HERMANT K. PATHAK, SWAMI N. MISHRA

Coincidence Points for Hybrid Mappings

1 Introduction

There have been several extensions of known fixed point theorems in which a mapping takes each point of a metric space into a closed (resp. closed and bounded) subset of the same (cf. [3, 4, 5, 7, 10, 11]). Hybrid fixed point theory for nonlinear mappings is relatively a recent development within the ambit of fixed point theory of point to set mappings (multivalued mappings) with a wide range of applications (see, for instance, [2, 8, 12, 13, 14, 15, 16]). Recently, in an attempt to improve /generalize certain results of Naidu, Sastry and Prasad [11] and Kaneko [4] and others, Chang [1] obtained some fixed point theorems for a hybrid of multivalued and singlevalued mappings.

However, his main theorem (see Theorem A below) admits a counter example. Our main purpose in this paper is to present a correct version of this result which, in turn, generalizes several known results in this direction.

Let (X, d) be a metric space. We shall use the following notations and definitions:

$$CL(X) = \{A : A \text{ is a nonempty closed subset of } X\},$$

$$CB(X) = \{A : A \text{ is a nonempty closed and bounded subset of } X\},$$

$$N(\epsilon, A) = \{x \in X : d(x, a) < \epsilon \text{ for some } a \in A, \ \epsilon > 0\}, \ A \in CL(X),$$

$$E_{A,B} = \{\epsilon > 0 : A \subset N(\epsilon, B), \ B \subset N(\epsilon, A)\}, \ A, B \in CL(X),$$

$$H(A,B) = \begin{cases} \inf E_{A,B} & \text{if } E_{A,B} \neq \phi \\ \infty & \text{if } E_{A,B} = \phi, \end{cases}$$

$$D(x,A) = \inf \{d(x,a) : a \in A\}$$

for each $A, B \in CL(X)$, and for each $x \in X$.

H is called the generalized Hausdorff metric for CL(X) induced by d. If H(A, B) is defined for $A, B \in CB(X)$, then H is called the Hausdorff metric induced by d (cf. Nadler [6]).

Definition 1 ([4]) Mappings $S: X \to CB(X)$ and $I: X \to X$ are called compatible if $ISx \in CB(X)$ for all $x \in X$ and $H(SIx_n, ISx_n) \to 0$, as $n \to \infty$ whenever $\{x_n\}$ is a sequence in X such that $Sx_n \to M \in CB(X)$ and $Ix_n \to t \in M$ as $n \to \infty$.

Following Singh and Mishra [16] (see also [3], [4] and [9]), we introduce the notion of R-sequentially commuting mappings for a hybrid pair of single-valued and multi-valued maps.

Definition 2 Let K be a nonempty subset of a metric space X and $I: K \to X$ and $S: K \to CL(X)$ be respectively single-valued and multi-valued mappings. Then I and S will be called R-sequentially commuting on K if for a given sequence $\{x_n\} \subset K$ with $\lim_n Ix_n \in K$, there exists R > 0 such that

$$\lim_{n} D(Iy, SIx_n) \le R \lim_{n} D(Ix_n, Sx_n) \tag{*}$$

for each $y \in K \cap \lim_n Sx_n$.

If $x_n = x(x \in K)$ for all $n \in \mathbb{N}$ (naturals), $Ix \in K$ and (*) holds for some R > 0, then I and S have been defined to be pointwise R-weakly commuting at $x \in K$ (see [16, Def. 1]). If it holds for all $x \in K$, then I and S are called R-weakly commuting on K. Further, if R = 1, we get the definition of weak commutativity of I and S on K due to Hadzic and Gajec [3]. If $I, S : X \to X$, then as mentioned in [16], we recover the definitions of pointwise R-weak commutativity and R-commutativity of single-valued self-maps due to Pant [9] and all the remarks as given in [16] apply.

We now introduce the following.

Definition 3 Maps $I: K \to X$ and $S: K \to CL(X)$ are to be called sequentially commuting (or s-commuting) at a point $x \in K$ if

$$I(\lim_{n} Sx_{n}) \subset SIx \tag{**}$$

whenever there exists a sequence $\{x_n\} \subset K$ such that $\lim_n Ix_n = x \in \lim_n Sx_n \in CL(X)$.

If $x_n = x$ for all $n \in \mathbb{N}$, then the maps I and S will be said to be weakly s-commuting at a point $x \in K$.

The following example shows that s-commutativity of I and S is indeed more general than their R-sequential commutativity (and hence their pointwise R-commutativity and compatibility).

Example 1 Let $X = [0, \infty)$ with the usual metric d and define $I: X \to X$ and $S: X \to CL(X)$ by

$$Ix = \begin{cases} 0, & \text{if } x \in [0, 1] \\ x, & \text{if } x \in (1, \infty), \end{cases} Sx = [x, \infty).$$

Then for the sequence $\{x_n\} \subset X$ defined by $x_n = 1 + \frac{1}{n}$, we have $1 = \lim_n Ix_n \in [1, \infty) = \lim_n Sx_n \in CL(X)$ and $I(\lim_n Sx_n) = \{0\} \cup (1, \infty) \subset [0, \infty) = SI1$. Therefore, I and S are s-commuting but (*) is not satisfied for $y = 1 \in [1, \infty) = \lim_n Sx_n$.

Definition 4 ([1]) Let \mathbb{R}^+ denote the set of all non-negative real numbers, and let $A \subset \mathbb{R}^+$. A function $\varphi: A \to \mathbb{R}^+$ is upper semicontinuous from the right if $\lim_{x \to u+} \sup \varphi(x) \leq \varphi(u)$ for all $u \in A$.

A function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is said to satisfy (Φ) -conditions if:

- (i) φ is upper semi-continuous from the right on $(0,\infty)$ with $\varphi(t) < t$ for all t > 0, and
- (ii) there exists a real number s > 0 such that φ is non-decreasing on (0, s] and $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for all $t \in (0, s]$, where φ^n denotes the composition of φ with itself n times and $\varphi^0(t) = t$.

Let Γ denote the set of all functions which satisfy the (Φ) -condition.

The following lemmas will be useful in proving our main results.

