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Coincidence Points For Multivalued Mappings

ABSTRACT. In this paper we show some coincidence theorems for contractive type mul-

tivalued mappings in compact metric spaces, which extend properly the results of Kubiak

and Kubiaczyk.
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1 Introduction and preliminaries

Let (X, d) be a metric space. For any nonempty subsets A,B of X we define D(A,B) =

inf{d(a, b) : a ∈ A and b ∈ B}, δ(A,B) = sup{d(a, b) : a ∈ A and b ∈ B} and H(A,B) =

max{sup[D(a,B) : a ∈ A], sup[D(A, b) : b ∈ B]}. Let CL(X) = {A : A is a nonempty

closed subset of X} and CB(X) = {A : A is a nonempty bounded closed subset of X}. It

is well known that (CB(X), H) is a metric space. Obviously CB(X) = CL(X) if (X, d) is

a compact metric space. Let S be a mapping of X into CL(X), f a selfmapping of X. A

point x ∈ X is called a coincidence point of f and S if fx ∈ Sx.

Kubiak [1] and Kubiaczyk [2] proved some fixed point theorems for contractive type mul-

tivalued mappings in compact metric spaces. The purpose of this paper is to extend their

results to a more general case.
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2 Coincidence theorems

Theorem 2.1 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X). Suppose that f and g are selfmappings of X satisfying

δ(Sx, Ty) < max
{
d(fx, gy), H(fx, Sx), H(gy, Ty),

1

2
[D(fx, Ty) +D(gy, Sx)],

H(fx, Sx)H(gy, Ty)/d(fx, gy),

D(fx, Ty)D(gy, Sx)/d(fx, gy)
}

(2.1)

for all x, y ∈ X with fx 6= gy. Let SX ⊆ gX and TX ⊆ fX. If either f and S or g and T

are continuous, then either f and S or g and T have a coincidence point u with Su = {fu}
or Tu = {gu}.

Proof: We assume without loss of generality that f and S are continuous. It follows that

H(fx, Sx) is a continuous function on X. By the compactness of X, there exists a point u ∈
X such that H(fu, Su) = inf{H(fx, Sx) : x ∈ X}. It is easy to check that there is a point

y ∈ Su with d(fu, y) = H(fu, Su). Since SX ⊆ gX, then there exists a point v ∈ X with y =

gv. Consequently d(fu, gv) = H(fu, Su) for some gv ∈ Su. Similarly, there are two points

w, x ∈ X such that d(gv, fw) = H(gv, Tv), d(fw, gx) = H(fw, Sw), where fw ∈ Tv, gx ∈
Sw. We now assert that H(fu, Su)H(gv, Tv) = 0. Otherwise H(fu, Su)H(gv, Tv) > 0.

Using (2.1) we have

δ(Su, Tv) < max
{
d(fu, gv), H(fu, Su), H(gv, Tv),

1

2
[D(fu, Tv) +D(gv, Su)],

H(fu, Su)H(gv, Tv)/d(fu, gv),

D(fu, Tv)D(gv, Su)/d(fu, gv)
}

= max
{
H(fu, Su), H(gv, Tv),

1

2
[d(fu, gv) +H(gv, Tv)]

}
= max

{
H(fu, Su), H(gv, Tv)

}
which implies

H(gv, Tv) ≤ δ(Su, Tv) < max
{
H(fu, Su), H(gv, Tv)

}
= H(fu, Su) . (2.2)

Similarly we can show

H(fw, Sw) ≤ δ(Sw, Tv) < max
{
H(gv, Tv), H(fw, Sw)

}
= H(gv, Tv) . (2.3)
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It follows from (2.2) and (2.3) that

H(fw, Sw) < H(gv, Tv) < H(fu, Su) = inf
{
H(fx, Sx) : x ∈ X

}
which is a contradiction and hence H(fu, Su)H(gv, Tv) = 0, which implies that Su = {fu}
or Tv = {gv}. This completes the proof.

If f and g are the identity mapping on X, Theorem 2.1 reduces to the following.

Corollary 2.2 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X) satisfying

δ(Sx, Ty) < max
{
d(x, y), H(x, Sx), H(y, Ty),

1

2
[D(x, Ty) +D(y, Sx)],

H(x, Sx)H(y, Ty)/d(x, y),

D(x, Ty)D(y, Sx)/d(x, y)
}

(2.4)

for all x, y ∈ X with x 6= y. If S or T is continuous, then S or T has a fixed point u with

Su = {u} or Tu = {u}.

