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Existence of Solutions for an Elliptic Equation In-
volving a Schrödinger Operator with Weight in all
of the Space

ABSTRACT. In this paper, we obtain some results about the existence of solutions for the

following elliptic semilinear equation (−∆+ q)u = λmu+f(x, u) in RN where q is a positive

potential satisfying lim|x|→+∞ q(x) = +∞ and m is a bounded positive weight.

1 Introduction

In this paper, we study the existence of solutions for the elliptic semilinear equation:

(−∆ + q)u = λmu+ f(x, u) in RN (1)

where the following hypotheses are satisfied:

(h1) q ∈ L2
loc(RN) such that lim|x|→+∞ q(x) = +∞ and q ≥ const > 0.

(h2) m ∈ L∞(RN) such that ∃m1 ∈ R∗+, ∃m2 ∈ R∗+, ∀x ∈ RN , 0 < m1 ≤ m(x) ≤ m2.

We will specify later the hypothesis on f . We denote by λ a real parameter.

The variational space is denoted by Vq(RN) = {u ∈ L2(RN), (−∆ + q)u ∈ L2(RN)} which

is the completed of D(RN ) for the norm ‖u‖q =
√∫

RN |∇u|2 + qu2.

Recall (see [1] for example) that the embedding of Vq(RN) into L2(RN) is compact.

We denote by ‖u‖m =
√∫

RN mu2 for all u ∈ L2(RN). According to the hypothesis (h2), ‖.‖m

is a norm in L2(RN) equivalent to the usual norm. We denote by M the operator of multi-

plication by m in L2(RN). The operator (−∆ + q)−1M : (L2(RN), ‖.‖m) → (L2(RN), ‖.‖m)

is positive self-adjoint and compact. So its spectrum is discrete and consists of a positive

sequence µ1 ≥ µ2 ≥ ...µn → 0 when n→ +∞. We denote by λ1 = 1
µ1

and u1 the correspond-

ing eigenfunction which satisfy (−∆ + q)u1 = λ1mu1 in RN and ‖u1‖m = 1. (We know that
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λ1 is simple and u1 > 0 (see [2, Th2.2]).) By the Courant-Fischer formulas, λ1 is given by:

λ1 = inf{
∫

RN |∇φ|2 + qφ2∫
RN mφ2

, φ ∈ D(RN )}.

We recall now some results already obtained for the existence of solutions in the linear cases

or semilinear cases.

Using the Lax-Milgram theorem and the above characterization of λ1, we obtain the following

result:

Theorem 1.1 (see [3],[4]) We consider the linear case (i.e. f(x, u) = f(x).) As-

sume that the hypotheses (h1) and (h2) are satisfied and that f ∈ L2(RN). If λ < λ1, then

the equation (1) has a unique solution uλ ∈ Vq(RN). Moreover, the Maximum Principle is

satisfied i.e.: if f ≥ 0 and λ < λ1 then uλ ≥ 0.

If λ = λ1 (which is the case of the Fredholm Alternative), then the equation (1) admits a

solution iff
∫

RN fu1 = 0.

Using a method of sub- and supersolutions and a Schauder Fixed Point Theorem (see [3])

or an approximation method (see [4]), we get the following results in the semilinear case:

Theorem 1.2 1. (see [3]). Assume that the hypotheses (h1) and (h2) are satisfied.

Assume also that f is Lipschitz in u uniformly in x and that:

∃θ ∈ L2(RN), θ > 0,∀u ≥ 0, 0 ≤ f(x, u) ≤ su+ θ.

If λ < λ1, the equation (1) has at least a positive solution.

2. (see [4]). Assume that the hypothesis (h1) is satisfied, N ≥ 3 and 0 ≤ m ∈ LN
2 (RN) ∩

L∞loc(RN). Assume also that f is Lipschitz in u uniformly in x and that: ∃θ ∈ L2(RN),

∀u ∈ L2(RN), |f(x, u)| ≤ θ.

If λ < λ1, then the equation (1) has at least a solution.

Finally, for the linear case (i.e. f(x, u) = f(x)), assuming N = 2, m a radial weight and q

a radial potential with some strong properties of growth at infinity (not recalled here) (see

[5]), we obtain the following result for the Antimaximum Principle:

Theorem 1.3 (see [5]) Assume that the hypotheses (h1) and (h2) are satisfied.