Lemma 1 Let (X,d) be a metric space and $I,J:X\to X$ and $S,T:X\to CL(X)$ be such that $S(X)\subset J(X)$ and $T(X)\subset I(X)$ and for all $x,y\in X$,

$$H(Sx, Ty) \le \varphi(aL(x, y) + (1 - a)N(x, y)), \tag{1}$$

where $a \in [0,1]$, $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is upper semi-continuous from the right on $(0,\infty)$ with $\varphi(t) < t$ for all t > 0, and

$$L(x,y) = \max\{d(Ix,Jy), D(Ix,Sx), D(Jy,Ty), \frac{1}{2}[D(Ix,Ty) + D(Jy,Sx)]\},$$

$$N(x,y) = [\max\{d^2(Ix,Jy), D(Ix,Sx)D(Jy,Ty), D(Ix,Ty)D(Jy,Sx), \frac{1}{2}D(Ix,Sx)D(Jy,Sx), \frac{1}{2}D(Jy,Ty)D(Ix,Ty)\}]^{1/2}.$$

Then $\inf_{x \in X} D(Ix, Sx) = 0 = \inf_{x \in X} D(Jx, Tx).$

Proof: Due to symmetry, we may suppose that

$$\inf_{x \in X} D(Ix, Sx) = \inf_{x \in X} D(Jx, Tx) = \delta.$$

If $\delta > 0$, then $\varphi(\delta) < \delta$. Since φ is upper semi-continuous from the right, there exists $\epsilon > 0$ such that $\varphi(t) < \delta$ for all $t \in [\delta, \delta + \epsilon)$. Pick $x_0 \in X$ such that $D(Ix_0, Sx_0) < \delta + \epsilon$. By $S(X) \subset J(X)$, there exists $x_1 \in X$ such that $Jx_1 \in Sx_0$ and $d(Ix_0, Jx_1) < \delta + \epsilon$.

Consider

$$\delta \leq D(Jx_1, Tx_1) \leq H(Sx_0, Tx_1) \leq \varphi(aL(x_0, x_1) + (1 - a)N(x_0, x_1)),$$

where

$$L(x_0, x_1) = \max\{d(Ix_0, Jx_1), D(Ix_0, Sx_0), D(Jx_1, Tx_1), \frac{1}{2}[D(Ix_0, Tx_1) + D(Jx_1, Sx_0)]\}$$
$$= \max\{d(Ix_0, Jx_1), D(Jx_1, Tx_1)\}$$

and

$$N(x_0, x_1) = \left[\max\{d^2(Ix_0, Jx_1), D(Ix_0, Sx_0) D(Jx_1, Tx_1), D(Ix_0, Tx_1) D(Jx_1, Sx_0), \frac{1}{2}D(Ix_0, Sx_0) D(Jx_1, Sx_0), \frac{1}{2}D(Jx_1, Tx_1) D(Ix_0, Tx_1)\}\right]^{1/2}$$

$$\leq \left[\max\{d^2(Ix_0, Jx_1), d(Ix_0, Jx_1) D(Jx_1, Tx_1)\}\right]^{1/2}$$

$$\leq \left[\max\{d^2(Ix_0, Jx_1), d(Ix_0, Jx_1) D(Jx_1, Tx_1), D^2(Jx_1, Tx_1)\}\right]^{1/2}$$

$$\leq \left[\max\{d^2(Ix_0, Jx_1), D^2(Jx_1, Tx_1)\}\right]^{1/2}$$

$$= \max\{d(Ix_0, Jx_1), D(Jx_1, Tx_1)\}.$$

Hence,

$$\delta \le D(Jx_1, Tx_1) \le \varphi(\max\{d(Ix_0, Jx_1), D(Jx_1, Tx_1)\}),$$

which is a contradiction, since $\varphi(d(Ix_0, Jx_1)) < \delta$ and $\varphi(D(Jx_1, Tx_1)) < D(Jx_1, Tx_1)$ proving that $\delta = 0$.

Lemma 2 Let X, I, J, S, T and φ be as defined Lemma 1 such that the inequality (1) holds. If $Ix \in Sx$ for some $x \in X$, then there exists a $y \in X$ such that Ix = Jy and $Jy \in Ty$.

Proof: Suppose $Ix \in Sx$. Since $S(X) \subset J(X)$, we may choose a $y \in X$ such that $Jy = Ix \in Sx$. By (1), we have

$$D(Jy, Ty) \le H(Sx, Ty) \le \varphi(aL(x, y) + (1 - a)N(x, y)),$$

where

$$L(x,y) = \max\{d(Ix,Jy), \ D(Ix,Sx), \ D(Ix,Sx), \ D(Jy,Ty), \ \frac{1}{2}[D(Ix,Ty) + D(Jy,Sx)]\}$$
$$= D(Jy,Ty),$$

and

$$N(x,y) = \left[\max \{ d^2(Ix, Jy), \ D(Ix, Sx) D(Jy, Ty), \ D(Jx, Ty) D(Jy, Sx), \frac{1}{2} D(Ix, Sx) D(Jy, Sx), \frac{1}{2} D(Jy, Ty) D(Ix, Ty) \} \right]^{1/2}$$
$$= (1/\sqrt{2})D(Jy, Ty).$$

Hence

$$D(Jy, Ty) \le \varphi([a + (1 - a)/\sqrt{2})]D(Jy, Ty)) < D(Jy, Ty),$$

a contradiction, and so D(Jy, Ty) = 0, i.e., $Jy \in Ty$.

Remark 1 If the assumptions of Lemma 2 hold, then setting $x_{2n} = x$ and $x_{2n-1} = y$ for all $n \in \mathbb{N}$ and z = Ix we observe that $Ix_{2n} \to z$, $Jx_{2n-1} \to z$, $D(Ix_{2n}, Sx_{2n}) \to 0$ and $D(Jx_{2n-1}, Tx_{2n-1}) \to 0$ as $n \to \infty$.

Lemma 3 ([11]) Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non-decreasing function such that

(i) $\varphi(t+) < t$ for all t > 0 and $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for all t > 0.

Then there exists a strictly increasing function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ such that

(ii)
$$\varphi(t) < \psi(t)$$
 for all $t > 0$ and $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all $t > 0$.

Lemma 4 ([1]) If $\varphi \in \Gamma$, then there exists a function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ such that:

- (i) ψ is upper semi-continuous from the right with $\varphi(t) \leq \psi(t) < t$ for all t > 0,
- (ii) ψ is strictly increasing with $\varphi(t) < \psi(t)$ for $t \in (0,s]$, s > 0 and $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for $t \in (0,s]$.

2 Main Results

The following theorem is the main result of Chang [1, Theorem 1].

Theorem A Let (X,d) be a complete metric space, let I, J be two functions from X into X, and let $S,T:X\to CB(X)$ be two set-valued functions with $SX\subset JX$ and $TX\subset IX$. If there exists $\varphi\in\Gamma$ such that for all x,y in X,

$$H(Sx,Ty) \le \varphi \left(\max \left\{ d(Ix,Jy), \ D(Ix,Sx), \ D(Jy,Ty), \ \frac{1}{2} [D(Ix,Ty) + D(Jy,Sx)] \right\} \right),$$
(C)

then there exists a sequence $\{x_n\}$ in X such that $Ix_{2n} \to z$ and $Jx_{2n-1} \to z$ for some z in X and $D(Ix_{2n}, Sx_{2n}) \to 0$, $D(Jx_{2n-1}, Tx_{2n-1}) \to 0$ as $n \to \infty$. Moreover, if Iz = z and T and J are compatible, then $z \in Sz$ and $Jz \in Tz$. That is, z is a common fixed point of I and S, and z is a coincidence point of J and T.

