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Coincidence Points for Hybrid Mappings

1 Introduction

There have been several extensions of known fixed point theorems in which a mapping takes
each point of a metric space into a closed (resp. closed and bounded) subset of the same
(cf. [3,4,5, 7,10, 11]). Hybrid fixed point theory for nonlinear mappings is relatively a recent
development within the ambit of fixed point theory of point to set mappings (multivalued
mappings) with a wide range of applications (see, for instance, [2, 8, 12, 13, 14, 15, 16]).
Recently, in an attempt to improve /generalize certain results of Naidu, Sastry and Prasad
[11] and Kaneko [4] and others, Chang [1] obtained some fixed point theorems for a hybrid

of multivalued and singlevalued mappings.

However, his main theorem (see Theorem A below) admits a counter example. Our main
purpose in this paper is to present a correct version of this result which, in turn, generalizes

several known results in this direction.

Let (X, d) be a metric space. We shall use the following notations and definitions:

CL(X)
CB(X)={A: Ais anonempty closed and bounded subset of X},
N(e,A) ={z € X : d(z,a) < e for some a € A, ¢ >0}, A€ CL(X),

Eyp={e>0:ACN(¢,B), BC N(e,A)}, A, B e CL(X),
inf £/ if B
H(A, B) = inf Bap if Eap#¢
o0 ifEA,B:¢7

D(z,A) = inf{d(x,a):a € A}

{A: A is a nonempty closed subset of X},

for each A, B € CL(X), and for each x € X.

H is called the generalized Hausdorff metric for C'L(X) induced by d. If H(A, B) is defined
for A, B € CB(X), then H is called the Hausdorff metric induced by d (cf. Nadler [6]).
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Definition 1 ([4]) Mappings S : X — CB(X) and I : X — X are called compatible
if ISx € CB(X) for all x € X and H(SIx,,1Sz,) — 0, as n — oo whenever {x,} is a
sequence in X such that Sz, — M € CB(X) and Iz, —t € M asn — oc.

Following Singh and Mishra [16] (see also [3], [4] and [9]), we introduce the notion of R-

sequentially commuting mappings for a hybrid pair of single-valued and multi-valued maps.

Definition 2 Let K be a nonempty subset of a metric space X and I : K — X and
S : K — CL(X) be respectively single-valued and multi-valued mappings. Then I and
S will be called R-sequentially commuting on K if for a given sequence {x,} C K with
lim, Ix, € K, there exists R > 0 such that

lim, D(1y, SIz,) < Rlim, D(Iz,, Sz,) (%)
for each y € K Nlim, Sz,.

If z,, = z(z € K) for all n € N (naturals), Iz € K and (%) holds for some R > 0, then I and
S have been defined to be pointwise R-weakly commuting at © € K (see [16, Def. 1]). If it
holds for all x € K, then I and S are called R-weakly commuting on K. Further, if R = 1,
we get the definition of weak commutativity of I and S on K due to Hadzic and Gajec [3].
If 1,S: X — X, then as mentioned in [16], we recover the definitions of pointwise R-weak
commutativity and R-commutativity of single-valued self-maps due to Pant [9] and all the

remarks as given in [16] apply.
We now introduce the following.

Definition 3 Maps I : K — X and S : K — CL(X) are to be called sequentially

commuting (or s-commuting) at a point x € K if
I(lim, Sz,) C Slx (xx)
whenever there exists a sequence {x,} C K such that lim, Iz, = x € lim, Sz, € CL(X).

If x, = x for all n € N, then the maps [ and S will be said to be weakly s-commuting at a
point x € K.

The following example shows that s-commutativity of I and S is indeed more general than
their R-sequential commutativity (and hence their pointwise R-commutativity and compat-
ibility).
Example 1 Let X = [0,00) with the usual metric d and define / : X — X and S : X —
CL(X) by

0, ifxe]0,1]

Ix = Sz = [x,00) .
xz, ifze(l,00),
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Then for the sequence {z,} C X defined by z,, = 1 + %, we have 1 = lim,, [z, € [1,00) =
lim, Sz, € CL(X) and I(lim, Sz,) = {0} U (1,00) C [0,00) = SI1. Therefore, I and S are

s-commuting but (x) is not satisfied for y =1 € [1,00) = lim,, Sz,.

Definition 4 ([1]) Let R* denote the set of all non-negative real numbers, and let A C
R*. A function ¢ : A — R* is upper semicontinuous from the right if hm+ sup p(z) < ¢(u)

for all u € A.
A function ¢ : RY — R* is said to satisfy (P)-conditions if:

(i) ¢ is upper semi-continuous from the right on (0,00) with ¢(t) <t for all t > 0, and

(i) there exists a real number s > 0 such that ¢ is non-decreasing on (0, s] and > ¢"(t) <
n=1
oo for all t € (0,s]|, where o™ denotes the composition of ¢ with itself n times and

O(t) =t.