We denote by X1,2 = {f ∈ L2
loc(R2), ∂f

∂θ
(r, .) ∈ L2(−π, π) for all r > 0, and ∃C ≥ 0,

‖f(r, θ)‖+ ( 1
2π

∫ π

−π
|∂f
∂θ

(r, θ)|2dθ) 1
2 ≤ Cu1(r) for all r ≥ 0 and θ ∈]− π, π].}

Assume that f ≥ 0 in R2, f > 0 in a subset with a non zero Lebesgue measure and f ∈ X1,2.

Let u be a solution of the equation (1).

Then ∃δ(f) > 0,∀λ ∈ (λ1, λ1 + δ(f)),∃c(λ, f) > 0, u ≤ −c(λ, f)u1.
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In this paper, we sudy the existence of solutions for the equation (1) in the case λ > λ1, λ

near λ1.

For the linear case (i.e. f(x, u) = f(x)), if λ ∈ (λ1, λ2), λ2 = 1
µ2

where µ2 is the second

eigenvalue of (−∆ + q)−1M , then there are obviously existence and uniqueness of a solution

for the equation (1).

In the second section, following a bifurcation method developped in [6], we get the following

result:

Theorem 1.4 Assume that the hypotheses (h1) and (h2) are satisfied. Assume also that

f : RN × R → R (defined by f(x, y)) satisfies the following hypothesis (h3):

i) f(x, 0) = 0.

ii) f is Frechet differentiable with respect to the second variable y and its derivative f ′y(x, .)

is continuous and bounded, uniformly in x.

iii) f ′y(x, 0) = 0.

Then there exists for λ sufficiently near λ1 a nontrivial solution for the equation (1).

Finally, in the third section, following a method developped in [7] for the p-Laplacian in

a bounded domain of RN , we get results for the case where f(x, u) = f(x)|u(x)|γ−2u(x).

Before stating the results, we need some notations. We define for C ∈ R∗+ the set Xq,C =

{u ∈ Vq(RN), u1 ≤ u ≤ C a.e.}.
Let F (u) :=

∫
RN f |u|γ for all u ∈ Vq(RN).

Let λ∗ = supu∈Vq(RN ),u≥0{infφ∈Vq(RN ){
∫

RN ∇u.∇φ+quφ∫
RN muφ

, F ′(u)(φ) ≥ 0, φ ≥ 0}} and

λ∗∗ = supu∈Xq,C
{infφ∈Vq(RN ){

∫
RN ∇u.∇φ+quφ∫

RN muφ
, F ′(u)(φ) ≥ 0, φ ≥ 0}}.

(Note that λ∗∗ ≤ λ∗.)

We consider also hypotheses of the following forms:

(h4) λ1 < λ∗∗ ≤ λ∗ < +∞.

(h5) f ∈ L∞(RN).

(h6) The sets Ω+ = {x ∈ RN , f(x) > 0} and Ω− = {x ∈ RN , f(x) < 0} have non zero

measures.

(h7) f ≥ − εu1m
lγ−2Cγ−1 .

Theorem 1.5 Assume that the hypotheses (h1) and (h2) are satisfied, N = 3, 4 so that

γ = 2∗ = 2N
N−2

∈ N∗.
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1. If in addition the hypotheses (h4) and (h5) are satisfied, and if λ > λ∗, then the

equation (1) has no positive solution.

2. Assume additionally that the hypotheses (h4) − (h7) are satisfied, where the numbers

l ≥ 1, ε > 0, ε involved in (h7) are small enough such that λ1 ≤ εγlγ−2 and ε < λ1

γ
.

If there holds λ1 + εlγ−2 < λ < λ∗∗ with the same numbers ε, l as in (h7), then the

equation (1) has at least a positive solution.

2 A bifurcation result

In this section, we follow a method developped in [6].

We obtain some results of the existence of solutions for the semilinear equation

(−∆ + q)u = λmu+ f(x, u) in RN (1)

by considering bifurcating solutions from the zero solution. We suppose that the hypotheses

(h1), (h2), (h3) are satisfied in all this section. We denote by < ., . >q the inner product in

Vq(RN). We define the operator T : R× Vq(RN) → Vq(RN) by: ∀φ ∈ Vq(RN)

< T (λ, u), φ >q=

∫
RN

∇u.∇φ+ quφ− λ

∫
RN

muφ−
∫

RN

f(x, u(x))φ(x)dx.

Lemma 2.1 The operator T is well defined.