The following example shows that Theorem A in its present form is incorrect.

Example 2 Let X = [0,1] with absolute value metric d and let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be defined by $\varphi(t) = t^2$ for $t \in [0,1)$ and $\varphi(t) = 1/2$ for $t \geq 1$. Define $I = J : X \to X$ and $S = T : X \to CB(X)$ by Ix = 1 - x, $x \in X$ and $Sx = \{0, 1/3, 2/3, 1\}$ for all $x \in X$. Then for each $x, y \in X$ and $\varphi \in \Gamma$, we have

$$H(Sx, Ty) = 0$$

$$\leq \psi \left(\max \left\{ d(Ix, Jy), \ D(Ix, Sx), \ D(Jy, Ty), \ \frac{1}{2} [D(Ix, Ty) + D(Jy, Sx)] \right\} \right)$$

and for the sequence $\{x_n\} \subset X$ defined by $x_n = 1/n$ for all $n \in \mathbb{N}$, we have $Sx_n, Tx_n \to \{0, 1/3, 2/3, 1\} = M$, $Ix_n, Jx_n = 1 - 1/n \to 1 \in M \subset X$, $D(Ix_{2n}, Sx_{2n}) \to 0$ and $D(Jx_{2n-1}, Tx_{2n-1}) \to 0$ as $n \to \infty$. Also, $z = 1/2 \in X$ is such that Iz = z and for $\{x_n\}$ as defined above we have $\lim_n H(TJx_n, JTx_n) = 0$, that is, T and J are compatible. Thus, all the conditions of Theorem A are satisfied. Evidently, $z \notin Sz$, $Jz \notin TZ$, that is, z = 1/2 is neither a common fixed point of I and S nor it is a coincidence point of J and T.

Before we present a corrected version of Theorem A, we have the following:

Theorem 1 Let (X,d) be a complete metric space, and let $I, J: X \to X$, $S, T: X \to CL(X)$. Let A be a nonempty subset of X such that I(A) and J(A) are closed subsets of X, and $Tx \subseteq I(A)$ and $Sx \subseteq J(A)$ for all $x \in A$ and there exists a $\varphi \in \Gamma$ such that for all $x, y \in X$, (1) holds. Then

- (i) $F = \{Ix : x \in X \text{ and } Ix \in Sx\} \neq \phi$,
- (ii) $G = \{Jx : x \in X \text{ and } Jx \in Tx\} \neq \phi$,
- (iii) F = G if A = X.

Proof: Let ψ be the function satisfying the conclusion of Lemma 4. By (1), we have for any $x, y \in X$, and $Ix \in Ty$,

$$D(Ix, Sx) \le H(Ty, Sx)$$

$$\le \varphi(aL(x, y) + (1 - a)N(x, y)),$$

where

$$L(x,y) = \max\{d(Ix,Jy), D(Ix,Sx), D(Jy,Ty), \frac{1}{2}[D(Ix,Ty) + D(Jy,Sx)]\}$$

$$\leq \max\{d(Ix,Jy), D(Ix,Sx), [d(Jy,Ix) + D(Ix,Ty)],$$

$$\frac{1}{2}[D(Ix,Ty) + d(Ix,Jy) + D(Ix,Sx)]\}$$

$$= \max\{d(Ix,Jy), D(Ix,Sx), \frac{1}{2}[d(Ix,Jy) + D(Ix,Sx)]\}$$

$$= \max\{d(Ix,Jy), D(Ix,Sx)\}$$

and

$$N(x,y) = [\max\{d^{2}(Ix,Jy), D(Ix,Sx)D(Jy,Ty), D(Ix,Ty)D(Jy,Sx), \frac{1}{2}D(Ix,Sx)D(Jy,Sx), \frac{1}{2}D(Jy,Ty)D(Ix,Ty)\}]^{1/2}$$

$$= \max\{d^{2}(Ix,Jy), D(Ix,Sx)D(Jy,Ty), \frac{1}{2}(Ix,Sx)D(Jy,Sx)\}^{1/2}$$

$$\leq [\max\{d^{2}(Ix,Jy), d(Ix,Jy)D(Ix,Sx), \frac{1}{2}[d(Ix,Jy) + D(Ix,Sx)]D(Ix,Sx)\}]^{1/2}$$

$$\leq [\max\{d^{2}(Ix,Jy), d(Ix,Jy)D(Ix,Sx), D^{2}(Ix,Sx)\}]^{1/2}$$

$$= [\max\{d^{2}(Ix,Jy), D^{2}(Ix,Sx)\}]^{1/2}$$

$$= \max\{d(Ix,Jy), D(Ix,Sx)\}.$$

Since $D(Ix, Sx) \leq \varphi(aD(Ix, Sx) + (1-a)D(Ix, Sx))$ is inadmissible for any $a \in [0, 1]$, $D(Ix, Sx) \leq \varphi(aD(Ix, Sx) + (1-a)d(Ix, Jy))$ is inadmissible for a = 1 and $D(Ix, Sx) \leq \varphi(ad(Ix, Jy) + (1-a)D(Ix, Sx))$ is inadmissible for a = 0, it follows that

$$D(Ix, Sx) \le (ad(Ix, Jy) + (1 - a)d(Ix, Jy))$$

= $\varphi(d(Ix, Jy))$.

Similarly we can show that

$$D(Jy, Ty) < \varphi(d(Ix, Jy)) \text{ if } Jy \in Sx.$$

Pick $x_0 \in A$ such that $D(Ix_0, Sx_0) < s$. Since $Sx_0 \subseteq J(A)$, there exists $x_1 \in A$ such that $Jx_1 \in Sx_0$. Then we have

$$D(Jx_1, Tx_1) \le H(Sx_0, Tx_1)$$

$$\le \varphi(aL(x_0, x_1) + (1 - a)N(x_0, x_1))$$

$$< \psi(aL(x_0, x_1) + (1 - a)N(x_0, x_1)).$$

Since $Tx_1 \subseteq I(A)$, we may choose $x_2 \in A$ such that $Ix_2 \in Tx_2$ and

