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ABSTRACT. In 1988 a new hypertopology, called proximal (finite) hypertopology was

discovered. It involves the use of a proximity in the upper part but leaves the lower part

the same as the lower Vietoris topology. In 1966, the lower Vietoris topology, which involves

finitely many open sets, led to another lower topology involving locally finite families of open

sets. In this paper, we change the lower hypertopology using a proximity and thus get a

“symmetric“ proximal hypertopology, which includes the earlier ‘finite’ topologies.
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1 INTRODUCTION

Let (X, d) be a metric space and let CL(X) denote the family of all nonempty closed sub-

sets of X. In 1914 Hausdorff defined a metric dH on CL(X), which is now known as the

Hausdorff metric ([10]). In 1922 Vietoris defined, for a T1 space X, a topology τ(V), now

called the Vietoris or finite topology on CL(X) ([24, 25] and [15]).

The Hausdorff metric topology was first generalized to uniform spaces by Bourbaki and later

(1966) to the Wijsman topology ([26]), wherein the convergence of distance functionals is

pointwise rather than uniform as in the Hausdorff case. A base for the Vietoris topology

consists of two parts, the lower which involves the intersection of closed sets with finitely

many open sets and the upper part involving closed sets contained in one open set.

In 1962 Fell in [9] changed the upper part by considering the complements of compact sets

and this was further generalized by Poppe (see [19] and [20]) in 1966 to complements of

members of ∆, a subfamily of CL(X). Also in 1966 Marjanovic in [14] altered the lower part

to consist of intersection of closed sets with members of locally finite families of open sets.
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In 1988 the upper part of τ(V) was generalized to consist of closed sets that are proximally

contained in an open set while the lower part could be finite or locally finite as before ([7]).

It was found that even the well known Hausdorff metric topology is essentially a kind of

locally finite proximal topology, thus showing the importance of proximities in hyperspaces.

Moreover, recently it was shown that, with the use of two proximities in the upper part, all

known hypertopologies could be subsumed under one Bombay topology ([6], see also [17]).

In the present paper we radically change the lower part by using as a base, families of closed

sets that are proximally near finitely many open sets. This is the first time that proximities

are used in the lower part. The use of proximities in both upper and lower parts yield

symmetric proximal hypertopologies and we believe that they will play an important role in

the literature. In fact, since a topological space X has an infinite spectrum of proximities

compatible with its topology it is possible to have an unusually broad range of symmetrical

proximal hypertopologies because our constructs are based on proximal relations between

families of closed sets and finite collections of open subsets instead of the usual Boolean

operations on open and closed subsets of X, namely unions, intersections, set inclusions.

In what follows (X, τ), (or X), always denotes a T1 topological space. A binary relation δ

on the power set of X is a generalized proximity iff

(i) A δ B implies B δ A;

(ii) A δ (B ∪ C) implies A δ B or A δ C;

(iii) A δ B implies A 6= ∅, B 6= ∅;

(iv) A ∩B 6= ∅ implies A δ B.

A generalized proximity δ is a LO-proximity iff it satisfies

(LO) A δ B and b δ C for every b ∈ B together imply A δ C.

Moreover, a LO-proximity δ is a LR-proximity iff it satisfies

(R) x δ A ( where δ means the negation of δ) implies there exists E ⊂ X such that x δ E

and Ec δ A.

A generalized proximity δ is an EF-proximity iff it satisfies

(EF) A δ B implies there exists E ⊂ X such that A δ E and Ec δ B.
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Note that each EF-proximity is a LR-proximity.

Whenever δ is a LO-proximity, τ(δ) denotes the topology on X induced by the Kuratowski

closure operator A → Aδ = {x ∈ X : x δ A}. The proximity δ is declared compatible with

respect to the topology τ iff τ = τ(δ) (see [8], [18] or [27]).

A T1 topological space X admits always a compatible LO-proximity. A topological space X

has a compatible LR- (respectively, EF-) proximity iff it is T3 (respectively, Tychonoff).

If A δ B, then we say A is δ-near to B; if A δ B we say A is δ-far from B. A is declared

δ-strongly included in B, written A �δ B, iff A δ Bc. A �δ B stands for its negation, i.e.

A δ Bc.

We assume, in general, that every compatible proximity δ on X is LO or even LR. These

assumptions simplify the results and allow us to display readable statements and makes the

theory transparent. In fact, it is a useful fact that in a LO-proximity δ two sets are δ-far iff

their closures are δ-far (see [18] or [3]). Moreover, if δ is a compatible LR-proximity, then

(∗) for each x /∈ A, with A = clA , there is an open neighbourhood W of x such that

clW δ A.

We use the following notation :

N(x) denotes the filter of open neighbourhoods of x ∈ X;

CL(X) is the family of all non-empty closed subsets of X;

K(X) is the family of all non-empty compact subsets of X.

We set ∆ ⊂ CL(X) and assume, without any loss of generality, that it contains all singletons

and finite unions of its members.

In the sequel δ, η will denote compatible proximities on X.

The most popular and well studied proximity is the Wallman or fine LO-proximity δ0 (or

η0) given by

A δ0 B ⇔ clA ∩ clB 6= ∅ .

We note that δ0 is a LR-proximity iff X is regular (see [11, Lemma 2]). Moreover, δ0 is an

EF-proximity iff X is normal (Urysohn Lemma).

Another useful proximity is the discrete proximity η∗ given by

A η∗ B ⇔ A ∩B 6= ∅ .
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We note that η∗ is not a compatible proximity, unless (X, τ) is discrete.

We point out that in this paper η∗ is the only proximity that might be non compatible.

For any open set E in X, we use the notation

E+
δ = {F ∈ CL(X) : F �δ E or equivalently F δ Ec} .

E+ = E+
δ0 = {F ∈ CL(X) : F �δ0 E or equivalently F ⊂ E} .

E−
η = {F ∈ CL(X) : F η E} .

E− = E−
η∗ = {F ∈ CL(X) : F η∗ E or equivalently F ∩ E 6= ∅} .

Now we have the material necessary to define the basic proximal hypertopologies.

(1.1) The lower η-proximal topology σ(η−) is generated by {E−
η : E ∈ τ}.

(1.2) The upper δ − ∆-proximal topology σ(δ+, ∆) is generated by {E+
δ : Ec ∈ ∆}.

We omit ∆ and write it as σ(δ+) if ∆ = CL(X).