Remark 2.1 Theorem 4 in [1] and Theorem 4 in [2] are special cases of Corollary 2.2. The

following example demonstrates that Corollary 2.2 extends properly Theorem 4 in [1] and

Theorem 4 in [2].

Example 2.1 Let X = {1, 3, 6, 10}, d the ordinary distance, and define S and T by S1 =

{3, 6}, S3 = {3, 6, 10}, S6 = S10 = T1 = T6 = T10 = {6} and T3 = {10}. Then (X, d)

is a compact metric space, S and T are continuous mappings of X into CL(X). It is easy

to show that S and T satisfy (2.4). But Theorem 4 in [1] and Theorem 4 in [2] are not

applicable since

δ(Sx, Ty) < max
{
d(x, y), H(x, Sx), H(y, Ty),

1

2
[D(x, Ty) +D(y, Sx)]

}
and

δ(Sx, Ty) < a(x, y)d(x, y) + b(x, y)[H(x, Sx) +H(y, Ty)]

+c(x, y)[D(x, Ty) +D(y, Tx)]

are not satisfied for x = 1 and y = 3, where a, b and c are functions of X × X into [0,∞)

with sup{a(x, y) + 2b(x, y) + 2c(x, y) : (x, y) ∈ X ×X} ≤ 1.
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Theorem 2.3 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X). Assume that f and g are selfmappings of X satisfying

H(Sx, Ty) < max
{
d(fx, gy), D(fx, Sx), D(gy, Ty),

1

2
[D(fx, Ty) +D(gy, Sx)],

D(fx, Sx)D(gy, Ty)/d(fx, gy),

D(fx, Ty)D(gy, Sx)/d(fx, gy)
}

(2.5)

for all x, y ∈ X with fx 6= gy. Let SX ⊆ gX and TX ⊆ fX. If either f and S or g and T

are continuous, then either f and S or g and T have a coincidence point.

Proof: We may assume that f and S are continuous on X. Then D(fx, Sx) is continuous

and attains its minimum at some u ∈ X. As in the proof of Theorem 2.1, there exist

v, w, x ∈ X such that d(fu, gv) = D(fu, Su), d(gv, fw) = D(gv, Tv) and d(fw, gx) =

D(fw, Sw), where gv ∈ Su, fw ∈ Tv, gx ∈ Sw. Assume that D(fu, Su)D(gv, Tv) > 0. The

same argument as that of the proof of Theorem 2.1 shows that D(fw, Sw) < D(gv, Tv) <

D(fu, Su), which contradicts the miniality of D(fu, Su). Hence D(fu, Su)D(gv, Tv) = 0.

That is, fu ∈ Su or gv ∈ Tv. This completes the proof.

As an immediate consequence of Theorem 2.3 we have the following.

Corollary 2.4 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X). Suppose that f and g are selfmappings of X satisfying

H(Sx, Ty) < max
{
d(fx, gy), D(fx, Sx), D(gy, Ty),

1

2
[D(fx, Ty) +D(gy, Sx)]

}
(2.6)

for all x, y ∈ X with fx 6= gy. Let SX ⊆ gX and TX ⊆ fX. If either f and S or g and T

are continuous, then either f and S or g and T have a coincidence point.

Remark 2.2 If f and g are the identity mapping on X, Corollary 2.4 reduces to Theorem

2 in [1] and includes Theorem 3 in [2]. The following example verifies that Corollary 2.4

does indeed generalize Theorem 2 in [1] and Theorem 3 in [2], that not both f , S and g, T

of Corollary 2.4 need have a coincidence point and that the coincidence point may not be

unique.

Example 2.2 Let X = {1, 3, 6} with the usual metric, and define S, T , f and g by

S1 = S3 = T6 = {1, 3}, S6 = T1 = {3}, T3 = {1}, f1 = f6 = 3, f3 = 1, g1 = g3 = g6 = 6.

It is easy to see that the hypothesis of Corollary 2.4 is satisfied. Clearly f and S have three
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coincidence points while g and T have none. However, Theorem 2 in [1] and Theorem 3 in

[2] are not applicable since

H(Sx, Ty) < max
{
d(x, y), D(x, Sx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Sx)]

}
and

H(Sx, Ty) < a(x, y)d(x, y) + b(x, y)[D(x, Sx) +D(y, Ty)]

+c(x, y)[D(x, Ty) +D(y, Sx)]

are not satisfied for x = 1 and y = 3, where a, b and c are functions of X × X into [0,∞)

with sup{a(x, y) + 2b(x, y) + 2c(x, y) : (x, y) ∈ X ×X} ≤ 1.
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