$$d(Jx_1, Ix_2) \le \psi(aL(x_0, x_1) + (1 - a)N(x_0, x_1)).$$

Therefore

$$D(Ix_2, Sx_2) \le H(Sx_2, Tx_1)$$

$$\le \varphi(aL(x_2, x_1) + (1 - a)N(x_2, x_1))$$

$$< \psi(aL(x_2, x_1) + (1 - a)N(x_2, x_1)).$$

Hence we can choose $x_3 \in A$ such that $Jx_3 \in Sx_2$ and $d(Ix_2, Jx_3) \leq \psi(aL(x_2, x_1) + (1-a)N(x_2, x_1))$. Proceeding in this way, we can construct a sequence $\{x_n\}_{n=0}^{\infty}$ in A such that $Jx_{2n+1} \in Sx_{2n}$, $Ix_{2n+2} \in Tx_{2n+1}$ (n = 0, 1, 2, ...) and

$$d(Ix_{2n}, Jx_{2n+1}) \le \psi(aL(x_{2n}, x_{2n-1}) + (1-a)N(x_{2n}, x_{2n-1})),$$

$$d(Jx_{2n-1}, Ix_{2n}) \le \psi(aL(x_{2n-2}, x_{2n-1}) + (1-a)N(x_{2n-2}, x_{2n-1}))$$

for all $n \in \mathbb{N}$ (naturals). By the construction of $\{x_n\}$ we have

$$L(x_{2n}, x_{2n-1}) \leq \max\{d(Ix_{2n}, Jx_{2n-1}), \ d(Ix_{2n}, Jx_{2n+1})\},$$

$$N(x_{2n}, x_{2n-1}) \leq \max\{d(Ix_{2n}, Jx_{2n-1}), \ d(Ix_{2n}, Jx_{2n+1})\},$$

$$L(x_{2n-2}, x_{2n-1}) \leq \max\{d(Ix_{2n-2}, Jx_{2n-1}), \ d(Ix_{2n}, Jx_{2n+1})\} \text{ and }$$

$$N(x_{2n-2}, x_{2n-1}) \leq \max\{d(Ix_{2n-2}, Jx_{2n-1}), \ d(Ix_{2n-2}, Jx_{2n+1})\} \text{ for all } n \in \mathbb{N}.$$

Since ψ is strictly increasing on (0, s] and $\psi(t) < t$ for t > 0, we have

$$d(Ix_{2n}, Jx_{2n+1}) \leq \psi(ad(Ix_{2n}, Jx_{2n-1}) + (1-a)d(Ix_{2n}, Jx_{2n-1}))$$

$$= \psi(d(Ix_{2n}, Jx_{2n-1}))$$

$$\leq d(Jx_{2n-1}, Ix_{2n})\psi(ad(Ix_{2n-2}, Jx_{2n-1}) + (1-a)d(Ix_{2n-2}, Jx_{2n-1}))$$

$$= \psi(d(Ix_{2n-2}, Jx_{2n-1})) \text{ for all } n \in \mathbb{N}.$$

Hence

$$d(Ix_{2n}, Jx_{2n+1}) \le \psi^{2n}(d(Ix_0, Jx_1))$$
 and $d(Jx_{2n-1}, Ix_{2n}) \le \psi^{2n-1}(d(Ix_0, Jx_1))$ for all $n \in \mathbb{N}$.

Set $y_{2n} = Ix_{2n}$ and $y_{2n+1} = Jx_{2n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Then

$$d(y_n, y_{n+1}) \le \psi^n(d(y_0, y_1))$$
 for all $n \in \mathbb{N}$.

Since $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for $t \in (o, s]$ and $d(y_0, y_1) = d(Ix_0, Jx_1) < s$, it follows that $\sum_{n=1}^{\infty} d(y_n, y_{n+1})$ is convergent. Hence by the completeness of X, $\{y_n\}$ converges to z for some $z \in X$. Since $\{y_{2n}\}$ is a sequence in I(A) converging to z and I(A) is closed, it follows that $z \in I(A)$. So there exists a $w \in X$ such that Iw = z. Now by (1), we have

$$D(Ix_{2n}, Sw) \le H(Sw, Tx_{2n-1})$$

 $\le \varphi(aL(w, x_{2n-1}) + (1-a)N(w, x_{2n-1})) \text{ for all } n \in \mathbb{N}.$

Making $n \to \infty$ in the above inequality, we obtain

$$D(z, Sw) \le \varphi(aD(z, Sw)_+ + (1-a)D(z, Sw)_+) = \varphi(D(z, Sw)_+).$$

By the definition of φ , we have $\varphi(t_+) < t$ for all $t \in (0, \infty)$, it follows that D(z, Sw) = 0. Hence $Iw \in Sw$ and so

$$F = \{Ix : x \in X \text{ and } Ix \in Sx\} \neq \phi.$$

Similarly

$$G = \{Jx : x \in X \text{ and } Jx \in Tx\} \neq \phi$$
.

We now suppose that $Sx \subseteq J(X)$ and $Tx \subseteq I(X)$ for all $x \in X$. Pick $u \in X$ such that $Iu \in Su$. Then since $Su \subseteq J(X)$, there exists a $v \in X$ such that Jv = Iu. By the inequality (1), we have

$$D(Jv, Tv) \le H(Su, Tv)$$

$$\le \varphi(aD(Jv, Tv) + (1 - a)D(Jv, Tv))$$

$$< D(Jv, Tv).$$

Hence $Jv \in Tv$. It follows that $F \subseteq G$. Similarly we can prove that $G \subseteq F$. Hence F = G. Further, suppose that I(X) and J(X) are closed. Choose a sequence $\{u_n\}$ in X such that $Iu_n \in Su_n$ for all $n \in \mathbb{N}$ and $\{Iu_n\}$ is convergent. Since I(X) is closed, it follows that $\lim_n Iu_n = Iu$ for some $u \in X$. Since $Iu_n \in Su_n \subseteq J(X)$ for all $n \in \mathbb{N}$ and J(X) is closed, it follows that $Iu \in J(X)$. So there exists a $v \in X$ such that Iu = Jv. Again by (1), we have

$$D(Iu_n, Tv) \le H(Su_n, Tv)$$

$$\le \varphi(aL(u_n, v) + (1 - a)N(u_n, v)).$$

Making $n \to \infty$ in the above inequality, we obtain

$$D(Jv,Tv) \le \varphi(aD(Jv,Tv)_+ + [(1-a)/\sqrt{2}]D(Jv,Tv)_+).$$

Hence $Jv \in Tv$. By (1), we have

$$D(Iu, Su) \le H(Su, Tv)$$

$$\le \varphi(aD(Iu, Su) + [(1-a)/\sqrt{2}]D(Iu, Su)).$$

Hence $Iu \in Su$. It follows that G is closed. #

Remark 2 Theorem 1 of Naidu [7] and Theorem 9 of Sastry, Naidu and Prasad [11] follow as direct corollaries of Theorem 1.