We note that the upper Vietoris topology τ(V+) equals σ(δ+
0 ) and the lower Vietoris topology

τ(V−) can be written as σ(η∗−). These show that proximal topologies are generalizations of

the classical upper and lower Vietoris topologies.

Moreover, we have:

The Vietoris topology τ(V) = σ(η∗−) ∨ σ(δ+
0 ) = τ(V−) ∨ τ(V+).

The δ-proximal topology σ(δ) = σ(η∗−) ∨ σ(δ+) = τ(V−) ∨ σ(δ+).

The following is a new hypertopology, which generalizes the above as well as the ∆-topologies

introduced by Poppe ([19], [20]).

(1.3) The η − δ − ∆-symmetric-proximal topology π(η, δ; ∆) = σ(η−) ∨ σ(δ+; ∆).

For references on proximities, we refer to [8], [18] and [27]. For LO-proximities see [18] and

[16]. For LR-proximities see [11], [12] and also [3] and [4].

For references on hyperspaces up to 1993, we refer to [1], except when a specific reference is

needed.
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2 Three Important Lower Proximal Topologies

Let (X, d) be a metric space. The associated metric proximity η is defined by A η B iff

inf{d(a, b) : a ∈ A, b ∈ B} = 0. Note that a metric proximity η is EF and compatible.

First we observe that, unlike the lower Vietoris topology, σ(η−) need not be admissible as

the following example shows. The reader is referred to the Appendix (section 7) where the

admissibility of the symmetrical proximal topology is investigated in details.

Example 2.1 Let X = [−1, 1] with the metric proximity η. Let A = {0}, An = { 1
n
}, for

all n ∈ N. Then 1
n

converges to 0 in X, but An does not converge to A in the topology

σ(η−). Hence the map i : X → CL(X), where i(x) = {x}, is not an embedding.

We recall that if η and η′ are proximities on X, then η is declared coarser than η′ (or

equivalently η′ is finer than η), written η ≤ η′, iff A η B implies A η′ B.

We now begin to study lower proximal topologies corresponding to proximities η, η0, η
∗.

Observe that for any compatible proximity η we have always η ≤ η0 ≤ η∗ (since η0 is the

finest compatible LO-proximity and η∗ is the discrete proximity). In the case of a metric

space, we will take η to be the metric proximity and, in the case of a T3 topological space,

we will take η to be a compatible LR-proximity.

Theorem 2.2 Let (X, τ) be a T3 topological space and η a compatible LR-proximity.

The following inclusions occur:

(a) τ(V −) = σ(η∗−) ⊂ σ(η−),

(b) τ(V −) = σ(η∗−) ⊂ σ(η−0 ),

i.e. the finest proximity η∗ induces a coarser hypertopology.

Proof: We show (a). Suppose that the net {Aλ} of closed sets converges to a closed set A

in the topology σ(η−). If A η∗ U , where U ∈ τ , then there is an x ∈ A∩U and a V ∈ N(x),

with x ∈ V ⊂ clV ⊂ U and V η U c (use (∗) in Section 1). We claim that eventually Aλ

intersects U . For if not, then frequently Aλ ⊂ U c and so frequently Aλ η V ; a contradiction.

The case (b) is similar.

Remark 2.3 In Section 6, namely Theorem 6.7, we characterize proximities for which the

above inclusions hold. Furthermore, we will look for transparent conditions under which a

finer proximity induces a coarser hypertopology, a natural phenomenon.

This example shows that the assumption of regularity of the base space X cannot be dropped

in Theorem 2.2.
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Example 2.4 Let X = [0,+∞) with the topology τ consisting of the usual open sets

together with all sets of the form U = [0, ε)\B where ε > 0 and B ⊂ A = { 1
n

: n ∈ N}. Then

X is Hausdorff and not regular since V = [0, ε′)\A ⊂ U for each 0 < ε′ < ε, but clV ⊂/ U .

Now, set F = {0} and for all n ∈ N, Fn = { 1
n
}. Then {Fn} does not converge to F in σ(η∗

−
)

(note that 0 ∈ [0, ε)\A and 1
n
/∈ [0, ε)\A for all n ∈ N). However, if {0} η W , W open, then

eventually { 1
n
} η W , where η is any compatible LO-proximity. So

σ(η∗
−
) 6⊂ σ(η−) .

Now, we give an example to show that the inclusions in 2.2 (a), (b) are strict except in

pathological situations.

Example 2.5 Let X = [0, 2], A = [0, 1], and for each natural number n set An = [0, 1− 1
n
].

Then the sequence {An} converges to A with respect to the σ(η∗
−
) topology, but it converges

to A neither with respect to the σ(η−) topology nor with respect to the σ(η−0 ) topology.

We note that the space involved is one of the “best“ possible spaces and the sets involved

are also compact.

In a UC metric space, i.e. one in which the metric proximity η = η0, σ(η−0 ) = σ(η−).

We now give an example to show that σ(η−0 ) 6= σ(η−).

Example 2.6 Let N be the set of all natural numbers, M = {n− 1
n

: n ∈ N}, X = N ∪M
as subspace of the real line. X is not a UC space. Set A = N and An = {m ∈ N : m < n},
for all n ∈ N.

Then An converges to A in the topology σ(η−0 ). However, A η M but An η M for each n ∈ N.

So, the sequence {An} does not converge to A in the topology σ(η−).

Note that in the above example σ(η−0 ) ⊂ σ(η−). We show below that this natural inclusion

holds in a locally compact space, too.

Theorem 2.7 Let (X, τ) be a locally compact Hausdorff space. If η and η0 are respec-

tively a compatible LO-proximity and the Wallman proximity on X, then:

σ(η−0 ) ⊂ σ(η−) .

Proof: Let V be an open set and let A ∈ V −
η0. Then there is a z ∈ A ∩ clV . Let U be a

compact neighbourhood of z and set W = U ∩ V . Note that clW is compact and that a

closed set is η-near a compact set iff it is η0-near it. Hence A ∈ W−
η ⊂ V −

η0.
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Remark 2.8 If the involved proximities η, η0 are LR and the net of closed sets Aλ is even-

tually locally finite and converges to A in σ(η−), then it also converges in σ(η−0 ). Hence, the

same inclusion (i.e. σ(η−0 ) ⊂ σ(η−)) as in the previous result holds.

We next consider first and second countability of σ(η−).

