and Ix ∈ Sx} 6= φ .

Similarly

G = {Jx : x ∈ X and Jx ∈ Tx} 6= φ .

We now suppose that Sx ⊆ J(X) and Tx ⊆ I(X) for all x ∈ X. Pick u ∈ X such that

Iu ∈ Su. Then since Su ⊆ J(X), there exists a v ∈ X such that Jv = Iu. By the inequality

(1), we have

D(Jv, Tv) ≤ H(Su, Tv)

≤ ϕ(aD(Jv, Tv) + (1− a)D(Jv, Tv))

< D(Jv, Tv) .

Hence Jv ∈ Tv. It follows that F ⊆ G. Similarly we can prove that G ⊆ F . Hence F = G.

Further, suppose that I(X) and J(X) are closed. Choose a sequence {un} in X such that

Iun ∈ Sun for all n ∈ N and {Iun} is convergent. Since I(X) is closed, it follows that

limn Iun = Iu for some u ∈ X. Since Iun ∈ Sun ⊆ J(X) for all n ∈ N and J(X) is closed, it

follows that Iu ∈ J(X). So there exists a v ∈ X such that Iu = Jv. Again by (1), we have

D(Iun, T v) ≤ H(Sun, T v)

≤ ϕ(aL(un, v) + (1− a)N(un, v)) .

Making n→∞ in the above inequality, we obtain

D(Jv, Tv) ≤ ϕ(aD(Jv, Tv)+ + [(1− a)/
√

2]D(Jv, Tv)+) .

Hence Jv ∈ Tv. By (1), we have

D(Iu, Su) ≤ H(Su, Tv)

≤ ϕ(aD(Iu, Su) + [(1− a)/
√

2]D(Iu, Su)) .

Hence Iu ∈ Su. It follows that G is closed. #

Remark 2 Theorem 1 of Naidu [7] and Theorem 9 of Sastry, Naidu and Prasad [11] follow

as direct corollaries of Theorem 1.

Remark 3 For a = 1, Example 10 of Sastry, Naidu and Prasad [11] shows that Theorem 1

fails if 1
2
[D(Ix, Ty) +D(Jy, Sx)] is replaced by max{D(Ix, Ty), D(Jy, Sx)} even if S = T ,

I = J = id (the identity mapping on X) and ϕ is continuous on R+.
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Remark 4 If (1) is assumed to be valid only for those x, y ∈ X for which Ix 6= Jy,

Ix /∈ Sx and Jy /∈ Ty instead of all x, y ∈ X, then we conclude from Theorem 1 that: either

F = {Ix : x ∈ X and Ix ∈ Sx} 6= φ or G = {Jx : x ∈ X and Jx ∈ Tx} 6= φ.

The following theorem presents a correct version of Theorem A.

Theorem 2 Let (X, d) be a complete metric space, and let I, J : X → X, S, T : X →
CL(X) be such that S(X) ⊆ J(X) and T (X) ⊆ I(X). If there exists a ϕ ∈ Γ such that

for all x, y ∈ X, (1) holds, then there is a sequence {xn} in X such that Ix2n → z and

Jx2n−1 → z for some z ∈ X and D(Ix2n, Sx2n) → 0, D(Jx2n−1, Tx2n−1) → 0 as n → ∞.

Moreover,

(i) if Iz ∈ Sz and d(Iz, z) ≤ D(z, Sx) for all x ∈ X, then z ∈ Sz, and if d(Iz, z) ≤
D(z, Tx) for all x ∈ X, J and T are weakly s-commuting, then Jz ∈ Tz.

(ii) if Jz ∈ Tz and d(Jz, z) ≤ D(z, Tx) for all x ∈ X, then z ∈ Tz; and if d(Jz, z) ≤
D(z, Sx) for all x ∈ X, I and S are weakly s-commuting, then Iz ∈ Sz.

(iii) if Iz = z and J and T are weakly s-commuting, then z ∈ Sz and Jz ∈ Tz.

(iv) if Jz = z and I and S are weakly s-commuting, then z ∈ Tz and Iz ∈ Sz.