Remark 3 For a=1, Example 10 of Sastry, Naidu and Prasad [11] shows that Theorem 1 fails if $\frac{1}{2}[D(Ix,Ty)+D(Jy,Sx)]$ is replaced by $\max\{D(Ix,Ty),D(Jy,Sx)\}$ even if S=T, $I=J=i_d$ (the identity mapping on X) and φ is continuous on \mathbb{R}^+ .

Remark 4 If (1) is assumed to be valid only for those $x, y \in X$ for which $Ix \neq Jy$, $Ix \notin Sx$ and $Jy \notin Ty$ instead of all $x, y \in X$, then we conclude from Theorem 1 that: either $F = \{Ix : x \in X \text{ and } Ix \in Sx\} \neq \phi \text{ or } G = \{Jx : x \in X \text{ and } Jx \in Tx\} \neq \phi.$

The following theorem presents a correct version of Theorem A.

Theorem 2 Let (X,d) be a complete metric space, and let $I, J: X \to X$, $S, T: X \to CL(X)$ be such that $S(X) \subseteq J(X)$ and $T(X) \subseteq I(X)$. If there exists a $\varphi \in \Gamma$ such that for all $x, y \in X$, (1) holds, then there is a sequence $\{x_n\}$ in X such that $Ix_{2n} \to z$ and $Jx_{2n-1} \to z$ for some $z \in X$ and $D(Ix_{2n}, Sx_{2n}) \to 0$, $D(Jx_{2n-1}, Tx_{2n-1}) \to 0$ as $n \to \infty$. Moreover,

- (i) if $Iz \in Sz$ and $d(Iz, z) \leq D(z, Sx)$ for all $x \in X$, then $z \in Sz$, and if $d(Iz, z) \leq D(z, Tx)$ for all $x \in X$, J and T are weakly s-commuting, then $Jz \in Tz$.
- (ii) if $Jz \in Tz$ and $d(Jz, z) \leq D(z, Tx)$ for all $x \in X$, then $z \in Tz$; and if $d(Jz, z) \leq D(z, Sx)$ for all $x \in X$, I and S are weakly s-commuting, then $Iz \in Sz$.
- (iii) if Iz = z and J and T are weakly s-commuting, then $z \in Sz$ and $Jz \in Tz$.
- (iv) if Jz = z and I and S are weakly s-commuting, then $z \in Tz$ and $Iz \in Sz$.

Proof: By replacing A with X throughout in the proof of Theorem 1, we can construct a sequence $\{x_n\}_{n=0}^{\infty} \subset X$ such that $Jx_{2n+1} \in Sx_{2n}$, $Ix_{2n+2} \in Tx_{2n+1}$ $(n=0,1,2,\ldots)$ and the sequences $\{Ix_{2n}\}$, $\{Jx_{2n-1}\}$ are Cauchy sequences which converge to the same limit $z \in X$ and $D(Ix_{2n}, Sx_{2n}) \to 0$, $D(Jx_{2n-1}, Tx_{2n-1}) \to 0$ as $n \to \infty$. It then follows that $D(z, Sx_{2n}) \to 0$ and $D(z, Tx_{2n-1}) \to 0$ as $n \to \infty$.

(i) Suppose $Iz \in Sz$, since $d(Iz, z) \leq D(z, Sz)$ and J and T are weakly s-commuting. Choose $m \in \mathbb{N}$ such that

$$\sup\{d(Ix_{2n},z),\ d(Jx_{2n-1},z),\ D(z,Sx_{2n}),\ D(z,Tx_{2n-1}):n\geq m\}< s.$$

Then for $n \geq m$ we have

$$D(z, Sz) \leq d(z, Ix_{2n}) + D(Ix_{2n}, Sz)$$

$$\leq d(z, Ix_{2n}) + H(Sz, Tx_{2n-1})$$

$$\leq d(z, Ix_{2n}) + \varphi(aL(z, x_{2n-1}) + (1 - a)N(z, x_{2n-1})),$$
(2)

where

$$\begin{split} L(z,x_{2n-1}) &= \max\{d(Iz,Jx_{2n-1}),\ D(Iz,Sz),\ D(Jx_{2n-1},Tx_{2n-1})\,,\\ &\frac{1}{2}[D(Iz,Tx_{2n-1}) + D(Jx_{2n-1},Sz)]\}\\ &\leq \max\{d(Iz,Jx_{2n-1}),\ 0,\ d(x_{2n-1},Tx_{2n-1})\,,\\ &\frac{1}{2}[d(Iz,z) + D(z,Tx_{2n-1}),\ d(Jx_{2n-1},z) + D(z,Tx_{2n-1})]\}\\ &\rightarrow \max\{d(Iz,z),\ 0,\ 0,\ \frac{1}{2}d(Iz,z)\}\ \text{as}\ n \rightarrow \infty\,, \end{split}$$

i.e.

$$\lim_{n} L(z, x_{2n-1}) \le D(z, Sz);$$

and

$$N(z, x_{2n-1}) \le [\max\{d^2(Iz, z), 0, 0, 0, 0\}]^{1/2} \text{ as } n \to \infty$$

i.e.

$$\lim_{n} N(z, x_{2n-1}) \le D(z, Sz).$$

Hence making $n \to \infty$ in (2), we obtain

$$D(z, Sz) \le 0 + \varphi(aD(z, Sz) + (1 - a)D(z, Sz)),$$

that is, D(z, Sz) = 0 and so $z \in Sz$. Choose $z' \in X$ such that Jz' = z, then

$$D(z, Tz') \le H(Sz, Tz')$$

$$\le \varphi(aL(z, z') + (1 - a)N(z, z')),$$
(3)

where

$$L(z, z') = \max\{d(Iz, Jz'), D(Iz, Sz), D(Jz', Tz'),$$

$$\frac{1}{2}[D(Iz, Tz') + D(Jz', Sz)]\}$$

$$\leq \max\{d(Iz, z), D(Iz, Sz), D(z, Tz'),$$

$$\frac{1}{2}[d(Iz, z) + D(z, Tz') + D(z, Sz)]\}$$

$$= \max\{d(Iz, z), D(z, Tz')\} \leq D(z, Tz')$$

and

$$N(z, z') \le \left[\max \{ d^2(Iz, z), 0, 0, 0, \frac{1}{2} D(z, Tz') [d(Iz, z) + d(z, Tz')] \} \right]^{1/2}$$

 $\le D(z, Tz')$.

Hence by (3)

$$D(z,Tz') \le \varphi(D(z,Tz'))$$
,

and so D(z, Tz') = 0; i.e., $Jz' = z \in Tz'$.

Since J and T are weakly s-commuting and $Jz' \in Tz'$, we have

$$JJz' \in JTz' \subset TJz'$$
,

which implies that $Jz \in Tz$.