Proof: Let u ∈ Vq(RN). We introduce

F (φ) =
∫

RN ∇u.∇φ+ quφ− λ
∫

RN muφ−
∫

RN f(x, u(x))φ(x)dx for all φ ∈ Vq(RN).

Since m is bounded, f is Lipschitz in u uniformly in x and f(x, 0) = 0, we deduce that:

∀φ ∈ Vq(RN), |F (φ)| ≤ const · ||u||q||φ||q. The operator F is linear and continuous. By the

Riesz Theorem, we can well define the operator T .

Lemma 2.2 The operator T is continuous, Frechet differentiable with continuous deriva-

tives given by: ∀φ ∈ Vq(RN), ∀ψ ∈ Vq(RN),

< T ′u(λ, u)φ, ψ >q=

∫
RN

∇φ.∇ψ + qφψ − λ

∫
RN

mφψ −
∫

RN

f ′y(x, u(x))φ(x)ψ(x)dx.

< T ′λ(λ, u), φ >q= −
∫

RN

muφ ; < T ′′λu(λ, u)φ, ψ >q= −
∫

RN

mφψ.

Proof: We do not give here the details of the proof which is technical but simple. Since

m is bounded and f is Lipschitz in u uniformly in x, we obtain the continuity of T and

T ′λ. By using the hypothesis that f ′y(x, .) is bounded uniformly in x and using the Lebesgue

Dominated Convergence Theorem, we get the continuity of T ′u.
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Remarks T ′u(λ1, 0) is a continuous self-adjoint operator (by (h3)); the kernel N(T ′u(λ1, 0))

is generated by u1. So dimN(T ′u(λ1, 0)) = 1 = dimR(T ′u(λ1, 0)). Moreover T ′′λu(λ1, 0)u1 6∈
R(T ′u(λ1, 0)).

Indeed, denote by < u1 > the sub-space of Vq(RN) generated by u1. Since T ′u(λ1, 0) is a

self-adjoint operator, the range R(T ′u(λ1, 0)) of T ′u(λ1, 0) is the orthogonal of < u1 >. But

< T ′′λu(λ1, 0)u1, u1 >q= −
∫

RN mu
2
1 < 0.

So T ′′λu(λ1, 0)u1 6∈ R(T ′u(λ1, 0)).

We can now apply the Theorem 1.7 in [8] to obtain a local bifurcation result.

Theorem 2.1 Assume that the hypotheses (h1)− (h3) are satisfied. Then there exist a

number ε0 > 0, and two continuous functions η : (−ε0, ε0) → R and ψ : (−ε0, ε0) →< u1 >
⊥

such that: η(0) = λ1, ψ(0) = 0 and all non trivial solutions of T (λ, u) = 0 in a small

neighbourhood of (λ1, 0) have the form (λε, uε) = (η(ε), εu1 + εψ(ε)) for all ε ∈ (−ε0, ε0).

Remark T (λ, u) = 0 iff u is solution of the equation (1). So near λ1 (including the cases

where λ > λ1), the equation (1) admits non trivial solutions.

Adding another hypothesis on f , we are going to study now the sign of uε for ε ∈ (−ε0, ε0).
First, we study the asymptotic behaviour of each solution of the equation (1).

Lemma 2.3 Assume that the hypothesis (h1)− (h3) are satisfied. Let u be a solution of

the equation (1). Then lim|x|→+∞ u(x) = 0.

Proof: We have in a weak sense: (−∆+q)u = λmu+f(x, u) = [λm+ f(x,u)
u

]u in RN . By (h3),

∃K > 0, |f(x, u)| ≤ K|u|. Using (h2) we obtain that λm + f(x,u)
u

∈ L∞(RN). This implies

by Theorem 4.1.3 in [3] combining with Theorem 8.17 in [9] that lim|x|→+∞ u(x) = 0.

Theorem 2.2 Assume that the hypotheses (h1) − (h3) are satisfied. Assume also that

the following hypothesis (h′3) is satisfied where:

(h′3) ∃R > 0, ∃ε∗ > 0, ∀x ∈ RN , ∀y ∈ R∗−, |x| > R and |λ−λ1| < ε∗ ⇒ λm(x)y+f(x, y) >

0.

Then uε ≥ 0 for ε small enough.