Let I" denote the set of all functions which satisfy the (®)-condition.

The following lemmas will be useful in proving our main results.

Lemma 1 Let (X,d) be a metric space and I,J : X — X and S,T : X — CL(X) be
such that S(X) C J(X) and T(X) C I[(X) and for all x,y € X,

H(Sx,Ty) < (al(r,y) + (1 —a)N(z,y)), (1)

where a € [0,1], ¢ : Rt — RT is upper semi-continuous from the right on (0,00) with
o(t) <t forallt >0, and
1
L(z,y) = max{d(Iz, Jy), D(Iz,5z), D(Jy,Ty), 5[D(Iz,Ty)+ D(Jy, Sz)l},
N(z,y) = [max{d*(Iz, Jy), D(Iz,Sx) D(Jy,Ty), D(Iz,Ty) D(Jy, Sz),
1 1
§D(Ix, Sz) D(Jy, Sz), §D(Jy,Ty)D(Ix,Ty)}]1/2.

Then inf D(Iz,Sz) =0 = inf D(Jz,Tx).

zeX zeX

Proof: Due to symmetry, we may suppose that

inf D([z,Sz) = inf D(Jz,Tx)=9.
zeX reX

If 6 > 0, then ¢(d) < 0. Since ¢ is upper semi-continuous from the right, there exists € > 0
such that ¢(t) < ¢ for all t € [0, + €). Pick g € X such that D(Ixzg, Szg) < 6 + €. By
S(X) C J(X), there exists 27 € X such that Jz; € Szg and d(Ixg, Jr1) < 0 + €.
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Consider
0 < D(Jxy,Txy) < H(Swzo, Tx1) < w(aLl(zg, 1) + (1 — a)N(xg,x1)),
where
L(zg, 1) = max{d(lzy, Jx1), D(Ix¢,Sx0), D(Jx1,T21), %[D(ng,Txl) + D(Jxq, Sxo)]}
= max{d([zo, Jz1), D(Jx1,Tx1)}

and

N(z¢,21) = [max{d*(Ixo, Jx1), D(Ixo,Sx0) D(J21,T71), D(I30, T21) D(J1, S0),
1

1
5D(Igco,saso) D(Jxy, Sxq), §D(Jx1,T:B1)D([xo,Txl)}]l/Q

< [max{d*(Ixzo, Jzy), duxmJxl)D(beTxl)}]l/z

< [max{d*(Ixo, Ja1), d(Ixo, Jx1)D(Jx1, Tar), D*(Jay, Tay)}]"?
[max{d?(Izg, J1), D2(Jx1,T$1)}]l/2

max{d(Izo, Jx1), D(Ja1,Tx1)}.

IN

Hence,
0 < D(Jzy,Txy) < p(max{d(lzg, Jr1), D(Jx1,Tx1)}),

which is a contradiction, since ¢(d(Ixo, Jx1)) < 0 and p(D(Jxy,Tz1)) < D(Jx1, Txy) prov-
ing that 6 = 0.

Lemma 2 Let X, I, J, S, T and ¢ be as defined Lemma 1 such that the inequality
(1) holds. If Ix € Sz for some x € X, then there exists a y € X such that [z = Jy and
Jy eTy.

Proof: Suppose Iz € Sz. Since S(X) C J(X), we may choose a y € X such that
Jy = Ix € Sx. By (1), we have

D(Jy,Ty) < H(Sz,Ty) < p(al(z,y) + (1 — a)N(z,y)),
where

L(z,y) = max{d(Ix, Jy), D(Iz,Sz), D(Ix,Sx), D(Jy,Ty), =[D(Ix,Ty) + D(Jy, Sz)|}

1
9
= D(Jy,Ty),
and
N(z,y) = [max{d*(Iz, Jy), D(Iz,Sz) D(Jy,Ty), D(Jz,Ty) D(Jy, Sz),
1 1
5Dz, S2) D(Jy, Sx), 5 D(Jy, Ty) D(Ix, Ty)}]"*

= (1/V2)D(Jy, Ty).
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Hence
D(Jy. Ty) < ¢(la + (1 —a)/V2)]D(Jy,Ty)) < D(Jy. Ty).
a contradiction, and so D(Jy, Ty) =0, i.e., Jy € Ty.

Remark 1 If the assumptions of Lemma 2 hold, then setting xs, = x and x9,_; = y for
all n € N and z = Iz we observe that Ixy, — z, Jro,1 — 2z, D(Ix9,, Sxa,) — 0 and

D(Jxop_1,Tx9,—1) — 0 as n — oc.