Proof: By replacing A with X throughout in the proof of Theorem 1, we can construct

a sequence {xn}∞n=0 ⊂ X such that Jx2n+1 ∈ Sx2n, Ix2n+2 ∈ Tx2n+1 (n = 0, 1, 2, . . . ) and

the sequences {Ix2n}, {Jx2n−1} are Cauchy sequences which converge to the same limit

z ∈ X and D(Ix2n, Sx2n) → 0, D(Jx2n−1, Tx2n−1) → 0 as n → ∞. It then follows that

D(z, Sx2n) → 0 and D(z, Tx2n−1) → 0 as n→∞.

(i) Suppose Iz ∈ Sz, since d(Iz, z) ≤ D(z, Sz) and J and T are weakly s-commuting.

Choose m ∈ N such that

sup{d(Ix2n, z), d(Jx2n−1, z), D(z, Sx2n), D(z, Tx2n−1) : n ≥ m} < s .

Then for n ≥ m we have

D(z, Sz) ≤ d(z, Ix2n) +D(Ix2n, Sz) (2)

≤ d(z, Ix2n) +H(Sz, Tx2n−1)

≤ d(z, Ix2n) + ϕ(aL(z, x2n−1) + (1− a)N(z, x2n−1)) ,
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where

L(z, x2n−1) = max{d(Iz, Jx2n−1), D(Iz, Sz), D(Jx2n−1, Tx2n−1) ,

1

2
[D(Iz, Tx2n−1) +D(Jx2n−1, Sz)]}

≤ max{d(Iz, Jx2n−1), 0, d(x2n−1, Tx2n−1) ,

1

2
[d(Iz, z) +D(z, Tx2n−1), d(Jx2n−1, z) +D(z, Tx2n−1)]}

→ max{d(Iz, z), 0, 0,
1

2
d(Iz, z)} as n→∞ ,

i.e.

limn L(z, x2n−1) ≤ D(z, Sz) ;

and

N(z, x2n−1) ≤ [max{d2(Iz, z), 0, 0, 0, 0}]1/2 as n→∞

i.e.

limnN(z, x2n−1) ≤ D(z, Sz) .

Hence making n→∞ in (2), we obtain

D(z, Sz) ≤ 0 + ϕ(aD(z, Sz) + (1− a)D(z, Sz)) ,

that is, D(z, Sz) = 0 and so z ∈ Sz. Choose z′ ∈ X such that Jz′ = z, then

D(z, Tz′) ≤ H(Sz, Tz′) (3)

≤ ϕ(aL(z, z′) + (1− a)N(z, z′)) ,

where

L(z, z′) = max{d(Iz, Jz′), D(Iz, Sz), D(Jz′, T z′),

1

2
[D(Iz, Tz′) +D(Jz′, Sz)]}

≤ max{d(Iz, z), D(Iz, Sz), D(z, Tz′),

1

2
[d(Iz, z) +D(z, Tz′) +D(z, Sz)]}

= max{d(Iz, z), D(z, Tz′)} ≤ D(z, Tz′)
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and

N(z, z′) ≤ [max{d2(Iz, z), 0, 0, 0,
1

2
D(z, Tz′)[d(Iz, z) + d(z, Tz′)]}]1/2

≤ D(z, Tz′) .

Hence by (3)

D(z, Tz′) ≤ ϕ(D(z, Tz′)) ,

and so D(z, Tz′) = 0; i.e.,Jz′ = z ∈ Tz′.

Since J and T are weakly s-commuting and Jz′ ∈ Tz′, we have

JJz′ ∈ JTz′ ⊂ TJz′ ,

which implies that Jz ∈ Tz.

(ii) The proof is analogous to the proof of (i) due to symmetry.

(iii) Suppose Iz = z and J and T are weakly s-commuting. Choose m as in (i), then for

all n ≥ m

D(z, Sz) ≤ d(z, Ix2n) +D(Ix2n, Sz) (4)

≤ d(z, Ix2n) +H(Sz, Tx2n−1)

≤ d(z, Ix2n) + ϕ(aL(z, x2n−1) + (1− a)N(z, x2n−1)) ,

where

L(z, x2n−1) → max{0, D(z, Sz), 0,
1

2
D(z, Sz)} as n→∞ ,

i.e.,

limn L(z, x2n−1) = D(z, Sz)

and

N(z, x2n−1) → [max{0, 0, 0, 1

2
D2(z, Sz), 0}]1/2 as n→∞

i.e.,

limnN(z, x2n−1) = D(z, Sz) .