- (ii) The proof is analogous to the proof of (i) due to symmetry.
- (iii) Suppose Iz = z and J and T are weakly s-commuting. Choose m as in (i), then for all $n \ge m$

$$D(z, Sz) \leq d(z, Ix_{2n}) + D(Ix_{2n}, Sz)$$

$$\leq d(z, Ix_{2n}) + H(Sz, Tx_{2n-1})$$

$$\leq d(z, Ix_{2n}) + \varphi(aL(z, x_{2n-1}) + (1 - a)N(z, x_{2n-1})),$$
(4)

where

$$L(z, x_{2n-1}) \to \max\{0, D(z, Sz), 0, \frac{1}{2}D(z, Sz)\} \text{ as } n \to \infty,$$

i.e.,

$$\lim_{n} L(z, x_{2n-1}) = D(z, Sz)$$

and

$$N(z, x_{2n-1}) \to [\max\{0, 0, 0, \frac{1}{2}D^2(z, Sz), 0\}]^{1/2} \text{ as } n \to \infty$$

i.e.,

$$\lim_{n} N(z, x_{2n-1}) = D(z, Sz).$$

Making $n \to \infty$ in (4), we obtain

$$D(z, Sz) \le 0 + \varphi(aD(z, Sz) + [(1 - a)/\sqrt{2}]D(z, Sz))$$

 $< D(z, Sz),$

which implies D(z, Sz) = 0 and so $z \in Sz$. Choose $z' \in X$ such that Jz' = z, then

$$D(z, Tz') \le H(Sz, Tz')$$

$$\le \varphi(aL(z, z') + (1 - a)N(z, z')),$$

where

$$L(z, z') = \max\{d(Iz, Jz'), D(Iz, Sz), D(Jz', Tz'), \frac{1}{2}[D(Iz, Tz') + D(Jz, Sz)]\}$$

= $D(z, Tz')$

and

$$N(z,z') = [\max\{d^2(Iz,Jz'), D(Iz,Sz)D(Jz',Tz'), D(Iz,Tz')D(Jz',Sz), \frac{1}{2}D(Iz,Sz)D(Jz',Sz), \frac{1}{2}D(Jz',Tz')D(Iz,Tz')\}]^{1/2}$$
$$= (1/\sqrt{2})D(z,Tz').$$

Hence

$$D(z, Tz') \le \varphi(aD(z, Tz') + [(1-a)/\sqrt{2}]D(z, Tz'))$$

< $D(z, Tz')$.

It follows that D(z,Tz')=0 and so $Jz'=z\in Tz'$. Since J and T are weakly s-commuting $Jz'\in Tz'$, we have $JJz'\in JTz'$. Hence $Jz\in Tz$.

(iv) Due to symmetry, the proof is analogous to the proof of (iii).#

Theorem 3 Suppose that $\lim_{t\to+\infty}(t-\varphi(t))=+\infty$, there are sequences $\{x_n\}_{n=0}^{\infty}$ and $\{y_n\}_{n=0}^{\infty}$ in X such that $\{Ix_n,Ix_{n+1}\}\subset Sx_n$ and $\{Jy_n,Jy_{n+1}\}\subset Ty_n$ $(n=0,1,2,\ldots),$ and

$$H(Sx, Ty) \le \varphi(aL_1(x, y) + (1 - a)N_1(x, y))$$
 (5)

for all $x, y \in X$ and $a \in [0, 1]$, where

$$L_1(x,y) = \max\{D(Ix,Sx), D(Jy,Ty), \frac{1}{2}[D(Ix,Ty) + D(Jy,Sx)]\}$$

and

$$N_1(x,y) = [\max\{D(Ix,Sx)D(Jy,Ty), D(Ix,Ty)D(Jy,Sx), \frac{1}{2}D(Ix,Sx)D(Jy,Sx), \frac{1}{2}D(Jy,Ty)D(Ix,Ty)\}]^{1/2}.$$

Then:

(i) the sequences $\{Sx_n\}$ and $\{Ty_n\}$ converge in CL(X) to the same limit A for some $A \in CL(X)$.

- (ii) $F = \{Ix : x \in X \text{ and } Ix \in Sx\} = I(X) \cap A, \text{ and } G = \{Jy : y \in y \in X \text{ and } Jy \in Ty\} = J(X) \cap A.$
- (iii) Sx = A whenever $Ix \in Sx$ and Ty = A whenever $Jy \in Ty$.

Proof: For a fixed $n \in \mathbb{N}$, let

$$\beta_n = \sup\{H(Sx_i, Ty_j) : 1 \le i, j \le n\}.$$

Let $\delta = \max\{H(Ix_0, Sx_1), H(Ty_0, Ty_1)\}.$

For $i, j \in \mathbb{N}$, the inequality (5) yields $H(Sx_i, Ty_j) \leq \varphi(aL_1(x_i, y_j)) + (1-a)N_1(x_i, y_j)$, where

$$L_1(x_i, y_j) = \max\{D(Ix_i, Sx_j), D(Jy_j, Ty_j), \frac{1}{2}[D(Ix_i, Ty_j) + D(Jy_j, Sx_i)]\}$$

$$\leq \frac{1}{2}[H(Sx_{i-1}, Ty_j) + H(Ty_{j-1}, Sx_i)]$$

$$\leq \max\{H(Sx_i, Ty_j), H(Ty_{j-1}, Sx_i)\}$$

and

$$N_1(x_i, y_j) \le [H(Sx_{i-1}, Ty_j)H(Ty_{j-1}, Sx_1)]^{1/2}$$

 $< \max\{H(Sx_{i-1}, Ty_j), H(Ty_{j-1}, Sx_i)\}.$

Hence for $i, j \in \mathbb{N}$, we have

$$H(Sx_i, Ty_j) \le \varphi(\max\{H(Sx_{i-1}, Ty_j), H(Ty_{j-1}, Sx_i)\}).$$
 (6)

It follows that $\beta_n \leq \varphi(\beta_n + \delta)$ for all $n = 1, 2, 3, \ldots$. Hence $(\beta_n + \delta) - \varphi(\beta_n + \delta) \leq \delta$ for all $n = 1, 2, 3, \ldots$. Since $t - \varphi(t) \to +\infty$ as $t \to +\infty$, it follows that $\{\beta_n\}$ is bounded. Hence $\sup\{H(Sx_i, Ty_j) : i, j \in \mathbb{N}\}$ is finite.

For $n \in \mathbb{N}$,

let
$$\nu_n = \sup\{H(Sx_i, Ty_j) : i, j \ge n\}$$
.