Lemma 3 ([11]) Let p:R* — R* be a non-decreasing function such that

(i) (t+) <t forallt >0 and > ¢"(t) < oo for allt > 0.

n=1

Then there exists a strictly increasing function ¢ : R™ — RT such that

(i) @(t) < (t) for allt >0 and i Y™ (t) < oo for allt > 0.
n=1

Lemma 4 ([1]) Ify €T, then there exists a function 1 : RY — R* such that:

(1) v is upper semi-continuous from the right with p(t) < (t) <t for allt > 0,

(i) 4 is strictly increasing with o(t) < ¥(t) fort € (0,s], s > 0 and Y Y"(t) < oo for
n=1
t € (0,s].

2 Main Results

The following theorem is the main result of Chang [1, Theorem 1].

Theorem A Let (X,d) be a complete metric space, let I, J be two functions from X into
X, and let S,T : X — CB(X) be two set-valued functions with SX C JX and TX C IX.

If there exists ¢ € T such that for all z,y in X,

H(Sz,Ty) < ¢ (max {d([:c, Jy), D(Iz,Sx), D(Jy,Ty), %[D([axTy) + D(Jy, S:c)]}) :
(C)

then there exists a sequence {x,} in X such that Izs, — z and Jx9,_1 — z for some z in
X and D(Izy,,Sx9,) — 0, D(Jxon_1,Tx2,_1) — 0 as n — oco. Moreover, if [z = z and T
and J are compatible, then z € Sz and Jz € Tz. That s, z is a common fized point of I

and S, and z 1s a coincidence point of J and T'.

The following example shows that Theorem A in its present form is incorrect.
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Example 2 Let X = [0, 1] with absolute value metric d and let ¢ : Rt — R be defined
by @(t) = t* for t € [0,1) and ¢(t) = 1/2 for t > 1. Define I = J : X — X and
S=T:X—->CB(X)bylr=1—z,2€ X and Sz ={0,1/3,2/3,1} for all z € X. Then
for each x,y € X and ¢ € I', we have

H(Sz,Ty) =0

< (max {d([a:, Jy), D(Ix,Sx), D(Jy,Ty), %[D(Ix,Ty) —i—D(Jy,Sx)]})

and for the sequence {x,} C X defined by x, = 1/n for all n € N, we have Sx,, Tz, —
{0,1/3,2/3,1} = M, Iz,,Jx, = 1 —1/n — 1 € M C X, D(Ix9,, Sxa,) — 0 and
D(Jxgy 1, Tx9,-1) — 0 as n — oo. Also, z = 1/2 € X is such that Iz = z and for
{z,} as defined above we have lim,, H(T'Jx,, JTz,) = 0, that is, T" and J are compatible.
Thus, all the conditions of Theorem A are satisfied. Evidently, z ¢ Sz, Jz ¢ TZ, that is,

z = 1/2 is neither a common fixed point of I and S nor it is a coincidence point of J and T

Before we present a corrected version of Theorem A, we have the following:

Theorem 1 Let (X,d) be a complete metric space, and let I,J : X — X, ST : X —
CL(X). Let A be a nonempty subset of X such that 1(A) and J(A) are closed subsets of
X, and Tx C I(A) and Sx C J(A) for all x € A and there exists a ¢ € I' such that for all
z,y € X, (1) holds. Then

(i) F={Iz:x€ X and [z € Sz} # ¢,
(i) G={Jz:x € X and Jx € Tz} # ¢,
(i) F=GifA=X.

Proof: Let ¢ be the function satisfying the conclusion of Lemma 4. By (1), we have for
any z,y € X, and Iz € Ty,
D(lz,Sz) < H(Ty, Sx)
< plal(z,y) + (1 —a)N(z,y)),
where

L(z,y) = max{d

—~

Ie,Jy), D(Iz,Sx), D(Jy,Ty), %[D(Ix,Ty)JrD(Jy,Sx)]}

< max{d

—~

Iz, Jy), D(Ix,Sx), [d(Jy, [x)+ D(1x,Ty)],
[D(Iz,Ty) + d(Ix,Jy) + D(Iz,Sx)|}

DO | —

= max{d([lz, Jy), D(Iz,Sz), %[d([x, Jy)+ D(Ilz,Sz)|}

—~

= max{d(l/z, Jy), D(Iz,Sx)}
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and

N(z,y) = [max{d*(Iz, Jy), D(Ix,Sz)D(Jy,Ty), D(Ix,Ty)D(Jy, Sz),

%D(IZU,S$) (Jy, Sz), 1 D(Jy, Ty)D(Iz, Ty)}">

= max{d*(Iz, Jy), D(Iz,Sx)D(Jy, Ty), ;(Ix,Sx)D(Jy, Sx)}1/?
< [max{d*(Ix, Jy), d(Ix, Jy)D(Iz, Sx),

;[d(]:v Ty) + D(Iz, S2)|D(Iz, Sx)}]"?