Making n→∞ in (4), we obtain

D(z, Sz) ≤ 0 + ϕ(aD(z, Sz) + [(1− a)/
√

2]D(z, Sz))

< D(z, Sz) ,

which implies D(z, Sz) = 0 and so z ∈ Sz. Choose z′ ∈ X such that Jz′ = z, then

D(z, Tz′) ≤ H(Sz, Tz′)

≤ ϕ(aL(z, z′) + (1− a)N(z, z′)) ,
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where

L(z, z′) = max{d(Iz, Jz′), D(Iz, Sz), D(Jz′, T z′),
1

2
[D(Iz, Tz′) +D(Jz, Sz)]}

= D(z, Tz′)

and

N(z, z′) = [max{d2(Iz, Jz′), D(Iz, Sz)D(Jz′, T z′), D(Iz, Tz′)D(Jz′, Sz),

1

2
D(Iz, Sz)D(Jz′, Sz),

1

2
D(Jz′, T z′)D(Iz, Tz′)}]1/2

= (1/
√

2)D(z, Tz′) .

Hence

D(z, Tz′) ≤ ϕ(aD(z, Tz′) + [(1− a)/
√

2]D(z, Tz′))

< D(z, Tz′) .

It follows that D(z, Tz′) = 0 and so Jz′ = z ∈ Tz′. Since J and T are weakly

s-commuting Jz′ ∈ Tz′, we have JJz′ ∈ JTz′. Hence Jz ∈ Tz.

(iv) Due to symmetry, the proof is analogous to the proof of (iii).#

Theorem 3 Suppose that lim
t→+∞

(t − ϕ(t)) = +∞, there are sequences {xn}∞n=0 and

{yn}∞n=0 in X such that {Ixn, Ixn+1} ⊂ Sxn and {Jyn, Jyn+1} ⊂ Tyn (n = 0, 1, 2, . . . ),

and

H(Sx, Ty) ≤ ϕ(aL1(x, y) + (1− a)N1(x, y)) (5)

for all x, y ∈ X and a ∈ [0, 1], where

L1(x, y) = max{D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]}

and

N1(x, y) = [max{D(Ix, Sx)D(Jy, Ty), D(Ix, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2 .

Then:

(i) the sequences {Sxn} and {Tyn} converge in CL(X) to the same limit A for some

A ∈ CL(X).



80 H.K. Pathak; S.N. Mishra

(ii) F = {Ix : x ∈ X and Ix ∈ Sx} = I(X) ∩ A, and

G = {Jy : y ∈ y ∈ X and Jy ∈ Ty} = J(X) ∩ A.

(iii) Sx = A whenever Ix ∈ Sx and Ty = A whenever Jy ∈ Ty.

Proof: For a fixed n ∈ N, let

βn = sup{H(Sxi, T yj) : 1 ≤ i, j ≤ n} .

Let δ = max{H(Ix0, Sx1), H(Ty0, T y1)}.

For i, j ∈ N, the inequality (5) yields H(Sxi, T yj) ≤ ϕ(aL1(xi, yj))+(1−a)N1(xi, yj), where

L1(xi, yj) = max{D(Ixi, Sxj), D(Jyj, T yj),
1

2
[D(Ixi, T yj) +D(Jyj, Sxi)]}

≤ 1

2
[H(Sxi−1, T yj) +H(Tyj−1, Sxi)]

≤ max{H(Sxi, T yj), H(Tyj−1, Sxi)}

and

N1(xi, yj) ≤ [H(Sxi−1, T yj)H(Tyj−1, Sx1)]
1/2

≤ max{H(Sxi−1, T yj), H(Tyj−1, Sxi)} .

Hence for i, j ∈ N, we have

H(Sxi, T yj) ≤ ϕ(max{H(Sxi−1, T yj), H(Tyj−1, Sxi)}) . (6)

It follows that βn ≤ ϕ(βn + δ) for all n = 1, 2, 3, . . . . Hence (βn + δ)− ϕ(βn + δ) ≤ δ for all

n = 1, 2, 3, . . . . Since t − ϕ(t) → +∞ as t → +∞, it follows that {βn} is bounded. Hence

sup{H(Sxi, T yj) : i, j ∈ N} is finite.

For n ∈ N,

let νn = sup{H(Sxi, T yj) : i, j ≥ n} .