Observe, that the first and second countability of σ(η∗−), i.e. the lower Vietoris topology

τ(V −), are well known results. (CL(X), τ(V −)) is first countable if and only if X is first

countable and each closed subset of X is separable (cf. Theorem 1.2 in [13]); (CL(X), τ(V −))

is second countable if and only if X is second countable (cf. Proposition 1.11 in [13]).

Thus, we study the first and the second countability of σ(η−) when η is different from η∗.

The following definitions have a key role.

Definitions 2.9 (see [2]) Let (X, τ) be a T1 topological space, η a compatible LO-

proximity and A ∈ CL(X).

A family NA of open sets of X is an external proximal local base at A with respect

to η (or, briefly a η-external proximal local base at A) if for any U open subset of X

such that A η U , there exists V ∈ NA satisfying A η V and clV ⊂ clU .

The external proximal character of A with respect to η (or, briefly the η-external

proximal character of A) is defined as the smallest (infinite) cardinal number of the form

|NA|, where NA is a η-external proximal local base at A, and it is denoted by Eχ(A, η).

The external proximal character of CL(X) with respect to η (or, briefly the η-

external proximal character) is defined as the supremum of all number Eχ(A, η), where

A ∈ CL(X). It is denoted by Eχ(CL(X), η).

Remark 2.10 If X is a T3 topological space, η is a compatible LR-proximity and the

η-external proximal character Eχ(CL(X), η) is countable, then X is separable .

Theorem 2.11 Let (X, τ) be a T3 topological space with a compatible LR-proximity η.

The following are equivalent:

(a) (CL(X), σ(η−)) is first countable;

(b) the η-external proximal character Eχ(CL(X), η) is countable.

Proof: (a)⇒(b). It suffices to show that for each A ∈ CL(X) there exists a countable

family NA of open sets of X which is a η-external proximal local base at A. First note a

useful fact:

For open sets V, U, clV ⊂ clU ⇔ V −
η ⊂ U−

η . (#)
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Now, let A ∈ CL(X) and Z a countable subbase σ(η−)-neighbourhood system of A. Set

NA = {V : V an open set with V −
η ∈ Z}. Clearly, NA is a countable family of open sets with

the property that A η U , U open, implies there is a V ∈ NA satisfying A η V and V −
η ⊂ U−

η .

Thus the result follows from (#).

(b)⇒(a). It is obvious.

Definitions 2.12 (see [2]) Let (X, τ) be a T1 topological space with a compatible

LO-proximity η.

A family N of open sets of X is an external proximal base with respect to η (or,

briefly a η-external proximal base) if for any closed subset A of X and any open subset

U of X with A η U , there exists V ∈ N satisfying A η V and clV ⊂ clU .

The external proximal weight of CL(X) with respect to η (or, briefly the η-external

proximal weight of CL(X)) is the smallest (infinite) cardinality of its η-external proximal

bases and it is denoted by EW(CL(X), η).

Theorem 2.14 Let (X, τ) be a T3 topological space with a compatible LR-proximity η.

The following are equivalent:

(a) (CL(X), σ(η−)) is second countable;

(b) the η-external proximal weight EW(CL(X), η) is countable.

3 Six Hyperspace Topologies

The three lower topologies σ(η∗
−
), σ(η−), σ(η−0 ) combined with two upper ones σ(δ+; ∆),

σ(δ+
0 ; ∆) yield six distinct hypertopologies of which the first two are already well known as

we remarked before.

π(η∗, δ0; ∆) = σ(η∗
−
) ∨ σ(δ+

0 ; ∆) = τ(∆) , (1)

the ∆-topology which equals the Vietoris topology when ∆ = CL(X) and equals the Fell

topology when ∆ = K(X).

π(η∗, δ; ∆) = σ(η∗
−
) ∨ σ(δ+; ∆) = σ(δ; ∆) , (2)

the proximal-∆-topology which equals the proximal topology when ∆ = CL(X) and equals

the Fell topology when ∆ = K(X) and δ is a LR-proximity.

π(η, δ0; ∆) = σ(η−) ∨ σ(δ+
0 ; ∆) . (3)

π(η, δ; ∆) = σ(η−) ∨ σ(δ+; ∆) . (4)

π(η0, δ0; ∆) = σ(η−0 ) ∨ σ(δ+
0 ; ∆) . (5)

π(η0, δ; ∆) = σ(η−0 ) ∨ σ(δ+; ∆) . (6)
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Theorem 3.1 The following relationships hold when X is a T3 topological space, η0

is the Wallman proximity and η is a LR-proximity. Moreover, for simplicity we consider

∆ = CL(X).

(a) σ(δ) ⊂ τ(V) ⊂ π(η0, δ0).

(b) σ(δ) ⊂ τ(V) ⊂ π(η, δ0).

(c) σ(δ) ⊂ π(η0, δ) ⊂ π(η0, δ0).

(d) σ(δ) ⊂ π(η, δ) ⊂ π(η, δ0).

(e) σ(δ) ⊂ τ(V) ⊂ π(η0, δ0) ⊂ π(η, δ0) when X is locally compact.

(f) σ(δ) ⊂ π(η0, δ) ⊂ π(η0, δ0) ⊂ π(η, δ0) when X is locally compact.

Let (X, τ) be a T3 topological space with a compatible LR-proximity δ. Then X is called

a PC space if δ = δ0. In such a space, every continuous function on X to an arbitrary

proximity space is proximally continuous. In case X is a metric space with the metric

proximity δ, then X is PC if and only if X is UC (i.e. continuous functions on X are

uniformly continuous).

Theorem 3.2 Let (X, τ) be a T3 topological space. The following are equivalent:

(a) X is PC;

(b) σ(δ) = τ(V );

(c) π(η0, δ) = π(η0, δ0);

(d) π(η, δ0) ⊂ π(η, δ).

4 Properties of (CL(X), π(η, δ))

We now study some properties of the topological space (CL(X), π(η, δ)).

In general, the map x→ {x} from (X, τ) into (CL(X), σ(η−)) fails to be an embedding (see

Example 2.1). As a result, the topology π(η, δ) in general is not admissible. The admissibility

of π(η, δ) is studied in Appendix (see section 7).

From 2.2 we know that if the space X is regular and the involved proximities are LR, then

(CL(X), π(η, δ)) is Hausdorff. We begin with some lemmas.
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The following is a generalization of the well known result: sets of the form < U−
k >= {E :

E ∩ Uk 6= ∅ and E ⊂ U = ∪Uk} form a base for the Vietoris topology, where {U,Uk} is a

finite family of open sets.