< [max{d*(Iz, Jy), d(Iz,Jy)D(Iz,Sx), D*(Ix,Sx)}]'/?
= [max{d*(Iz, Jy), D*(I1z,Sz)}]"/?
= max{d([z, Jy), D(Iz,Sz)}.

Since D(Ix,Sx) < p(aD(lz,Sz) + (1 — a)D(Ix,Sx)) is inadmissible for any a € [0, 1],
D(lz,Sz) < p(aD(Iz,Sz) + (1 — a)d(Ix, Jy)) is inadmissible for ¢ = 1 and D([z, Sz) <
wlad(Iz, Jy) + (1 —a)D(Ix, Sz)) is inadmissible for a = 0, it follows that

D(Iz,Sz) < (ad(Iz, Jy) + (1 —a)d(Iz, Jy))
= pld(lz, Jy)).

Similarly we can show that
D(Jy,Ty) < p(d(Iz, Jy)) if Jy € Sx.

Pick z¢ € A such that D(Ixg, Szg) < s. Since Sxy C J(A), there exists 1 € A such that
Jx1 € Szg. Then we have

D(Jxy,Txy) < H(Sxo, Tx1)
w(aL(zg, 1) + (1 — a)N(xg, x1))
w(aL(xg,z1) + (1 —a)N(zg, 1)) .

IN

IN

Since Tx; C I(A), we may choose 25 € A such that Izy € Tzy and
d(JZL‘l, [[L'Q) § ZZJ(CZL([L’(), ZL‘l) + (1 — a)N($0, 1‘1)) .
Therefore

D(IIQ,S(L’Q) S H(SIQ,TZEl)
< p(aL(zg,x1) + (1 —a)N(x9, 1))
< Y(aL(ry,x1) + (1 —a)N(za,x1)) .
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Hence we can choose 3 € A such that Jos € Szy and d(lza, Jx3) < ¢(al(xg, xq1)+
(1 — a)N(za,x1)). Proceeding in this way, we can construct a sequence {z,}52, in A such
that Jxo,11 € Swop, [xonie € Txo,r1 (n=0,1,2,...) and

d(Ixay, Jront1) < Y(aL(zan, xon—1) + (1 — a)N (T2, Tan—1)) ,
d(Jxon_1,1x9,) < Y(aL(zan—2,Ton—1) + (1 — a)N(z2n—2, Ton_1))

for all n € N (naturals). By the construction of {z,} we have

L(zan, xon—1) < max{d(Ixon, Jxon_1), d(Ixon, Jxoni1)},

N(zop, von—1) < max{d(Ixo,, Jro,_1), d(Ix9,, JT2n11)},
L(zon—2,Ton—1) < max{d(Ixon_o, JTon_1), d({z2,, JToni1)} and
N(zop_2,Ton_1) < max{d(Iza, 2, Jxon_1), d(Ixon_o, JT2,:1)} for all n € N.

Since v is strictly increasing on (0, s] and ¥(t) < t for t > 0, we have

d(Ix9n, Jrony1) < Y(ad(Ixay,, Jron_1) + (1 — a)d(Ixen, Jxo,_1))
W(d(Ixon, Jran—1))

< d(Jxop_1, [x9n)¥(ad(Ixen_o, JTon—1) + (1 — a)d(Ix9n—2, Jon—1))
Y(d(Izan—2, JTa,—1)) for all n € N.

Hence

d(](lfgn, J.I2n+1) S ¢2n(d(1$0, JIl)) and
d(Jxo,_1, I19,) < *" 1 (d(Ixg, Ja1)) for all n € N.

Set yon, = [29, and Y41 = Jo,4q for all n € NU{0}. Then

A(Yn, Yns1) < V" (d(yo,y1)) for all n € N.
Since Y ¢"™(t) < oo for t € (o,s] and d(yo,y1) = d(Ixg,Jz1) < s, it follows that

> d(Yn, Yns1) is convergent. Hence by the completeness of X, {y,} converges to z for
n=1
some z € X. Since {y9,} is a sequence in /(A) converging to z and I(A) is closed, it follows

that z € I(A). So there exists a w € X such that [w = z. Now by (1), we have

DIy, Sw) < H(Sw,Txa, 1)
< p(aL(w,re,—1) + (1 —a)N(w,z9,_1)) for all n € N.

Making n — oo in the above inequality, we obtain

D(z,Sw) < p(aD(z,Sw); + (1 —a)D(z, Sw);) = @(D(z, Sw)4) .
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By the definition of ¢, we have ¢(t,) < t for all ¢ € (0,00), it follows that D(z, Sw) = 0.