Proof:

i) Recall that lim|x|→+∞ uε(x) = 0.

ii) Let 0 < ε < ε0. We have: ∀x, uε(x) = εu1(x) + εψ(ε)(x). Since u1 > 0 and ψ(ε) → 0

when ε→ 0, we deduce that:∃ε1 > 0, 0 < ε < ε1 ⇒ ∀x ∈ B(0, R), uε(x) > 0.

We suppose that: ∃x0 ∈ RN , uε(x0) < 0. Since lim|x|→+∞ uε(x) = 0, we deduce that



58 L. Cardoulis

there exists x1 ∈ RN , |x1| > R such that uε has a negative minimum in x1.

If (−∆ + q)(uε)(x1) > 0, then there exists a bounded domain Ω, containing x1 such

that ∀x ∈ Ω, (−∆ + q)(uε)(x) ≥ 0.

By the Maximum Principle (see Corollary 3.2 in [9]), we have: infΩ uε = uε(x1) ≥
inf∂Ω u

−
ε ≥ 0 where u−ε = max{0,−uε}. Since uε(x1) < 0, we get a contradiction.

Therefore (−∆ + q)(uε)(x1) ≤ 0. Using (h′3), we have also: (−∆ + q)(uε)(x1) =

λm(x1)uε(x1) + f(x1, uε(x1)) > 0.

So we get again a contradiction. Therefore uε ≤ 0.

We sudy now the global nature of the continuum of solutions obtained by bifurcation from

the (λ1, 0) solution. Using Theorems 1.3 and 1.40 in [10], we obtain the following result:

Theorem 2.3 There exists a continuum C of non trivial solutions for the equation (1)

obtained by bifurcation from the (λ1, 0) solution, which is either unbounded or contains a

point (λ, 0) where λ 6= λ1 is the inverse of an eigenvalue of the operator L. (L is defined by

< Lu, φ >q=
∫

RN muφ.) Since λ1is simple, C has two connected subsets C+ and C− which

satisfy also the above alternatives.

Proof:

i) We define an operator S by setting S(λ, u) = u− T (λ, u) i.e. ∀φ ∈ Vq(RN),

< S(λ, u), φ >q=

∫
RN

[λmuφ+ f(x, u)φ].

So u is a solution of the equation (1) iff u = S(λ, u). We write S(λ, u) = λLu+H(λ, u)

where < Lu, φ >q=
∫

RN muφ and < H(λ, u), φ >q=
∫

RN f(x, u)φ.

ii) For applying the results in [10], we must prove that S : R × Vq(RN) → Vq(RN) is

continuous and compact, that L : Vq(RN) → Vq(RN) is linear and compact, that

H(λ, u) = O(‖u‖) for u near 0 uniformly on bounded intervals of λ and that 1
λ1

is a

simple eigenvalue of L (which is true because it’s a simple eigenvalue of (−∆+q)−1M .)

iii) We show here that S is continuous and compact. S is continuous since T is continuous.

Let ((λn, un))n be a bounded sequence in R× Vq(RN). Since the embedding of Vq(RN)

into L2(RN) is compact, there exists a convergent subsequence, denoted also by

((λn, un))n in R× L2(RN).

We have: ∀φ ∈ Vq(RN),
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< S(λn, un)−S(λp, up), φ >q= λn

∫
RN munφ−λp

∫
RN mupφ+

∫
RN [f(x, un)−f(x, up)]φ.

So ‖S(λn, un)− S(λp, up)‖2
q = (λn − λp)

∫
RN mun[S(λn, un)− S(λp, up)]

+λp

∫
RN

m(un−up)[S(λn, un)−S(λp, up)]+

∫
RN

[f(x, un)−f(x, up)][S(λn, un)−S(λp, up)].

By (h2) and (h3) we deduce that (S(λn, un))n is a Cauchy sequence and therefore a

convergent sequence. So S is compact.

iv) We show here that L is linear and compact. L is obviously linear and continuous.

Let (un)n be a bounded sequence in Vq(RN). Since the embedding of Vq(RN) into

L2(RN) is compact, there exists a convergent subsequence, denoted also by (un)n in

L2(RN).

We have: ‖Lun − Lup‖2
q =

∫
RN m(un − up)[Lun − Lup].

By the Cauchy-Schwartz inequality, we get: ‖Lun − Lup‖q ≤ cst‖un − up‖L2(RN ).

Therefore (Lun)n is a Cauchy sequence and so L is compact.

v) Finally note that H(λ, u) is independant of λ. We denote it H(u). We have: ‖H(u)‖2
q =∫

RN f(x, u)H(u) ≤ cst‖u‖q‖H(u)‖q.