We recall that given two proximity δ and η on X, δ ≤ η iff A δ B implies A η B.

Lemma 4.1 Let (X, τ) be a T1 topological space and δ, η compatible proximities. If

δ ≤ η, then all sets of the form

< U−
k , U

+ >η,δ= {E : E η Uk, E �δ U and
⋃

Uk ⊂ U}

form a base for the π(η, δ) topology.

Proof: If A ∈
⋂
{V −

k,η : 1 ≤ k ≤ n} ∩ U+
δ , then A δ U c and A η Vk for each k ∈ {1, . . . , n}.

Thus, we may replace each Vk by Vk ∩ U . In fact, from δ ≤ η we have A η U c and thus

A η Vk iff A η (Vk ∩ U).

Remark 4.2 (i) If δ ≤ η and D is a dense subset of X, then the family of all finite

subsets of D is dense in (CL(X), π(η, δ; ∆)).

(ii) Note that in the above Lemma and in (i) we need only δ ≤ η, restricted to the pairs

(E,W ) where E is closed and W is open.

The following is a generalization of the result: < clU−
k >, 1 ≤ k ≤ n, is closed in τ(V).

First, we need a definition.

Definition 4.3 Let (X, τ) be a T1 topological space and δ, η compatible proximities. The

hypertopologies π(δ, η) and π(η, δ) are called conjugate.

Lemma 4.4 Let (X, τ) be a T1 topological space with compatible proximities δ, η. If

P =< clU−
k , clU >η,δ, 1 ≤ k ≤ n, U = ∪Uk then P is closed with respect to its conjugate

π(δ, η).

Proof: A /∈ P if and only if A�δ clU for A η clUk for some k which in turn is equivalent

to A δ [clU ]c or A �η [clUk]
c.

Remark 4.5 Obviously, if η ≤ δ when restricted to the pairs (E,W ) where E is closed

and W is open, then P is closed also in π(η, δ).

We now consider the uniformizability of (CL(X), π(η, δ)).

We assume that (X, τ) is Tychonoff, δ is a compatible EF-proximity and η a LO-proximity.

Let W be the unique totally bounded uniformity compatible with δ (see [8] or [18]). It is

known that the Hausdorff-Bourbaki or H-B uniformity WH, which has as a base all sets of
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the form WH = {(A,B) : A ⊂ W (B) and B ⊂ W (A)} induces the proximal finite topology

σ(δ) = σ(η∗
−
) ∨ σ(δ+) (cf. [7]).

By 2.2 we know that σ(η∗
−
) ⊂ σ(η−). So, in order to get σ(η−) we have to augment a typical

entourage WH ∈ WH by adding sets of the type

P{Uk} = {(A,B) ∈ CL(X)× CL(X) : A η Uk and B η Uk}

for a finite family of open sets {Uk}.

Then, by a routine argument we have.

Theorem 4.6 If δ is a compatible EF-proximity, η a LO-proximity on a Tychonoff space

(X, τ) and W the unique totally bounded uniformity compatible with δ, then the family

S = WH ∪ {WH ∪ P{Uk} : WH ∈ WH, {Uk} finite family of open sets }

defines a compatible uniformity on (CL(X), π(η, δ)).

We next study the first and second countability as well as the metrizability of π(η, δ; ∆),

where (X, τ) is a T3 topological space, η, δ compatible LR-proximities on X. Observe that

the first and second countability as well as the metrizability of π(η, δ; ∆) when η = η∗, i.e.

π(η∗, δ; ∆) = σ(δ; ∆), have been studied by Di Maio and Hola in [5].

So, we attack the case η 6= η∗.

Theorem 4.7 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η (cf. Lemma 4.1). The following are equivalent:

(a) (CL(X), π(η, δ; ∆)) is first countable;

(b) (CL(X), σ(η−)) and (CL(X), σ(δ+; ∆)) are both first countable.

Proof: (b)⇒(a). Since π(η, δ; ∆) = σ(η−) ∨ σ(δ+; ∆), this implication is clear.

(a)⇒(b). Let (CL(X), π(η, δ; ∆)) be first countable and take A ∈ CL(X).

Let Z = {L =< S−j , V
+ >η,δ, with A�δ V, V

c ∈ ∆, Sj open, A η Sj,
⋃
{Sj : j ∈ J} ⊂ V and

J finite} be a countable local base of A with respect to the topology π(η, δ).

We claim that the family Z+ = {V +
δ : V +

δ occurs in some L ∈ Z} ∪ {CL(X)} forms a local

base of A with respect to the topology σ(δ+; ∆). Indeed, if there is no open subset U with

A �δ U , U c ∈ ∆, then CL(X) is the only open set in σ(δ+; ∆) containing A. If there is U

with A �δ U , U c ∈ ∆, then U+
δ is a π(η, δ)-nbhd. of A. Hence, there exists L ∈ Z with

L ⊆ U+
δ . Note, that L cannot be of the form L =< S−j >η=

⋂
{(Sj)

−
η : j ∈ J}, otherwise by

setting F = A ∪ U c, we have F ∈ L, but F 6∈ U+
δ , a contradiction. Thus, L has the form

< S−j , V
+ >η,δ. We claim that V +

δ ⊂ U+
δ . Assume not and let E ∈ V +

δ \U+
δ . Set F = E ∪A,
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we have F ∈ L \ U+
δ , a contradiction.

We now show, that there is a countable local base of A with respect to the topology σ(η−).

Without any loss of generality we may suppose that in the expression of every element from

Z the family of index set J is non-empty, in fact

{V +
δ : A�δ V, V

c ∈ ∆} = {V +
δ : A�δ V, V

c ∈ ∆} ∩ {V −
η }

By Lemma 4.1 if L ∈ Z, then L =< S−j , V
+ >η,δ= V +

δ ∩ {(Sj)
−
η : j ∈ J} where A δ V c, V c ∈

∆,
⋃
{Sj : j ∈ J} ⊂ V,A η Sj, Sj ∈ τ for each j ∈ J and J finite.