Hence fw € Sw and so

F={lr:xe X and Iz € Sz} # ¢.
Similarly

G={Jr:zeXand JreTaz} +#¢.

We now suppose that Sz C J(X) and Tx C I(X) for all x € X. Pick u € X such that
Iu € Su. Then since Su C J(X), there exists a v € X such that Jv = Tu. By the inequality

(1), we have

D(Jv,Tv) < H(Su,Tv)
< p(aD(Jv,Tv) + (1 —a)D(Jv,Tv))
< D(Jv,Tv).
Hence Jv € Tw. It follows that F' C . Similarly we can prove that G C F. Hence F = G.
Further, suppose that 7(X) and J(X) are closed. Choose a sequence {u,} in X such that
Tu, € Su, for all n € N and {[u,} is convergent. Since [(X) is closed, it follows that

lim,, [u,, = Iu for some v € X. Since Iu, € Su, C J(X) for all n € N and J(X) is closed, it
follows that Iu € J(X). So there exists a v € X such that [u = Jv. Again by (1), we have

D(Iu,,Tv) < H(Suy,,Tv)
< p(aL(tp,v) + (1 —a)N(uy,v)).

Making n — oo in the above inequality, we obtain
D(Jv,Tv) < p(aD(Jv,Tv)y + [(1 —a)/V2]D(Jv, Tv),).
Hence Jv € Tw. By (1), we have

D(Iu,Su) < H(Su,Tv)
< p(aD(Iu, Su) + [(1 — a)/V2]D(Iu, Su)) .

Hence Iu € Su. It follows that G is closed. #
Remark 2 Theorem 1 of Naidu [7] and Theorem 9 of Sastry, Naidu and Prasad [11] follow

as direct corollaries of Theorem 1.

Remark 3 For a = 1, Example 10 of Sastry, Naidu and Prasad [11] shows that Theorem 1
fails if $[D(Ix,Ty) + D(Jy, Sx)] is replaced by max{D([z,Ty), D(Jy, Sx)} even if S =T,
I = J =iy (the identity mapping on X) and ¢ is continuous on R*.
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Remark 4 If (1) is assumed to be valid only for those z,y € X for which Iz # Jy,
Iz ¢ Sx and Jy ¢ Ty instead of all x,y € X, then we conclude from Theorem 1 that: either
F={Iz:zeXand Iz e Sz} #porG={Jr:z € X and Jo € Tz} # ¢.

The following theorem presents a correct version of Theorem A.

Theorem 2 Let (X,d) be a complete metric space, and let I,J : X — X, ST : X —
CL(X) be such that S(X) C J(X) and T(X) C I(X). If there exists a ¢ € T' such that
for all x,y € X, (1) holds, then there is a sequence {x,} in X such that Izy, — 2z and
Jxon_1 — z for some z € X and D(lxo,, Sto,) — 0, D(Jx9,—1,Tx2,-1) — 0 as n — oo.

Moreover,

(i) if Iz € Sz and d(1z,2z) < D(z,Sx) for all x € X, then z € Sz, and if d(Iz,z) <
D(z,Tx) for allx € X, J and T are weakly s-commuting, then Jz € Tz.

(i) of Jz € Tz and d(Jz,z) < D(z,Tx) for all x € X, then z € Tz; and if d(Jz,z) <
D(z,Sz) for allz € X, I and S are weakly s-commuting, then Iz € Sz.

(ii) of [z =z and J and T are weakly s-commuting, then z € Sz and Jz € Tz.

(iv) if Jz =z and I and S are weakly s-commuting, then z € Tz and [z € Sz.

Proof: By replacing A with X throughout in the proof of Theorem 1, we can construct
a sequence {z,}°°, C X such that Jxo, 1 € Sxon, [Ton2 € Txonyy (n =0,1,2,...) and
the sequences {Ixs,}, {Jx9, 1} are Cauchy sequences which converge to the same limit
z € X and D(Ixg,, Sxe,) — 0, D(Jxop_1,Tx9,—1) — 0 as n — oo. It then follows that
D(z,Sxy,) — 0 and D(z,Tz2,-1) — 0 as n — oo.