Then the inequality (6) yields νn ≤ (νn−1) for all n ∈ N. It follows that νn ≤ ϕn(ν0) for

all n ∈ N. Since ϕ(t+) < t for all t ∈ (0,∞) and ϕ(0) = 0, it follows that ϕn(ν0) → 0 as

n→∞. So {νn} converges to zero. Again for all i, j ∈ N, we have

H(Sxi, Sxj) ≤ H(Sxi, T yi) +H(Tyi, Sxj)

Thus for all i, j ≥ n and using the fact that νn → 0 as n→∞ we have

H(Sxi, Sxj) ≤ zνn → o as i, j → +∞ .
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It follows that {Sxn} is Cauchy. Since (CL(X), H) is complete, {Sxn} is convergent in

CL(X). We can similarly show that {Tyn} is also convergent in CL(X). SinceH(Sxn, T yn) →
0 as n→∞, it follows that the sequences {Sxn} and {Tyn} converge in CL(X) to the same

limit A for some A ∈ CL(X).

Suppose u ∈ X such that Iu ∈ A. Then from the inequality (5) it follows that, for all n ∈ N,

H(Su, Tyn) ≤ ϕ(aL1(u, yn) + (1− a)N1(u, yn)) , (7)

where

L1(u, yn) ≤ max{H(A, Su),
1

2
[H(A, Tyn) +H(Tyn, Su)]}

→ H(A, Su)+ as n→∞

and

N1(u, yn) ≤ [max{H(A, Tyn)H(Tyn, Su),
1

2
H(A, Su)H(Tyn, Su)}]1/2

→ (1/
√

2)H(A, Su)+ as n→∞ .

Hence passing over to limit as n→∞ in (7), we obtain

H(Su,A) ≤ ϕ(aH(Su,A)+ + [(1− a)/
√

2]H(Su,A)+)

≤ ϕ(H(Su,A)+) .

Since ϕ(t+) < t for all t ∈ (0,∞), it follows that H(Su,A) = 0. Hence Su = A. We now

suppose that v ∈ A such that Iv ∈ Sv. Then from the inequality (5), for all n ∈ N, we have

H(Sv, Tyn) ≤ ϕ
(
a ·max{D(Iv, Sv), D(Jyn, T yn),

1

2
[D(Iv, Tyn) +D(Jyn, Sv)]}

+ (1− a) · [max{D(Iv, Sv)D(Jyn, T yn), D(Iv, Tyn)D(Jyn, Sv) ,

1

2
D(Iv, Sv)D(Jy, Sv),

1

2
D(Jyn, T yn)D(Iv, Tyn)}]1/2

)
≤ ϕ(a ·H(Sv, Tyn) + (1− a) ·H(Sv, Tyn))

= ϕ(H(Sv, Tyn)) .

Passing over to limit as n→∞ in the above inequality, we obtain H(Sv,A) ≤ ϕ(A(Sv,A)+).

Hence H(Sv,A) = 0. It follows that Sv = A. Thus we have shown that F = I(X) ∩ A
and Sx = A whenever Ix ∈ Sx. We can similarly show that G = J(X) ∩ A and Ty = A

whenever Jy ∈ Ty.#

Remark 5 Theorem 3 improves Theorem 2 of Naidu [7].
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Corollary 2 Suppose that lim
t→+∞

[t− ϕ(t)] = +∞, S(X) and T (X) are closed subsets of

X, Sx ⊆ I(X) and Gx ⊆ J(X) for all x ∈ X and the inequality (5) holds for all x, y ∈ X,

a ∈ [0, 1]. Then:

(i) {Ix : x ∈ X and Ix ∈ Sx} = {Jx : x ∈ X and Jx ∈ Tx} = A for some A ∈ CL(X),

(ii) Sx = A = Ty for all x ∈ I−1(A) and for all y ∈ J−1(A).

Proof: The conclusion follows immediately from Theorem 3.#

Theorem 4 Let (X, d) be a complete metric space, and let I, J : X → X and S, T :

X → CL(X). Suppose that lim
t→+∞

(t−ϕ(t)) = +∞, there are sequences {xn}∞n=0 and {yn}n=0

in X such that {Ixn, Ixn+1} ⊂ Sxn and {Jyn, Jyn+1} ⊂ Tyn (n = 0, 1, 2, . . . ), and (5) holds

for all x, y ∈ X. If I, J , S and T are continuous , I, S and J , T are compatible mappings,

then there exists a point t ∈ X such that It ∈ St and Jt ∈ Tt, i.e., t is a coincidence point

of I and S and J and T .