So H(u) = O(‖u‖).

3 Existence of positive solutions

We follow here a method developped in [7] for the p-Laplacian in a bounded domain.

Our results are more restrictive than in [7] because of the unboundedness of our domain.

We consider the equation

(−∆ + q)u = λmu+ f |u|γ−2u in RN (1)

for which the hypotheses (h1) and (h2) are satisfied, andN = 3, 4 so that γ = 2∗ = 2N
N−2

∈ N∗.

Our aim is to study the existence of positive solutions for the equation (1) where λ > λ1.

We define for C ∈ R∗+, C ≥ u1, the set Xq,C = {u ∈ Vq(RN), u1 ≤ u ≤ C a.e.}
Let F (u) :=

∫
RN f |u|γ and Hλ(u) :=

∫
RN |∇u|2 + qu2 − λ

∫
RN mu

2 for all u ∈ Vq(RN).

Let λ∗ = supu∈Vq(RN ),u≥0{infφ∈Vq(RN ){
∫

RN ∇u.∇φ+quφ∫
RN muφ

, F ′(u)(φ) ≥ 0, φ ≥ 0}} and

λ∗∗ = supu∈Xq,C
{infφ∈Vq(RN ){

∫
RN ∇u.∇φ+quφ∫

RN muφ
, F ′(u)(φ) ≥ 0, φ ≥ 0}}.

(Note that λ∗∗ ≤ λ∗.)

Let l ≥ 1, ε > 0, ε be small enough such that λ1 ≤ εγlγ−2 and ε < λ1

γ
.
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Remark There holds λ1 ≤ λ∗. On the contrary, if λ1 > λ∗, then by the characterization

of λ1 we have Hλ1(u1) = 0. By the definition of λ∗, ∃φ ∈ Vq(RN), φ ≥ 0, F ′(u1)(φ) ≥
0,

∫
RN ∇u1.∇φ+qu1φ∫

RN mu1φ
≤ λ∗ < λ1.

So H ′
λ1

(u1)(φ) < 0.

We have: ∀η ∈ R∗+, Hλ1(u1 + ηφ) = Hλ1(u1) + ηH ′
λ1

(u1)(φ) + ‖ηφ‖h(ηφ) with h(ηφ) →
0 when η → 0. Therefore, for η small enough, we have Hλ1(u1 +ηφ) < 0 and this contradicts

the definition of λ1.

Theorem 3.1 Assume that the hypotheses (h1) − (h7) are satisfied, N = 3, 4 and γ =

2∗ = 2N/(N − 2).

a) If λ > λ∗, then the equation (1) has no positive solution.

b) If λ1 + εlγ−2 < λ < λ∗∗, then the equation (1) has at least a positive solution.

Proof:

i) By (h7) we have: f ≥ − εu1m
lγ−2Cγ−1 ≥ − λ1m

γlγ−2Cγ−2 ≥ − εm

uγ−2
1

.

ii) SinceH1(RN) ⊂ L2∗(RN) with continuous imbedding, we deduce that Vq(RN) ⊂ L2∗(RN)

with continuous imbedding.

Note that ∀φ ∈ Vq(RN), F ′(u)(φ) = γ
∫

RN f |u|γ−2uφ and

H ′
λ(u)(φ) = 2

∫
RN [∇u.∇φ+ quφ− λmuφ].

Note also that u is a solution of the equation (1) iff ∀φ ∈ Vq(RN), H ′
λ(u)(φ) =

2
γ
F ′(u)(φ).

Moreover, if t ∈ R∗+, F ′(tu)(φ) = tγ−1F ′(u)(φ) and H ′
λ(tu)(φ) = tH ′

λ(u)(φ).

Assume here that λ > λ∗.

So: ∀u ∈ Vq(RN), u ≥ 0, ∃φ ≥ 0, F ′(u)(φ) ≥ 0 and H ′
λ(u)(φ) < 0. Therefore the

equation (1) has no positive solution.

Assume now that λ1 + εlγ−2 < λ < λ∗∗.

