Rostock. Math. Kolloq. 58, 53-65 (2004)

LAURE CARDOULIS

Existence of Solutions for an Elliptic Equation Involving a Schrödinger Operator with Weight in all of the Space

ABSTRACT. In this paper, we obtain some results about the existence of solutions for the following elliptic semilinear equation $(-\Delta + q)u = \lambda mu + f(x, u)$ in \mathbb{R}^N where q is a positive potential satisfying $\lim_{|x|\to+\infty} q(x) = +\infty$ and m is a bounded positive weight.

1 Introduction

In this paper, we study the existence of solutions for the elliptic semilinear equation:

$$(-\Delta + q)u = \lambda mu + f(x, u) \text{ in } \mathbb{R}^N$$
(1)

where the following hypotheses are satisfied:

(h1) $q \in L^2_{loc}(\mathbb{R}^N)$ such that $\lim_{|x|\to+\infty} q(x) = +\infty$ and $q \ge \text{const} > 0$. (h2) $m \in L^{\infty}(\mathbb{R}^N)$ such that $\exists m_1 \in \mathbb{R}^{*+}, \exists m_2 \in \mathbb{R}^{*+}, \forall x \in \mathbb{R}^N, 0 < m_1 \le m(x) \le m_2$.

We will specify later the hypothesis on f. We denote by λ a real parameter. The variational space is denoted by $V_q(\mathbb{R}^N) = \{u \in L^2(\mathbb{R}^N), (-\Delta + q)u \in L^2(\mathbb{R}^N)\}$ which is the completed of $\mathcal{D}(\mathbb{R}^N)$ for the norm $||u||_q = \sqrt{\int_{\mathbb{R}^N} |\nabla u|^2 + qu^2}$. Recall (see [1] for example) that the embedding of $V_q(\mathbb{R}^N)$ into $L^2(\mathbb{R}^N)$ is compact. We denote by $||u||_m = \sqrt{\int_{\mathbb{R}^N} mu^2}$ for all $u \in L^2(\mathbb{R}^N)$. According to the hypothesis $(h2), ||.||_m$ is a norm in $L^2(\mathbb{R}^N)$ equivalent to the usual norm. We denote by M the operator of multiplication by m in $L^2(\mathbb{R}^N)$. The operator $(-\Delta + q)^{-1}M : (L^2(\mathbb{R}^N), ||.||_m) \to (L^2(\mathbb{R}^N), ||.||_m)$ is positive self-adjoint and compact. So its spectrum is discrete and consists of a positive sequence $\mu_1 \ge \mu_2 \ge ...\mu_n \to 0$ when $n \to +\infty$. We denote by $\lambda_1 = \frac{1}{\mu_1}$ and u_1 the corresponding eigenfunction which satisfy $(-\Delta + q)u_1 = \lambda_1 mu_1$ in \mathbb{R}^N and $||u_1||_m = 1$. (We know that λ_1 is simple and $u_1 > 0$ (see [2, Th2.2]).) By the Courant-Fischer formulas, λ_1 is given by:

$$\lambda_1 = \inf\{\frac{\int_{\mathbb{R}^N} |\nabla \phi|^2 + q\phi^2}{\int_{\mathbb{R}^N} m\phi^2}, \ \phi \in \mathcal{D}(\mathbb{R}^N)\}.$$

We recall now some results already obtained for the existence of solutions in the linear cases or semilinear cases.

Using the Lax-Milgram theorem and the above characterization of λ_1 , we obtain the following result:

Theorem 1.1 (see [3],[4]) We consider the linear case (i.e. f(x, u) = f(x).) Assume that the hypotheses (h1) and (h2) are satisfied and that $f \in L^2(\mathbb{R}^N)$. If $\lambda < \lambda_1$, then the equation (1) has a unique solution $u_{\lambda} \in V_q(\mathbb{R}^N)$. Moreover, the Maximum Principle is satisfied i.e.: if $f \ge 0$ and $\lambda < \lambda_1$ then $u_{\lambda} \ge 0$.

If $\lambda = \lambda_1$ (which is the case of the Fredholm Alternative), then the equation (1) admits a solution iff $\int_{\mathbb{R}^N} f u_1 = 0$.