Set Z− = {(Sj)
−
η : (Sj)

−
η occurs in some L ∈ Z}. We claim that the family Z− forms a

local subbase of A with respect to the topology σ(η−). Take U open with A η U . Then

U−
η is a π(η, δ)-nbhd. of A. Hence, there exists L ∈ Z with L ⊂ U−

η . L =< S−j , V
+ >η,δ=

V +
δ ∩ {(Sj)

−
η : j ∈ J}. We claim that there exists a j ∈ J such that (Sj)

−
η ⊂ U−

η . It suffices

to show that there exists a j ∈ J such that Sj ⊂ U . assume not and for each j ∈ J let

xj ∈ Sj \ U . The set F = {xj : j ∈ J} ∈ L \ U−
η , a contradiction.

Definitions 4.8 (see [2]) Let (X, τ) be a T1 topological space, δ a compatible LO-

proximity, A a closed subset of X and ∆ ⊂ CL(X) a ring.

A family LA of open neighbourhoods of A is a local proximal base at A with respect to

δ (or briefly a δ-local proximal base at A) if for any open subset U of X with U c ∈ ∆

and A�δ U there exists W ∈ LA such that A�δ W , W c ∈ ∆ and W ⊂ U .

The δ-proximal character of A is defined as the smallest (infinite) cardinal number of

the form |LA|, where LA is a δ-local proximal base at A and it is denoted by χ(A, δ).

The δ-proximal character of CL(X) is defined as the supremum of all number χ(A, δ),

where A ∈ CL(X), and it is denoted by χ(CL(X), δ).

By Theorems 4.7 and 2.11 we have.

Theorem 4.9 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η. The following are equivalent:

(a) (CL(X), π(η, δ; ∆)) is first countable;

(b) the η-external proximal character Eχ(CL(X), η) and the δ-proximal character

χ(CL(X), δ) are both countable.

For the second countability we have a similar result.

Theorem 4.10 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η. The following are equivalent:



Symmetric Proximal Hypertopology 15

(a) (CL(X), π(η, δ; ∆)) is second countable;

(b) (CL(X), σ(η−)) and (CL(X), σ(δ+; ∆)) are both second countable.

Proof: We omit the proof that is similar to that in Theorem 4.7.

Definitions 4.11 Let (X, τ) be a T1 topological space, δ a compatible LO-proximity

and ∆ ⊂ CL(X) a ring.

A family B of open sets of X is a δ-proximal base with respect to ∆ if whenever A�δ V

with V c ∈ ∆, there exists W ∈ B such that A�δ W , W c ∈ ∆ and W ⊂ V .

The δ-proximal weight of CL(X) with respect to ∆ (or, briefly the δ-proximal

weight with respect to ∆) is the smallest (infinite) cardinality of its δ-proximal base with

respect to ∆ and is denoted by W (CL(X); δ,∆).

Theorem 4.12 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η. The following are equivalent:

(a) (CL(X), π(η, δ; ∆)) is second countable;

(b) the η-external proximal weight EW(CL(X), η) and the δ-proximal weight

W(CL(X); δ,∆) with respect to ∆ are both countable.

Theorem 4.13 Let (X, τ) be a Tychonoff space, δ a compatible EF-proximity, η a com-

patible LR-proximity and δ ≤ η. The following are equivalent:

(a) (CL(X), π(η, δ)) is metrizable;

(b) (CL(X), π(η, δ)) is second countable and uniformizable.

Proof: (b)⇒(a). It follows from the Urysohn Metrization Theorem.

(a)⇒(b). Observe that since CL(X) is first countable, X is separable (use Theorem 4.7 and

Remark 2.10). Thus, (CL(X), π(η, δ)) is second countable (see (i) in Remarks 4.2).

Corollary 4.14 Let (X, τ) be a Tychonoff space, δ a compatible EF-proximity and η a

compatible LR-proximity on X. The following are equivalent:

(a) (CL(X), π(η, δ)) is metrizable;

(b) (CL(X), σ(η−)) and (CL(X), σ(δ+)) are second countable.
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5 Subspace Hypertopologies

It is well known that in the lower Vietoris topology τ(V−) subspace topologies behave nicely,

i.e. if A ∈ CL(X) then

(CL(A), τ(V−
A)) = (CL(X), τ(V−)) ∩ CL(A) .

We now give some examples to show that in case of lower proximal topology σ(η−) analogous

result is not true and the two topologies are not even comparable.

Example 5.1 Let X = [0, 2]× [−1, 1], Q = [0, 2]× [0, 1], T the closed triangle with vertices

at (0,−1), (1, 0), (2,−1).

Let A = T ∪ [0, 2] × {0}, η the metric proximity on X and V = (0, 2) × (0, 1). Let H =

V −
η ∩CL(A) which is an open set in (CL(X), σ(η−))∩CL(A). Then H = {CL([0, 2]×{0})}∪
{B ∈ CL(A) : (1, 0) ∈ B} and is not open in (CL(A), σ(η−A)), where ηA denotes the induced

proximity on A. So, (CL(X), σ(η−)) ∩ CL(A) 6⊂ (CL(A), σ(η−A)).

Next examples show that even the reverse inclusion in general does not occur.

Examples 5.2 1. This is an example of a Hausdorff non-regular space X, having a

closed subset A such that (CL(A), σ(η−A)) 6⊂ (CL(X), σ(η−)) ∩ CL(A).

The space X is the “Irrational Slope Topology“ (Example 75 on Page 93 [22]). Let

X = {(x, y) : y ≥ 0, x, y ∈ Q}, θ a fixed irrational number and X endowed with the

irrational slope topology τ generated on X by neighbourhoods of the form

Nε((x, y)) = {(x, y)} ∪Bε(x+ y/θ) ∪Bε(x− y/θ)

where Bε(ζ) = {r ∈ Q : |r − ζ| < ε}, Q being the rationals on the x-axis. Let η0 be

the Wallman proximity. The set A = {(x, y) : y > 0, x, y ∈ Q} is a closed discrete set.

Let {(x, 1) : x ∈ Q} = O which is clopen in A. Then there is no open neighbourhood

H in X such that [(H−
η0 ∩ CL(X)] ⊂ O− and the claim.

2. This is a less pathological example. Let X = l2 be the space of square summable

sequences of real numbers with the usual norm, θ the origin and {en : n ∈ N} the

standard basis of unit vectors. Let X be equipped with the Alexandroff proximity η1

(i.e. E η1 F iff clE ∩ clF 6= ∅ or both clE, clF are not compact). Since X is not

locally compact, η1 is not an EF-proximity.

Let A = {θ} ∪ {en : n ∈ N}. Then {θ} is clopen , {θ}η1{θ}.