Then the inequality (6) yields $\nu_n \leq (\nu_{n-1})$ for all $n \in \mathbb{N}$. It follows that $\nu_n \leq \varphi^n(\nu_0)$ for all $n \in \mathbb{N}$. Since $\varphi(t+) < t$ for all $t \in (0, \infty)$ and $\varphi(0) = 0$, it follows that $\varphi^n(\nu_0) \to 0$ as $n \to \infty$. So $\{\nu_n\}$ converges to zero. Again for all $i, j \in \mathbb{N}$, we have

$$H(Sx_i, Sx_j) \le H(Sx_i, Ty_i) + H(Ty_i, Sx_j)$$

Thus for all $i, j \geq n$ and using the fact that $\nu_n \to 0$ as $n \to \infty$ we have

$$H(Sx_i, Sx_j) \le z\nu_n \to o \text{ as } i, j \to +\infty.$$

It follows that $\{Sx_n\}$ is Cauchy. Since (CL(X), H) is complete, $\{Sx_n\}$ is convergent in CL(X). We can similarly show that $\{Ty_n\}$ is also convergent in CL(X). Since $H(Sx_n, Ty_n) \to 0$ as $n \to \infty$, it follows that the sequences $\{Sx_n\}$ and $\{Ty_n\}$ converge in CL(X) to the same limit A for some $A \in CL(X)$.

Suppose $u \in X$ such that $Iu \in A$. Then from the inequality (5) it follows that, for all $n \in \mathbb{N}$,

$$H(Su, Ty_n) \le \varphi(aL_1(u, y_n) + (1 - a)N_1(u, y_n)),$$
 (7)

where

$$L_1(u, y_n) \le \max\{H(A, Su), \frac{1}{2}[H(A, Ty_n) + H(Ty_n, Su)]\}$$

 $\to H(A, Su)_+ \text{ as } n \to \infty$

and

$$N_1(u, y_n) \le [\max\{H(A, Ty_n)H(Ty_n, Su), \frac{1}{2}H(A, Su)H(Ty_n, Su)\}]^{1/2}$$

 $\to (1/\sqrt{2})H(A, Su)_+ \text{ as } n \to \infty.$

Hence passing over to limit as $n \to \infty$ in (7), we obtain

$$H(Su, A) \le \varphi(aH(Su, A)_+ + [(1-a)/\sqrt{2}]H(Su, A)_+)$$

$$\le \varphi(H(Su, A)_+).$$

Since $\varphi(t_+) < t$ for all $t \in (0, \infty)$, it follows that H(Su, A) = 0. Hence Su = A. We now suppose that $v \in A$ such that $Iv \in Sv$. Then from the inequality (5), for all $n \in \mathbb{N}$, we have

$$H(Sv, Ty_n) \leq \varphi(a \cdot \max\{D(Iv, Sv), D(Jy_n, Ty_n), \frac{1}{2}[D(Iv, Ty_n) + D(Jy_n, Sv)]\}$$

$$+ (1 - a) \cdot [\max\{D(Iv, Sv)D(Jy_n, Ty_n), D(Iv, Ty_n)D(Jy_n, Sv), \frac{1}{2}D(Iv, Sv)D(Jy, Sv), \frac{1}{2}D(Jy_n, Ty_n)D(Iv, Ty_n)\}]^{1/2})$$

$$\leq \varphi(a \cdot H(Sv, Ty_n) + (1 - a) \cdot H(Sv, Ty_n))$$

$$= \varphi(H(Sv, Ty_n)).$$

Passing over to limit as $n \to \infty$ in the above inequality, we obtain $H(Sv, A) \le \varphi(A(Sv, A)_+)$. Hence H(Sv, A) = 0. It follows that Sv = A. Thus we have shown that $F = I(X) \cap A$ and Sx = A whenever $Ix \in Sx$. We can similarly show that $G = J(X) \cap A$ and Ty = A whenever $Jy \in Ty$.#

Remark 5 Theorem 3 improves Theorem 2 of Naidu [7].

Corollary 2 Suppose that $\lim_{t\to +\infty} [t-\varphi(t)] = +\infty$, S(X) and T(X) are closed subsets of X, $Sx \subseteq I(X)$ and $Gx \subseteq J(X)$ for all $x \in X$ and the inequality (5) holds for all $x, y \in X$, $a \in [0,1]$. Then:

- (i) $\{Ix: x \in X \text{ and } Ix \in Sx\} = \{Jx: x \in X \text{ and } Jx \in Tx\} = A \text{ for some } A \in CL(X),$
- (ii) Sx = A = Ty for all $x \in I^{-1}(A)$ and for all $y \in J^{-1}(A)$.

Proof: The conclusion follows immediately from Theorem 3.#

Theorem 4 Let (X,d) be a complete metric space, and let $I, J: X \to X$ and $S, T: X \to CL(X)$. Suppose that $\lim_{t \to +\infty} (t - \varphi(t)) = +\infty$, there are sequences $\{x_n\}_{n=0}^{\infty}$ and $\{y_n\}_{n=0}$ in X such that $\{Ix_n, Ix_{n+1}\} \subset Sx_n$ and $\{Jy_n, Jy_{n+1}\} \subset Ty_n$ (n = 0, 1, 2, ...), and (5) holds for all $x, y \in X$. If I, J, S and T are continuous, I, S and J, T are compatible mappings, then there exists a point $t \in X$ such that $It \in St$ and $Jt \in Tt$, i.e., t is a coincidence point of I and S and J and T.

Proof: Following the proof technique of Theorem 3, we can show that the sequences $\{Sx_n\}$ and $\{Ty_n\}$ converge in CL(X) to the same limit A for some A in CL(X). By (5), for $m \ge n$ $(m, n \in \mathbb{N})$, we have

$$d(Ix_{n}, Jy_{m}) \leq D(Ix_{n}, Sx_{n}) + D(Jy_{m}, Sx_{n})$$

$$\leq D(Ix_{n}, Sx_{n}) + H(Sx_{n}, Ty_{m})$$

$$\leq D(Ix_{n}, Sx_{n}) + \varphi(aL_{1}(x_{n}, y_{m}) + (1 - a)N_{1}(x_{n}, y_{m})),$$
(8)

where

$$L_1(x_n, y_m) = \max\{D(Ix_n, Sx_n), D(Jy_m, Ty_m), \frac{1}{2}[D(Ix_n, Ty_n) + D(Jy_m, Sx_n)]\}$$

$$< H(Sx_n, Ty_m)$$

and

$$N_{1}(x_{n}, y_{m}) = \left[\max \{ D(Ix_{n}, Sx_{n}) D(Jy_{m}, Ty_{m}), D(Ix_{n}, Ty_{m}) D(Jy_{m}, Sx_{n}), \frac{1}{2} D(Ix_{n}, Sx_{n}) D(Jy_{m}, Sx_{n}), \frac{1}{2} D(Jy_{m}, Ty_{n}) D(Ix_{n}, Ty_{m}) \} \right]^{1/2}$$

$$< H(Sx_{n}, Ty_{m}).$$

Making $n \to \infty$ in (8), we obtain

$$\lim_{n} d(Ix_n, Jy_m) \le 0 + \varphi(0).$$

It follows that $Ix_n, Jy_n \to t$ as $n \to \infty$ for some $t \in X$, since X is complete, $d(Ix_n, Ix_m) \le d(Ix_n, Jy_m) + d(Jy_m, Ix_n)$ and $d(Jy_n, Jy_m) \le d(Jy_n, Ix_m) + d(Ix_m, Jy_m)$. Again since $D(t, A) \le D(t, Sx_n) + H(Sx_n, A) \to 0$ as $n \to \infty$, it follows that $t \in A$. By continuity of I and S, and since S and I are compatible, we have

$$D(It, St) = \lim_{n} D(It, SIx_n) \le \lim_{n} H(IA, SIx_n)$$
$$= \lim_{n} H(ISx_n, SIx_n) = 0$$