(i) Suppose Iz € Sz, since d(Iz,z) < D(z,5z) and J and T are weakly s-commuting,.
Choose m € N such that

sup{d(Ixay, z), d(Jxan-1,2), D(z,S29,), D(z,Txep_1) :n>m} <s.
Then for n > m we have

D(z,S5%) (z,Ix2,) + D(Ix9y,, Sz) (2)

<d
< d(z,1x9,) + H(Sz,Txoy 1)
< d(z,Ixe,) + plal(z,x9,-1) + (1 —a)N(z,29,-1)),



Coincidence Points for Hybrid Mappings 7

where

L(z,x9,1) = max{d(Iz, Jxo,_1), D(Iz,5z2), D(Jxa,_1,Txon 1),
%[D(Iz, Taton 1) + D(Jwan 1, 52)]}

< max{d(Iz,Jra,_1), 0, d(xop_1,TT2n_1),
%[d([z, 2) 4 D(2, Twan 1), d(Jzan 1, 2) + D(z, Tran 1)]}

1
— max{d(/z,z), 0, 0, §d(Iz,z)} asn — 0o,

le.
lim,, L(z, w9, 1) < D(z,S52);
and
N(z, Zon_1) < [max{d*(Iz,z), 0, 0, 0, 0}]"/? as n — o
lLe.

lim, N(z,z2,-1) < D(z,5%).
Hence making n — oo in (2), we obtain
D(z,8z) <0+ p(aD(z,52) + (1 —a)D(z,Sz)),
that is, D(z,Sz) = 0 and so z € Sz. Choose 2’ € X such that Jz' = z, then

D(2,T2') < H(Sz,TZ2) (3)

<
< plal(z,2) + (1 —a)N(z 7)),
where

L(z,#) = max{d(Iz, =), D(Iz,Sz), D(JZ,T%),
%[D([z, T2) + D(J, S2)]}
< max{d(Iz,2), D(Iz,Sz), D(z,T%),
%[d([z, 2) + D(z,T+') + D(z,52)]}
= max{d(Iz,z), D(z,TZ)} < D(2,T%)
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and
1
N(z,2') < [max{d*(Iz,z),0,0,0, §D(Z,TZ/)[d(IZ,Z) + d(z,Tz’)]}]l/2
< D(2,TZ).

Hence by (3)
D(z,TZ) < o(D(z,T2")),

and so D(z,TZ') = 0;ie.,Jz/ =2 € T7.

Since J and T are weakly s-commuting and Jz' € T'2', we have
JJZ e JTZ CcTJ,

which implies that Jz € T'z.

The proof is analogous to the proof of (i) due to symmetry.

Suppose [z = z and J and T are weakly s-commuting. Choose m as in (i), then for

all n > m
D(z,52) < d(z,Ixa,) + D(Ix9,, S2) (4)

< d(z,1xo,) + H(Sz,Txon_1)

< d(z,Ira,) +wlal(z,29,-1) + (1 —a)N(z,22,-1)),
where .

L(z,x9,—1) — max{0, D(z,Sz), 0, §D(Z,SZ)} as n — 00,
ie.,
lim, L(z, x9n—1) = D(z,S2)
and .
N(z, x9p—1) — [max{0,0,0, §D2(z, S2),0}]Y? as n — oo

ie.,

lim,, N(z,z2,-1) = D(z,5%).

Making n — oo in (4), we obtain

D(z,5%) <0+ @(aD(z,Sz) +[(1 —a)/V2]D(z,5z))
< D(z,5%2),

which implies D(z,Sz) = 0 and so z € Sz. Choose 2z’ € X such that Jz' = z, then

D(z,T2") < H(Sz,TZ)
< ¢(aL(z,2') + (1 = a)N(z,2"),
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where

L(z,2') = max{d(Iz,JZ"), D(Iz,Sz), D(JZ' T, %[D([z,Tz’) + D(Jz,52)]}

= D(z,T?)
and
N(z,7) = [max{d*(Iz,J2"), D(I1z,S2)D(J2',T%"), D(1z,TZ')D(J?,Sz),
%D(]z, Sz)D(JZ, Sz), %D(Jz’,Tz’)D([z,Tz’)}]1/2
= (1/V2)D(z,T%).
Hence

D(z,TZ") < olaD(z,T") + [(1 —a)/V2]D(z,T%"))
< D(z2,TZ).

It follows that D(z,72') = 0 and so J2z' = z € TZ'. Since J and T are weakly
s-commuting Jz' € Tz, we have JJz' € JT'z'. Hence Jz € Tz.

(iv) Due to symmetry, the proof is analogous to the proof of (iii).#

Theorem 3 Suppose that tEeroo(t — @(t)) = 400, there are sequences {x,}5>, and
{yn}sy in X such that {Ix,, [x,11} C Sz, and {Jyn, JYns1} C Ty, (n = 0,1,2,...),

and
H(Sz,Ty) < p(aLi(z,y) + (1 —a)Ni(z,y)) (5)
for all x,y € X and a € [0, 1], where
Li(z,y) = max{D([z, Sz), D(Jy,Ty), %[D(Ix,Ty) + D(Jy, Sz)|}
and

N1($a y) = [maX{D([:p, Sx)D(‘]vay)7 D(vaTy)D(Jy7 Sl’),
1 1
5 D(Ix, 82)D(Jy, Sx), 5D(Jy, Ty)D(Iz, Ty)}]'"*.