Note that F ′ ∈ CL(A) and F ′η1{θ} iff θ ∈ F ′.

Clearly, A′ = (A − {θ}) ∈ CL(A) and A′η
1
{θ}. However, for each open set V in X,

V η1A
′, showing thereby that {θ}−η1 is not a member of σ(η−1 ) ∩ CL(A).

Hence, (CL(A), σ(η−A)) 6⊂ (CL(X), σ(η−)) ∩ CL(A).



Symmetric Proximal Hypertopology 17

6 COMPARISONS

Now we compare two lower proximal topologies. If η is a LO-proximity on X, then for

A ⊂ X, we use the notation η(A) = {E ⊂ X : E η A} (cf. [23]).

Lemma 6.1 Let γ and η be compatible LO-proximities on a T1 topological space (X, τ).

The following are equivalent:

(a) W−
γ ⊂ V −

η on CL(X);

(b) γ(W ) ⊂ η(V ).

Theorem 6.2 Let γ and η be compatible LO-proximities on a T1 topological space

(X, τ). The following are equivalent:

(a) σ(η−) ⊂ σ(γ−);

(b) for each F ∈ CL(X) and U ∈ τ with F η U there exists V ∈ τ such that F ∈ γ(V ) ⊂
η(U).

Proof: (a)⇒(b). Let F ∈ CL(X) and U ∈ τ with F η U . Then F ∈ U−
η .

By assumption there exists V =< V−
1 ,V

−
2 , . . . ,V

−
n >γ∈ σ(γ−) such that F ∈ V ⊂ U−

η .

Clearly, F ∈ γ(Vi) for each i ∈ {1, 2, . . . , n}. We claim that there exist i∗ ∈ {1, 2, . . . , n} such

that γ(Vi∗) ⊂ η(U). Assume not. Then for each i ∈ {1, 2, . . . , n} there exists Ti ∈ CL(X)

such that Ti γ Vi and Ti η U . Set T =
⋃
{Ti : i ∈ {1, 2, . . . , n}}. Then T ∈ CL(X), T γ Vi

for each i ∈ {1, 2, . . . , n} and T η U . This show that T ∈ V 6⊂ U−
η ; a contradiction.

(b)⇒(a) It is obvious.

Definition 6.3 Let (X, τ) be a T1 topological space and η a LO-proximity.

(X, τ) is nearly regular iff whenever x ∈ U with U ∈ τ there exists V ∈ τ such that

x ∈ clV ⊂ U .

η is nearly regular (n-R for short) iff it satisfies

(n-R) x η A implies there exists E ⊂ X such that x η E and Ec η A.

Remarks 6.4 (a) It is easy to verify that each LR-proximity is also an n-R proximity.

The converse in general does not occur as (a) in the remark (6.6) shows.

(b) If η is a compatible (n-R)-proximity, then for each x ∈ U and U ∈ τ , there is a V ∈ τ
with x ∈ clV and V η U c.
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(c) If (X, τ) is a T3 topological space, then (X, τ) is nearly regular but the converse is not

true in general as the next examples show.

Examples 6.5 (1) Let X = R with the topology τ consisting of the usual open sets

together with sets of the form U = (−ε, ε)\B, ε > 0, B ⊂ {1/n : n ∈ N} = A. Then

X is nearly regular but not regular since V = (−ε′, ε′)\B ⊂ U for 0 < ε′ < ε, but

clV 6⊂ U . Take W = (−ε′, 0) for 0 < ε′ < ε, then 0 ∈ clW ⊂ (−ε, ε)\A.

(2) The space X, of example 2.4, is Hausdorff but not nearly regular.

Remarks 6.6 (a) If in Examples 6.5 we endow X with the proximity η0, then in the case

(1) η0 is an n-R proximity but not a LR-proximity; whereas in the case (2) η0 is not

n-R.

(b) It is easy to show that if η is a compatible n-R-proximity on X, then X is nearly-

regular. Thus by the above result (a) we can state the following.

A topological space (X, τ) admits a compatible n-R proximity η if and only if the base

space X is nearly regular.

(c) The above examples show that the nearly regular property is not hereditary. On the

other hand it is easy to show that it is open hereditary.

Next Theorem characterizes those proximities η for which the corresponding lower η topolo-

gies σ(η−) are finer than the lower Vietoris topology τ(V −) = σ(η∗−).

Theorem 6.7 Let (X, τ) be a T1 topological space, η a compatible LO-proximity and η∗

the discrete proximity. The following are equivalent:

(a) σ(η∗−) ⊂ σ(η−);

(b) η is an n-R proximity.

Proof: (a)⇒(b) Let x ∈ X and U ∈ τ with x ∈ U . The result follows from proof (a)⇒(b)

of Theorem 6.2 when F = {x}.

(b)⇒(a) Let U = U−
η∗ be a subbasic element of σ(η∗−) and F ∈ U. Let x ∈ U ∩ F . By

assumption there exists a V ∈ τ such that x ∈ clV and V η U c. Set V = V−
η . Then

F ∈ V ∈ σ(η−) and V ⊂ U = U−
η∗ .

Theorem 6.8 Let (X, d) be a metric space, η the associated metric proximity and η0

the Wallman proximity. The following are equivalent:

(a) X is UC;
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(b) η = η0;

(c) σ(η−) = σ(η−0 );

(d) σ(η−) ⊆ σ(η−0 );

(e) for each F ∈ CL(X) and U ∈ τ with F η U there is V ∈ τ with F ∈ η0(V ) ⊂ η(U).

Proof: (a)⇔(b), (b)⇔(c) and (c)⇒(d) are obvious.

(c)⇔(e). It follows by the above Theorem 6.2.

(d)⇒(a). It suffices to show that (not a)⇒(not d). So, suppose X is not UC. Then there

exists a pair of sequences {xn}, {yn} in X without cluster points, which are parallel (i.e.

limn→∞ d(xn, yn) = 0) (see [21] or [1] on Page 54). Let A = {xn : n ∈ N}, for each n ∈ N set

An = {xm : m ≤ n} and U = ∪{S(yn, εn) : n ∈ N} where εn = 1
4
d(xn, yn).

Clearly , A η U but An η U for each n ∈ N showing that {An : n ∈ N} does not converge to

A with respect to the σ(η−) topology. On the other hand {An : n ∈ N} converges to A with

respect to σ(η−0 ).

Now, we study comparisons between symmetric proximal topologies.