Hence $It \in St$. Due to symmetry, we can similarly show that $Jt \in Tt.\#$

By applying the same arguments as in the proof of Theorem 3, we can easily prove the following theorems:

Theorem 5 Let (X,d) be a complete metric space, and $I, J: X \to X$ and $S, T: X \to CL(X)$. Suppose that $\lim_{t \to +\infty} (t - \varphi(t)) = +\infty$, there are sequences $\{x_n\}_{n=0}^{\infty}$ and $\{y_n\}_{n=0}^{\infty}$ in X such that $Ix_{n+1} \in Sx_n$ and $Jy_{n+1} \in Ty_n$ (n = 0, 1, 2, ...) and

$$H(Sx, Ty) \le \varphi\left(\frac{a}{2}[D(Ix, Ty) + D(Jy, Sx)] + (1 - a)[D(Ix, Ty)D(Jy, Sx)]^{1/2}\right)$$
 (5')

for all $x, y \in X$ and $a \in [0,1]$. Then the sequences $\{Sx_n\}$, $\{Ty_n\}$ converge in CL(X) to the same limit A for some $A \in CL(X)$, $\{Ix | \in X \text{ and } Ix \in Sx\} = I(X) \cap A$ and $\{Jy | y \in X \text{ and } Jy \in Ty\} = J(X) \cap A$. Further, Sx = A whenever $Ix \in Sx$ and Ty = A whenever $Jy \in Ty$.

Theorem 6 Let (X, d) be a complete metric space, and let $I, J: X \to X$ and $S, T: X \to CL(X)$. Suppose that $\lim_{t \to +\infty} (t - \varphi(t)) = +\infty$, there are sequences $\{x_n\}_{n=0}^{\infty}$ and $\{y_n\}_{n=0}^{\infty}$ in X such that $Ix_{n+1} \in Sx_n$ and $Jy_{n+1} \in Ty_n$ (n = 0, 1, 2, ...) and (5') holds for all $x, y \in X$. If I, J, S and T are continuous, I, S and J, T are compatible mappings. Then there exists a point $t \in X$ such that $It \in St$ and $Jt \in Tt$; i.e., t is a coincidence point of I and S and J and T.

Remark 6 In view of Example 10 of Sastry, Naidu and Prasad [11], the condition $\lim_{t\to\infty}(t-\varphi(t)) = +\infty$ in Theorems 3-6 cannot be dispensed with even if $\sum_{n=1}^{\infty} \varphi^n(t) < +\infty$ for all $t \in \mathbb{R}^+$ with S = T and $I = J = i_d$, the identity mapping on X.

Remark 7 It is not yet known whether the continuity of all four maps I, J, S and T in Theorems 4 and 6 are necessary or not.

Remark 8 Condition (2) of Naidu [7] is implied by condition (5') of Theorem 5, and hence Theorem 2 of Naidu [7] is a direct consequence of Theorem 5.

Acknowledgements. The first author thanks the University of Transkei for its hospitality during his visit (April – June, 2000). The research of the second author is supported by the National Research Foundation Grant # 2039007.

References

- [1] Chang, T. H.: Common fixed point theorems for multi-valued mappings. Math. Japon. 41, 311-320 (1995)
- [2] Corley, H. W.: Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120, 528-532 (1980)
- [3] Hadzic, O., and Gajec, Lj.: Coincidence points for set-valued mappings in convex metric spaces. Univ. u Novom Sadu Zb. Rad. Prirod-Mat. Fak. Ser. 16 (1), 13-25 (1968)
- [4] Kaneko, H., and Sessa, S.: Fixed point theorems for compatible multi-valued and single-valued mappings. Internat. J. Math. & Math. Sci. 12 (2), 257-262 (1989)
- [5] Nadler, Jr., S.B.: Multivalued contraction mappings. Pacific J. Math. 30, 475-488 (1969)
- [6] Nadler, Jr., S.B.: Hyperspaces of sets. Marcel Dekker, New York 1978
- [7] Naidu, S. V. R.: Coincidence points for multi-maps on a metric space. Math. Japon. 37, 179-187 (1992)
- [8] Naimpally, S. A., Singh, S. L., and Whitfield, J. H. M.: Coincidence theorems for hybrid contractions. Math. Nachr. 127, 177-180 (1986)
- [9] Pant, R. P.: Common fixed point theorems for contractive maps. J. Math. Anal. Appl. 226, 251-258 (1998)
- [10] Pathak, H.K.: Fixed point theorems for weak compatible multi-valued and single-valued mappings. Acta Math. Hungar. 67, 69-78 (1995)
- [11] Sastry, K. P. R., Naidu, S. V. R., and Prasad, J. R.: Common fixed points for multimaps in a metric space. Nonlinear Anal. TMA 13 (3), 221-229 (1989)
- [12] Singh, S. L., and Mishra, S. N.: Nonlinear hybrid contractions. J. Natur. Phys. Sci. 5-8, 191-206 (1991-1994)
- [13] Singh, S. L., and Mishra, S. N.: Coincidence points, hybrid fixed and stationary points of orbitally weakly dissipative maps. Math. Japon. 39, 451-459 (1994)
- [14] Singh, S. L., and Mishra, S. N.: Some remarks on coincidences and fixed points.
 C. R. Math. Rep. Acd. Sci. Canada 18, 66-70 (1996)

- [15] Singh, S. L., and Mishra, S. N.: On general hybrid contractions. J. Austral. Math. Soc. (Series A) 66, 224-254 (1999)
- [16] Singh, S.L., and Mishra, S.N.: Coincidence and fixed points of nonself hybrid contractions. J. Math. Anal. Appl. 256 (2001)

received: March 26, 2003

Authors:

Hermant K. Pathak Department of Mathematics Kalyan Mahavidyalaya Bhilai Nagar 490006 India Swami N. Mishra
Department of Mathematics
University of Transkei
Umtata 5100
South Africa

e-mail: mishra@getafix.utr.ac.za