We are going to prove that the equation (1) admits at least a positive solution by using

the sub and supper solutions method and a Schauder Fixed Point Theorem.

a) Note by the definition of λ∗∗ that:

∃u∗ ∈ Xq,C , ∀φ ≥ 0, F ′(u∗)(φ) ≥ 0 ⇒ H ′
λ(u

∗)(φ) > 0. (e)

We suppose that ∀0 < t ≤ l, ∃ψt ≥ 0, H ′
λ(tu

∗)(ψt) <
2
γ
F ′(tu∗)(ψt).
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If ∀t, ∀ψt, F
′(tu∗)(ψt) ≥ 0, then:

Let φ ≥ 0 such that F ′(u∗)(φ) < 0.

So ∀t > 0, H ′
λ(tu

∗)(φ) ≥ 2
γ
F ′(tu∗)(φ) i.e. ∀t > 0, tγ−2

∫
RN f(u∗)γ−1φ ≤∫

RN [∇u∗.∇φ+ qu∗φ− λmu∗φ].

When t→ 0, we get: 0 ≤ H ′
λ(u

∗)(φ).

So F ′(u∗)(φ) < 0 ⇒ H ′
λ(u

∗)(φ) ≥ 0.

Using the property (e), we get: ∀φ ≥ 0, H ′
λ(u

∗)(φ) ≥ 0.

In particular, for φ = u1, we obtain: λ1

∫
RN mu

∗u1 ≥ λ
∫

RN mu
∗u1 > 0.

Since λ1 < λ, we get a contradiction.

If ∀t, ∀ψt, F
′(tu∗)(ψt) ≤ 0, then:

Let φ ≥ 0 such that F ′(tu∗)(φ) > 0. We have H ′
λ(tu

∗)(φ) ≥ 2
γ
F ′(tu∗)(φ) > 0.

So ∀t,
∫

RN [∇u∗.∇φ+ qu∗φ− λmu∗φ] ≥ tγ−2
∫

RN f(u∗)γ−1φ > 0 and this is impos-

sible for t large enough (because we can take a bigger l.)

Then we have: ∃φ ≥ 0, ∃ψ ≥ 0, H ′
λ(u

∗)(φ) < 2
γ
tγ−2F ′(u∗)(φ) < 0 and

0 < H ′
λ(u

∗)(ψ) < 2
γ
tγ−2F ′(u∗)(ψ) (for at least one t).

Since F ′(u∗) is a continuous function, ∃α ∈ (0, 1), F ′(u∗)(αφ+ (1− α)ψ) = 0.

Therefore we deduce that H ′
λ(u

∗)(αφ+ (1− α)ψ) > 0.

But: αγ
2tγ−2H

′
λ(u

∗)(φ) < αF ′(u∗)(φ) = −(1− α)F ′(u∗)(ψ) < − (1−α)γ
2tγ−2 H

′
λ(u

∗)(ψ).

So γ
2tγ−2 [αH

′
λ(u

∗)(φ) + (1− α)H ′
λ(u

∗)(ψ)] < 0 and we get a contradiction.

Therefore ∃t ∈ (o, l], ∀φ ≥ 0, H ′
λ(tu

∗)(φ) ≥ 2
γ
F ′(tu∗)(φ) i.e. tu∗ is a supper solution of

the equation (1). Note that tu∗ ≥ su1 if 0 < s ≤ t. Let s > 0 such that 1
s
≤ lγ−3.

This is possible because we can choose l sufficiently big such that 1
lγ−3 ≤ t ≤ l.

b) We show now that su1 is a sub solution of the equation (1).

We have: λ1−λ
sγ−2 < −ε (since l ≥ s) and f ≥ − εm

uγ−2
1

.

So: fuγ−1
1 > λ1−λ

sγ−2 mu1 and therefore su1 is a sub solution of the equation (1).

c) Let σ = [su1, tu
∗] and the operator T be defined by T (u) = v with v solution of

(−∆ + q)v = λmu+ f |u|γ−2u in RN .

We want to prove that T (σ) ⊂ σ and that T is a continuous compact operator.

Let u ∈ σ and T (u) = v.

We have, in a weak sense: (−∆ + q)(v − su1) = λmu+ fuγ−1 − λ1msu1.

By (h7), f ≥ − εu1m
lγ−2Cγ−1 .

So, since u > 0, we have: λmu+fuγ−1−λ1msu1 ≥ − εu1m
lγ−2Cγ−1u

γ−1+λmu−λ1msu1.