Then:

(i) the sequences {Swz,} and {Ty,} converge in CL(X) to the same limit A for some
Ae CL(X).
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(i) F={lz:zx€ X and [z € Sz} =I(X)N A, and
G={Jy:yeyeX and Jye Ty} = J(X)NA.

(iii) Sz = A whenever Ix € Sz and Ty = A whenever Jy € Ty.

Proof: For a fixed n € N, let
B = sup{H (Sz;, Ty;) : 1 <i,j < n}.
Let 6 = max{H (Ixy, Sx1), H(Tyo, Ty1)}.
For 4,7 € N, the inequality (5) yields H(Sz;, Ty;) < ¢(aLi(z;,y;)) + (1 —a)Ni(z;, y5), where
Li(zi,y;) = max{D(lxz;, Sz;), D(Jy;, Ty;), %[DU%T%‘) + D(Jy;, Sz;)]}

1
< S[H(Sw, 1, Ty;) + H(Ty; 1, Sa,)

and

Ni(xi,y;) < [H(Swi1, Ty;)H(Tyj-1, S1)]'/?
S maX{H(SIZ‘_l, Tyj), H(Tyj_l, Sl’z)} .

Hence for i, j € N, we have
H(Sx;, Ty;) < p(max{H (Szi-1,Ty;), H(Ty;-1,5:)}). (6)

It follows that 3, < ¢(8, +9) for all n = 1,2,3,.... Hence (8, +9) — p(B, + ) < ¢ for all
n=1,2,3,.... Since t — p(t) — +o0 as t — +oo, it follows that {f,} is bounded. Hence
sup{H (Sz;, Ty;) : i,j € N} is finite.

For n € N,
let v, = sup{H (Sz;, Ty;) 14,5 > n}.

Then the inequality (6) yields v, < (v,—1) for all n € N. It follows that v, < ¢"(v) for
all n € N. Since p(t+) < t for all t € (0,00) and ¢(0) = 0, it follows that ¢™(ry) — 0 as

n — 00. So {v,} converges to zero. Again for all 7, j € N, we have
Thus for all 7,7 > n and using the fact that v, — 0 as n — co we have

H(Swz;,Sx;) < zv, » 0 as i,j — +00.
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It follows that {Sx,} is Cauchy. Since (CL(X), H) is complete, {Sz,} is convergent in
CL(X). We can similarly show that {1y, } is also convergent in C'L(X). Since H(Szy,, Ty,) —
0 as n — oo, it follows that the sequences {Sx,} and {T'y,} converge in CL(X) to the same
limit A for some A € CL(X).

Suppose u € X such that Tu € A. Then from the inequality (5) it follows that, for all n € N,

H(Su, Ty,) < (aly(u,yn) + (1 — a)Ni(u,yn)), (7)
where
L (u, ) < max{H(A, Su), %[H(A,Tyn) + H(Ty,, Su)]}
— H(A, Su); asn — o0
and

Nu(u, yn) < [mas{H(A, Ty, ) H(Tyn, Su), %H(A, Su)H(Ty,, Su)}|>
— (1/V2)H (A, Su), as n — o0o.

Hence passing over to limit as n — oo in (7), we obtain

H(Su, A) < plaH (S, A)s + (1 - a)/V2|H(Su, A),)
< p(H(Su, A)4).

Since p(t4) < t for all t € (0,00), it follows that H(Su, A) = 0. Hence Su = A. We now
suppose that v € A such that [v € Sv. Then from the inequality (5), for all n € N, we have

%[D(Iv, Tyn) + D(Jyn, Sv)]}

+ (1 —a) - [max{D (v, Sv)D(Jyn, Ty,), D(1v, Ty,) D(Jyy, Sv),

1 1
5D(Iv, Sv)D(Jy, Sv), §D(Jyn, Ty,)D(Iv, Ty,)}'/?)

H(5v,Ty,) < ¢(a-max{D(Iv, Sv), D(Jyn,Tyy),

< pla-H(Sv,Ty,) + (1 —a) - H(Sv,Ty,))
p(H(Sv,Tyy)) -

Passing over to limit as n — oo in the above inequality, we obtain H(Sv, A) < p(A(Sv, A),).
Hence H(Sv,A) = 0. It follows that Sv = A. Thus we have shown that F' = I(X)N A
and Sz = A whenever Iz € Sz. We can similarly show that G = J(X) N Aand Ty = A
whenever Jy € Ty.#

Remark 5 Theorem 3 improves Theorem 2 of Naidu [7].
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Corollary 2 Suppose that tliin [t —@(t)] = +o0, S(X) and T(X) are closed subsets of

X, Sz CI(X) and Gx C J(X) for all x € X and the inequality (5) holds for all x,y € X,
a € [0,1]. Then:

(i) {{z:ze€ X and [z € Sz} ={Jx:x € X and Jr € Tx} = A for some A € CL(X),

(ii) Sx = A =Ty for allx € [7'(A) and for all y € J7*(A).