Proof: Following the proof technique of Theorem 3, we can show that the sequences {Sxn}
and {Tyn} converge in CL(X) to the same limit A for some A in CL(X). By (5), for m ≥ n

(m,n ∈ N), we have

d(Ixn, Jym) ≤ D(Ixn, Sxn) +D(Jym, Sxn) (8)

≤ D(Ixn, Sxn) +H(Sxn, T ym)

≤ D(Ixn, Sxn) + ϕ(aL1(xn, ym) + (1− a)N1(xn, ym)) ,

where

L1(xn, ym) = max{D(Ixn, Sxn), D(Jym, T ym),
1

2
[D(Ixn, T yn) +D(Jym, Sxn)]}

≤ H(Sxn, T ym)

and

N1(xn, ym) = [max{D(Ixn, Sxn)D(Jym, T ym), D(Ixn, T ym)D(Jym, Sxn) ,

1

2
D(Ixn, Sxn)D(Jym, Sxn),

1

2
D(Jym, T yn)D(Ixn, T ym)}]1/2

≤ H(Sxn, T ym) .

Making n→∞ in (8), we obtain

lim
n
d(Ixn, Jym) ≤ 0 + ϕ(0) .
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It follows that Ixn, Jyn → t as n→∞ for some t ∈ X, since X is complete, d(Ixn, Ixm) ≤
d(Ixn, Jym) + d(Jym, Ixn) and d(Jyn, Jym) ≤ d(Jyn, Ixm) + d(Ixm, Jym). Again since

D(t, A) ≤ D(t, Sxn) + H(Sxn, A) → 0 as n → ∞, it follows that t ∈ A. By continuity

of I and S, and since S and I are compatible, we have

D(It, St) = limnD(It, SIxn) ≤ limnH(IA, SIxn)

= limnH(ISxn, SIxn) = 0

Hence It ∈ St. Due to symmetry, we can similarly show that Jt ∈ Tt.#

By applying the same arguments as in the proof of Theorem 3, we can easily prove the

following theorems:

Theorem 5 Let (X, d) be a complete metric space, and I, J : X → X and S, T : X →
CL(X). Suppose that lim

t→+∞
(t−ϕ(t)) = +∞, there are sequences {xn}∞n=0 and {yn}∞n=0 in X

such that Ixn+1 ∈ Sxn and Jyn+1 ∈ Tyn (n = 0, 1, 2, . . . ) and

H(Sx, Ty) ≤ ϕ
(a

2
[D(Ix, Ty) +D(Jy, Sx)] + (1− a)[D(Ix, Ty)D(Jy, Sx)]1/2

)
(5′)

for all x, y ∈ X and a ∈ [0, 1]. Then the sequences {Sxn}, {Tyn} converge in CL(X)

to the same limit A for some A ∈ CL(X), {Ix| ∈ X and Ix ∈ Sx} = I(X) ∩ A and

{Jy|y ∈ X and Jy ∈ Ty} = J(X) ∩ A. Further, Sx = A whenever Ix ∈ Sx and Ty = A

whenever Jy ∈ Ty.

Theorem 6 Let (X, d) be a complete metric space, and let I, J : X → X and S, T : X →
CL(X). Suppose that lim

t→+∞
(t− ϕ(t)) = +∞, there are sequences {xn}∞n=0 and {yn}∞n=0in X

such that Ixn+1 ∈ Sxn and Jyn+1 ∈ Tyn (n = 0, 1, 2, . . . ) and (5′) holds for all x, y ∈ X. If

I, J , S and T are continuous, I, S and J , T are compatible mappings. Then there exists a

point t ∈ X such that It ∈ St and Jt ∈ Tt; i.e., t is a coincidence point of I and S and J

and T .

Remark 6 In view of Example 10 of Sastry, Naidu and Prasad [11], the condition lim
t→∞

(t−

ϕ(t)) = +∞ in Theorems 3-6 cannot be dispensed with even if
∞∑

n=1

ϕn(t) < +∞ for all t ∈ R+

with S = T and I = J = id, the identity mapping on X.

Remark 7 It is not yet known whether the continuity of all four maps I, J , S and T in

Theorems 4 and 6 are necessary or not.

Remark 8 Condition (2) of Naidu [7] is implied by condition (5′) of Theorem 5, and hence

Theorem 2 of Naidu [7] is a direct consequence of Theorem 5 .
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