Theorem 6.9 Let α, γ, δ and η be compatible LO-proximities on a T1 topological space

(X, τ) with α ≤ γ and δ ≤ η, and ∆ and Λ cobases. The following are equivalent:

(a) π(η, δ; ∆) ⊂ π(γ, α; Λ);

(b) (1) for each F ∈ CL(X) and U ∈ τ with F η U there are W ∈ τ and L ∈ Λ such that

F ∈ [γ(W )\α(L)] ⊂ η(U);

(2) for each B ∈ ∆ and W ∈ τ , W 6= X with B �δ W , there exists M ∈ Λ such that

M �α W and δ(B) ⊂ α(M).

Proof: (a)⇒(b) We start by showing (1). So, let F ∈ CL(X) and U ∈ τ with FηU . Then

U−
η is a π(η, δ; ∆) neighbourhood of F .

By assumption there is a π(γ, α; Λ) neighbourhood W of F such that W ⊂ U−
η .

W =< W−
1 ,W

−
2 , . . . ,W

−
n ,W

+ >γ,α, Wi ∈ τ for each i ∈ {1, 2, . . . , n},⋃
{Wi : i ∈ {1, 2, . . . , n}} ⊂ W and W c ∈ Λ.

Set L = W c. By construction F α L as well as F γ Wi for each i ∈ {1, 2, . . . , n}. We claim

that there exists an i∗ ∈ {1, 2, . . . , n} such that

[γ(Wi∗)\α(L)] ⊂ η(U) .
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Assume not. Then for each i ∈ {1, 2, . . . , n} there exists Ti ∈ CL(X) with Ti ∈ [γ(Wi)\α(L)]

but Ti /∈ η(U), i.e. Ti γ Wi as well as Ti �α W = Lc and Ti η U .

Set T =
⋃
{Ti : i ∈ {1, 2, . . . , n}}. By construction T ∈ CL(X),

T ∈ W =< W−
1 ,W

−
2 , . . . ,W

−
n ,W

+ >γ,α and T /∈ U−
η which contradicts W ⊂ U−

η .

Now we show (2). So, let B ∈ ∆ and W ∈ τ , W 6= X with B �δ W .

Set A = W c. Then A ∈ CL(X) and A ∈ (Bc)+
δ ∈ π(η, δ; ∆). Thus there exists a π(γ, α; Λ)-

neighbourhood

O =< O−
1 , O

−
2 , . . . , O

−
n , O

+ >γ,α such that A ∈ O ⊂ (Bc)+
δ .

Note that
⋃
{Oi : i ∈ {1, 2, . . . , n}} ⊂ O and Oc ∈ Λ. Set M = Oc. Since A ∈ O , then

M �α Ac = W . We claim δ(B) ⊂ α(M). Assume not. Then there exists F ∈ CL(X)

such that FδB but FαM . Set E = A ∪ F ∈ CL(X). Then E ∈ O but E /∈ (Bc)+
δ , which

contradicts O ⊂ (Bc)+
δ .

(b)⇒(a) Let F ∈ U =< U−
1 , U

−
2 , . . . , U

−
n , U

+ >η,δ be a π(η, δ; ∆)-neighbourhood of F . Then

FηUi for each i ∈ {1, 2, . . . , n} as well as F �α U , with Ui, U ∈ τ,
⋃
{Ui : i ∈ {1, 2, . . . , n}} ⊂

U and B = U c ∈ ∆.

By (1) for each i ∈ {1, 2, . . . , n} there are Wi ∈ τ and Li ∈ Λ with F ∈ [γ(Wi)\α(Li)] ⊂
η(Ui).

By (2), there exists M ∈ Λ with M �α F
c and δ(B) ⊂ α(M).

Set N =
⋃
{Li : i ∈ {1, 2, . . . , n}} ∪ M ∈ Λ, O = N c and for each i ∈ {1, 2, . . . , n}

Oi = Wi\N .

Note that FαN together with α ≤ γ imply FγN . Wi = Oi ∪ (Wi ∩N). But FγWi together

with FγN imply FγOi as well as Oi 6= ∅. Moreover FαN implies F �α O = N c. Therefore

F ∈ O =< O−
1 , O

−
2 , . . . , O

−
n , O

+ >γ,α∈ π(γ, α; Λ) .

We claim

O =< O−
1 , O

−
2 , . . . , O

−
n , O

+ >γ,α⊂ U =< U−
1 , U

−
2 , . . . , U

−
n , U

+ >η,δ .

Assume not. Then there exists E ∈ O , but E /∈ U .

Hence either (3) E η Ui for some i or (33) E δ U c.

If (3) occurs, then since EγOi, Oi ⊂ Wi, E �α O = N c and Li ⊂ N we have E ∈
[γ(Wi)\α(Li)] 6⊂ η(Ui), which contradicts (1).

If (33) occurs, then since EδB = U c, E �α O = N c and M ⊂ N we have E ∈ δ(B)\α(M),

i.e. δ(B) 6⊂ α(M), which contradicts (2).
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7 APPENDIX (ADMISSIBILITY)

It is a well known fact, that if (X, τ) is a T1 topological space, then the lower Vietoris

topology τ(V −) is an admissible topology, i.e. the map i : (X, τ) → (CL(X), τ(V −)),

defined by i(x) = {x}, is an embedding. On the other hand (as observed in Example

2.1), if the involved proximity η is different from the discrete proximity η∗, then the map

i : (X, τ) → (CL(X), σ(η−) is, in general, not even continuous. So, we start to study the

behaviour of i : (X, τ) → (CL(X), σ(η−), when η 6= η∗. First we give the following Lemma.

Lemma 7.1 Let (X, τ) be a T1 topological space, U ∈ τ with clU 6= X and V = (clU)c.

If z ∈ clU ∩ clV , then there exists a net (zλ) τ -converging to z such that for all λ either

(i) zλ ∈ U and zλ 6= z, or

(ii) zλ ∈ V and zλ 6= z

Proof: Let N(z) be the filter of open neighbourhoods of z. For each I ∈ N(z), select

wI ∈ I ∩ V and yI ∈ I ∩ U . Then, the net (wI) is τ -converging to z and (wI) ⊂ V as well

as the net (yI) is τ -converging to z and (yI) ⊂ U .

We claim that for all I ∈ N(z) either wI 6= z or yI 6= z.

Assume not. Then there exist I and J ∈ N(z) such that yI = z and wJ = z. As a result

z ∈ U ∩ V ⊂ cl U ∩ V = ∅, a contradiction.