Proof: The conclusion follows immediately from Theorem 3.#

Theorem 4 Let (X,d) be a complete metric space, and let I,J : X — X and S,T :
X — CL(X). Suppose that tii?oo(t— @(t)) = +o0, there are sequences {x,}o2, and {Yn}n—o
in X such that {Ix,, [T,1} C Sz, and {Jyn, Jyni1} C Ty, (n=0,1,2,...), and (5) holds
forallz,ye X. If I, J, S and T are continuous , I, S and J, T are compatible mappings,
then there exists a point t € X such that It € St and Jt € Tt, i.e., t is a coincidence point
of I and S and J and T.

Proof: Following the proof technique of Theorem 3, we can show that the sequences {Sz,, }
and {T'y, } converge in C'L(X) to the same limit A for some A in CL(X). By (5), for m >n

(m,n € N), we have

d(Izy, Jym) < D1z, Sxy) + D(JYm, STy) (8)
D(Ix,,Sx,) + H(Sxy,, Tyy,)
D

(T2, Sxpn) + @(aLli(Tn, Ym) + (1 — a)Ni(Zn, Ym)) ,

IN A

where

Li(zn, Ym) = max{ DIz, Sxn), D(JYm, TYm), =[DIxn, Tyn) + D(JYm, Sxn)]}

1
2
< H(Sxp, Tym)

and

Nl (Iny ym) == [maX{D(]xm an)D(Jyma Tym)7 D(Ixna Tym)D(Jyrm an) y
1 1
§D(1xn,5xn)D(Jym,an), ED(Jym,Tyn)D(]xn,Tym)}]1/2

< H(Szp, TYm) -
Making n — oo in (8), we obtain

limd(Iz,, Jym) < 0+ ¢(0).
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It follows that Iz, Jy, — t as n — oo for some t € X, since X is complete, d(Ix,, [,,) <
d(Izy, Jym) + d(Jym, [x,) and d(Jyn, Jym) < d(Jyn, [2,) + d(I2y,, Jy,). Again since
D(t,A) < D(t,Sxz,) + H(Sz,, A) — 0 as n — oo, it follows that t € A. By continuity

of I and S, and since S and I are compatible, we have

D(1t, St) = lim,, D(It,SIx,) < lim, H([A, SIz,)
= lim,, H(ISxz,,SIz,) =0

Hence It € St. Due to symmetry, we can similarly show that Jt € T't.#

By applying the same arguments as in the proof of Theorem 3, we can easily prove the

following theorems:

Theorem 5 Let (X,d) be a complete metric space, and I,J : X — X and S,T : X —
CL(X). Suppose that tlifrn (t—p(t)) = +oo, there are sequences {x,}o2, and {y,}>2, in X
such that Ix, 1 € Sz, and Jy,41 € Ty, (n=10,1,2,...) and

H(Sz,Ty) < ¢ (g[p(m, Ty) + D(Jy, Sz)] + (1 — a)[D(Iz, Ty) D(Jy, Sx)]1/2> (5)

for all x,y € X and a € [0,1]. Then the sequences {Sx,}, {Ty.} converge in CL(X)
to the same limit A for some A € CL(X), {Iz| € X and Ix € Sx} = I[(X)N A and
{Jyly € X and Jy € Ty} = J(X)N A. Further, Sx = A whenever Ix € Sz and Ty = A
whenever Jy € Ty.

Theorem 6 Let (X,d) be a complete metric space, and let I, J : X — X and S, T : X —
CL(X). Suppose that tligrnoo(t — @(t)) = 400, there are sequences {x,}5°, and {y,}>2 yin X
such that Iz, 1 € Sz, and Jy,s1 € Ty, (n=0,1,2,...) and (5) holds for all z,y € X. If
I, J, S and T are continuous, I, S and J,T" are compatible mappings. Then there exists a
point t € X such that It € St and Jt € Tt; i.e., t is a coincidence point of I and S and J
and T.

Remark 6 In view of Example 10 of Sastry, Naidu and Prasad [11], the condition lim (¢ —

t—o0

©(t)) = +oo in Theorems 3-6 cannot be dispensed with even if ) ¢"(t) < +oo for all t € R*
n=1

with S =T and I = J = 14, the identity mapping on X.
Remark 7 It is not yet known whether the continuity of all four maps I, J, S and T in

Theorems 4 and 6 are necessary or not.

Remark 8 Condition (2) of Naidu [7] is implied by condition (5') of Theorem 5, and hence

Theorem 2 of Naidu [7] is a direct consequence of Theorem 5 .
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