Moreover u ∈ σ so uγ−1 ≤ lγ−1Cγ−1

and λmu+ fuγ−1 − λ1msu1 ≥ m[λu− (λ1 + εl
s
)su1] > 0.
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Therefore, since u ≥ su1 and λ > λ1 + εlγ−2 ≥ λ1 + ε l
s
, we obtain that:

(−∆ + q)(v − su1) ≥ 0.

By the Maximum Principle, we deduce that v ≥ su1.

Moreover we have: ∀φ ≥ 0, < (−∆ + q)(tu∗ − v), φ >L2(RN )≥
∫

RN [λm(tu∗ −
u) + f((tu∗)γ−1 − uγ−1)]φ.

By (h7), since t ≤ l and λ1 < λ we have:

f ≥ − λ1m
γCγ−2lγ−2 ≥ − λ1m

γCγ−2tγ−2 ≥ − λm
γCγ−2tγ−2 .

But λm(tu∗ − u) + f((tu∗)γ−1 − uγ−1) ≥ 0 iff f ≥ − λm∑γ−2
i=0 (tu∗)iuγ−2−i

.

Since
∑γ−2

i=0 (tu∗)iuγ−2−i ≤ γCγ−2tγ−2, we get f ≥ − λm∑γ−2
i=0 (tu∗)iuγ−2−i

.

Therefore, by the Maximum Principle, we obtain (−∆ + q)(tu∗ − v) ≥ 0 and so

v ≤ tu∗.

d) Let (un)n be a convergent sequence in σ, with limit u for the norm ‖.‖q. Let

T (un) = vn and T (u) = v.

We have: ∀n,
‖vn − v‖2

q ≤ cst‖un − u‖q‖vn − v‖q + ‖f‖∞
∫

RN |uγ−1
n − uγ−1||vn − v|.

Since un, u ∈ σ, |uγ−1
n − uγ−1| ≤ cst|un − u| we obtain that:

‖vn − v‖q ≤ cst‖un − u‖q and so T is a continuous operator. We finish this proof

by showing that T is compact. Let now (un)n be a bounded sequence in σ for the

norm ‖.‖q. Since the embedding of Vq(RN) into L2(RN) is compact, there exists

a convergent subsequence, denoted also by (un)n, in L2(RN). Let T (un) = vn.

We have: ∀n, p
‖vn − vp‖2

q = λ
∫

RN m(un − up)(vn − vp) +
∫

RN f(uγ−1
n − uγ−1

p )(vn − vp).

Since |uγ−1
n − uγ−1

p | ≤ cst|un − up| we obtain that:

‖vn − vp‖q ≤ cst‖un − up‖L2(RN ).

We can deduce that (vn)n is a Cauchy sequence and so T is a compact operator.

To finish, we obtain some results assuring the validity of the hypothesis (h4). First, we need

the following lemma: ( we still follow a method developped in [7]).

Lemma 3.1 ∀u ∈ Vq(RN), u > 0,∀φ ∈ Vq(RN), φ ≥ 0,

H ′
λ(u)((

φ
u
)γ−1φ)−H ′

λ(φ)((φ
u
)γ−1u) ≤ 0.

Proof: We denote by A = H ′
λ(u)((

φ
u
)γ−1φ)−H ′

λ(φ)((φ
u
)γ−1u).

We have: A = 2
∫

RN [∇u.∇((φ
u
)γ−1φ)−∇φ.∇((φ

u
)γ−1u)].

A = 2
∫

RN [φ∇u.∇((φ
u
)γ−1)− u∇φ.∇((φ

u
)γ−1)].
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Since ∇((φ
u
)γ−1) = (γ − 1)(φ

u
)γ−2[ 1

u
∇φ− φ

u2∇u], we get:

A = 2(γ − 1)
∫

RN (φ
u
)γ−2[2φ

u
∇u.∇φ− (φ

u
)2|∇u|2 − |∇φ|2] ≤ 0.

So we get the last theorem:

Theorem 3.2 Assume that the hypotheses (h1), (h2), (h5) are satisfied, N == 3, 4 and

γ = 2∗.

i) If Ω+ = {x ∈ RN , f(x) > 0} is a nonempty, bounded domain of RN with a smooth

frontier ∂Ω+, then λ∗ < +∞.

ii) If F (u1) ≥ 0, then λ∗ = λ1 < +∞.

iii) Moreover λ1 < λ∗ iff F (u1) < 0.