Recall, that a Hausdorff space X is called extremally disconnected if for every open set

U ⊂ X the closure clU of U is open in X (see [8] on page 368).

Proposition 7.2 Let (X, τ) be a Hausdorff space with a compatible LO-proximity η.

The following are equivalent:

(a) X is extremally disconnected;

(b) the map i : (X, τ) → (CL(X), σ(η−)), defined by i(x) = {x}, is continuous.

Proof: (a)⇒(b). Let x ∈ X and (xλ) a net τ -converging to x. Let V ⊂ X with V open

and {x}ηV . Since {x}ηV , then x ∈ cl V . By assumption clV is an open subset of X and

the net (xλ) τ -converges to x. Thus, eventually xλ ∈ clV .

(b)⇒(a). By contradiction, suppose (a) fails. Then there exists open set U ⊂ X such that

closure clU is not open in X. Then clU 6= X. Set V = (clU)c. V is non-empty and open

in X.
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We claim that clU ∩ clV 6= ∅. Assume not, i.e. clU ∩ clV = ∅. Then, clU ⊂ (clV )c ⊂
V c = clU . Thus, clU = (clV )c, i.e. clU is open, a contradiction. Let z ∈ clU ∩ clV . From

Lemma 7.1, there exists a net (zλ) τ -converging to z such that for all λ either (i) zλ ∈ U

and zλ 6= z, or (ii) zλ ∈ V and zλ 6= z. In both cases, there exists an open subset W such

that z ∈ cl,W and zλ 6∈ cl,W for all λ (in fact, if (i) holds, then set W = V , otherwise set

W = U). Thus the net (zλ) τ -converging to z and the open subset W witness that the map

i : (X, τ) → (CL(X), σ(η−)) fails to be continuous.

Now, we investigate when the map i : (X, τ) → (CL(X), σ(η−)) is open.

Proposition 7.3 Let (X, τ) be a T1-topological space with a compatible LO-proximity

η. The following are equivalent:

(a) (X, τ) is nearly regular (cf. Definition 6.3);

(b) the map i : (X, τ) → (CL(X), σ(η−)) is open.

Proof: Left to the reader.

Note that if (X, τ) is a T1-topological space with a compatible LO-proximity δ, then the

map i : (X, τ) → (CL(X), σ(δ+; ∆)) is always continuous with respect the upper proximal

∆ topology σ(δ+; ∆). So, we have:

Proposition 7.4 Let (X, τ) be a T1-topological space, δ a compatible LO-proximity and

∆ ⊂ CL(X) a cobase. The following are equivalent:

(a) the map i : (X, τ) → (CL(X), σ(δ+; ∆)), defined by i(x) = {x}, is an embedding;

(b) the map i : (X, τ) → (CL(X), σ(δ+; ∆)), defined by i(x) = {x} is an open map;

(c) whenever U ∈ τ and x ∈ U , there exists a B ∈ ∆ such that x ∈ Bc ⊂ U .

Finally, we have the following result concerning with the admissibility of the entire symmet-

ric proximal ∆ topology π(η, δ; ∆). Obviously, we investigate just the significant case η 6= η∗

(the standard proximal ∆ topology σ(δ; ∆) = π(η∗, δ; ∆) is always admissible).

Proposition 7.5 Let (X, τ) be a Hausdorff space, η, δ compatible LO-proximities and

∆ ⊂ CL(X) a cobase. The following are equivalent:
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(a) the map i : (X, τ) → (CL(X), π(η, δ; ∆)) is an embedding;

(b) i : (X, τ) → (CL(X), σ(η−)) is continuous and either i : (X, τ) → (CL(X), σ(η−)) or

i : (X, τ) → (CL(X), σ(δ+; ∆)) is open.

Theorem 7.6 Let (X, τ) be a Hausdorff space, η, δ compatible LO-proximities and ∆ ⊂
CL(X) a cobase. The following are equivalent:

(a) the map i : (X, τ) → (CL(X), π(η, δ; ∆)) is an embedding;

(b) X is extremally disconnected and either X is also nearly regular, or whenever U ∈ τ

and x ∈ U , there exists a B ∈ ∆ such that x ∈ Bc ⊂ U .

We raise the following question.

Question 7.1 There exists an extremally disconnected space X which turns out to be

nearly regular, but not regular?
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[14] Marjanovič, M. : Topologies on collections of closed subsets. Publ. Inst. Math.

(Beograd) 20, 125-130 (1966)

[15] Michael, E. : Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71, 152-182

(1951)

[16] Mozzochi, C.J., Gagrat, M., and Naimpally, S.A. : Symmetric Generalized Topo-

logical Structures. Exposition press, Hicksville, New York 1976

[17] Naimpally, S.A. : All hypertopologies are hit-and-miss. Appl. Gen. Top. 3, 45-53

(2002)

[18] Naimpally, S.A. , and Warrack, B.D. : Proximity Spaces. Cambridge Tracts in

Mathematics no. 59, Cambridge University Press 1970

[19] Poppe, H. : Eine Bemerkung über Trennungsaxiome im Raum der abgeschlossenen

Teilmengen eines topologischen Raumes. Arch. Math. 16 , 197-199 (1965)

[20] Poppe, H. : Einige Bemerkungen über den Raum der abgeschlossen Mengen. Fund.

Math. 59, 159-169 (1966)

[21] Snipes, R.F. : Functions that preserve Cauchy sequences. Nieuw Arch. Voor Wiskunde

(3) 25, 409-422 (1977)

[22] Steen, L.A., and Seebach, J.A. : Counterexamples in Topology. Holt, Rinehart and

Winston, New York 1970



Symmetric Proximal Hypertopology 25

[23] Thron, W. : Topological Structures. Holt, Rinehart and Winston, New York 1966

[24] Vietoris, L. : Stetige Mengen. Monatsh. für Math. und Phys. 31, 173-204 (1921)

[25] Vietoris, L. : Bereiche zweiter Ordnung. Monatsh. für Math. und Phys. 32, 258-280

(1922)

[26] Wijsman, R. : Convergence of sequences of convex sets, cones, and functions, II.

Trans. Amer. Math. Soc. 123, 32-45 (1966)

[27] Willard, S. : General Topology. Addison-Wesley 1970

received: October 18, 2002

Authors:

Giuseppe Di Maio

Dipartimento di Matematica

Seconda Università di Napoli
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