Proof:

i) Consider the following equation (−∆+q)u = λmu defined in Ω+ with Dirichlet condition

on ∂Ω+. We denote by λ1+ the first eigenvalue (which is simple and positive) and by

φ1 the first eigenfunction associated i.e:

(−∆ + q)φ1 = λ1+mφ1 in Ω+, φ1 > 0 in Ω+, φ1 = 0 on ∂Ω+.

Since suppφ1 ⊂ Ω+, by the above lemma, we get:

∀u ∈ D(RN ), H ′
λ1+

(u)((φ1

u
)γ−1φ1) ≤ 0

i.e. ∀u ∈ D(RN ), u ≥ 0∫
RN [∇u.∇((φ1

u
)γ−1φ1) + qu(φ1

u
)γ−1φ1]∫

RN mu(
φ1

u
)γ−1φ1

≤ λ1+ < +∞.

Moreover, F ′(u)((φ1

u
)γ−1φ1) = γ

∫
Ω+ fφ

γ
1 ≥ 0.

So λ∗ ≤ λ1+ < +∞.

ii) As remarked before, there holds always λ∗ ≥ λ1. We need to show that λ∗ ≤ λ1, under

the condition that F (u1) ≥ 0. We use again the above lemma.

We have H ′
λ1

(u1)((
u1

u
)γ−1u) = 0 so

∀u ∈ D(RN ), H ′
λ1

(u)((u1

u
)γ−1u1) ≤ 0.

Therefore, ∀u ∈ D(RN ), u ≥ 0∫
RN [∇u.∇((u1

u
)γ−1u) + qu(u1

u
)γ−1u1]∫

RN mu(
u1

u
)γ−1u1

≤ λ1 < +∞.

Since F ′(u)((u1

u
)γ−1u1) = γF (u1) ≥ 0 we get that λ∗ ≤ λ1 and therefore λ∗ = λ1.
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iii)

a) Moreover, if λ1 < λ∗, then, by ii) we obtain F (u1) < 0.

b) Assume now that F (u1) < 0.

1. We denote by λ− = infφ∈Vq(RN ), φ≥0, F (φ)≥0,
∫

RN [|∇φ|2+q|φ|2]∫
RN m|φ|2 .

We are going to prove that λ1 < λ− then that λ− ≤ λ∗.

Let W = {φ ∈ Vq(RN), φ ≥ 0, F (φ) ≥ 0}. Since W ⊂ Vq(RN), we have

λ1 ≤ λ−. Since u1 6∈ W, then λ1 < λ−.

We have to prove now that λ− ≤ λ∗.

2. First we prove that ∃u− ∈ Vq(RN), u− ≥ 0, F (u−) ≥ 0,

λ− =
∫

RN [|∇u−|2+q|u−|2]∫
RN m|u−|2 .

On the contrary, we suppose that

∀u ∈ Vq(RN), u ≥ 0, F (u) ≥ 0 ⇒ λ− <
∫

RN [|∇u|2+q|u|2]∫
RN m|u|2 .

Let v ≥ 0 such that F (v) > 0. Then Hλ−(v) > 0.

Since λ1 < λ−, we have Hλ−(u1) < 0 and so Hλ−(ηu1) < 0 for all η > 0.

Since the function Hλ− is continuous, we get:

∃α ∈ (0, 1), Hλ−(αηu1 + (1− α)v) = 0.

Then F (αηu1 + (1− α)v) < 0.

Since F ((1− α)v) > 0, there exists η > 0 small enough such that F (αηu1 +

(1− α)v) > 0.

So we get a contradiction and therefore we can deduce the existence of u−.

3. Finally, we have to prove that λ− ≤ λ∗.

On the contrary, we suppose that λ− > λ∗.

So ∃φ ∈ Vq(RN), φ ≥ 0, F ′(u−)(φ) ≥ 0,
∫

RN [∇u−.∇φ+qu−φ]∫
RN mu−φ

< λ−

i.e. H ′
λ−(u−)(φ) < 0.

Since F (u−) ≥ 0 and F ′(u−)(φ) ≥ 0, then F (u− + ηφ) ≥ 0 for η > 0 small

enough.

Moreover, since H ′
λ−(u−)(φ) < 0 and Hλ−(u−) = 0, we can choose η > 0

small enough such that Hλ−(u− + ηφ) < 0.

So we obtain that:
∫

RN [|∇(u−+ηφ)|2+q(u−+ηφ)2]∫
RN m(u−+ηφ)2

< λ− and this contradicts the

definition of λ−.

Therefore λ− ≤ λ∗.
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