Using a method of sub- and supersolutions and a Schauder Fixed Point Theorem (see [3]) or an approximation method (see [4]), we get the following results in the semilinear case:

- **Theorem 1.2** 1. (see [3]). Assume that the hypotheses (h1) and (h2) are satisfied. Assume also that f is Lipschitz in u uniformly in x and that: $\exists \theta \in L^2(\mathbb{R}^N), \theta > 0, \forall u \ge 0, \ 0 \le f(x, u) \le su + \theta.$ If $\lambda < \lambda_1$, the equation (1) has at least a positive solution.
 - 2. (see [4]). Assume that the hypothesis (h1) is satisfied, $N \ge 3$ and $0 \le m \in L^{\frac{N}{2}}(\mathbb{R}^N) \cap L^{\infty}_{loc}(\mathbb{R}^N)$. Assume also that f is Lipschitz in u uniformly in x and that: $\exists \theta \in L^2(\mathbb{R}^N)$, $\forall u \in L^2(\mathbb{R}^N), |f(x,u)| \le \theta$. If $\lambda < \lambda_1$, then the equation (1) has at least a solution.

Finally, for the linear case (i.e. f(x, u) = f(x)), assuming N = 2, m a radial weight and q a radial potential with some strong properties of growth at infinity (not recalled here) (see [5]), we obtain the following result for the Antimaximum Principle:

Theorem 1.3 (see [5]) Assume that the hypotheses (h1) and (h2) are satisfied. We denote by $X^{1,2} = \{f \in L^2_{loc}(\mathbb{R}^2), \frac{\partial f}{\partial \theta}(r, .) \in L^2(-\pi, \pi) \text{ for all } r > 0, \text{ and } \exists C \ge 0, \|f(r, \theta)\| + (\frac{1}{2\pi} \int_{-\pi}^{\pi} |\frac{\partial f}{\partial \theta}(r, \theta)|^2 d\theta)^{\frac{1}{2}} \le Cu_1(r) \text{ for all } r \ge 0 \text{ and } \theta \in]-\pi, \pi].\}$ Assume that $f \ge 0$ in \mathbb{R}^2 , f > 0 in a subset with a non zero Lebesgue measure and $f \in X^{1,2}$. Let u be a solution of the equation (1). Then $\exists \delta(f) > 0, \forall \lambda \in (\lambda_1, \lambda_1 + \delta(f)), \exists c(\lambda, f) > 0, u \le -c(\lambda, f)u_1.$ In this paper, we sudy the existence of solutions for the equation (1) in the case $\lambda > \lambda_1$, λ near λ_1 .

For the linear case (i.e. f(x, u) = f(x)), if $\lambda \in (\lambda_1, \lambda_2)$, $\lambda_2 = \frac{1}{\mu_2}$ where μ_2 is the second eigenvalue of $(-\Delta + q)^{-1}M$, then there are obviously existence and uniqueness of a solution for the equation (1).

In the second section, following a bifurcation method developped in [6], we get the following result:

Theorem 1.4 Assume that the hypotheses (h1) and (h2) are satisfied. Assume also that $f : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ (defined by f(x, y)) satisfies the following hypothesis (h3):

- i) f(x, 0) = 0.
- ii) f is Frechet differentiable with respect to the second variable y and its derivative $f'_y(x,.)$ is continuous and bounded, uniformly in x.
- iii) $f'_u(x,0) = 0.$

Then there exists for λ sufficiently near λ_1 a nontrivial solution for the equation (1).

Finally, in the third section, following a method developped in [7] for the p-Laplacian in a bounded domain of \mathbb{R}^N , we get results for the case where $f(x, u) = f(x)|u(x)|^{\gamma-2}u(x)$. Before stating the results, we need some notations. We define for $C \in \mathbb{R}^{*+}$ the set $X_{q,C} = \{u \in V_q(\mathbb{R}^N), u_1 \leq u \leq C \quad a.e.\}$. Let $F(u) := \int_{\mathbb{R}^N} f|u|^{\gamma}$ for all $u \in V_q(\mathbb{R}^N)$. Let $\lambda^* = \sup_{u \in V_q(\mathbb{R}^N), u \geq 0} \{\inf_{\phi \in V_q(\mathbb{R}^N)} \{ \frac{\int_{\mathbb{R}^N} \nabla u \cdot \nabla \phi + q u \phi}{\int_{\mathbb{R}^N} m u \phi}, F'(u)(\phi) \geq 0, \phi \geq 0 \} \}$ and $\lambda^{**} = \sup_{u \in X_{q,C}} \{\inf_{\phi \in V_q(\mathbb{R}^N)} \{ \frac{\int_{\mathbb{R}^N} \nabla u \cdot \nabla \phi + q u \phi}{\int_{\mathbb{R}^N} m u \phi}, F'(u)(\phi) \geq 0, \phi \geq 0 \} \}.$ (Note that $\lambda^{**} \leq \lambda^*$.)

We consider also hypotheses of the following forms:

- (h4) $\lambda_1 < \lambda^{**} \le \lambda^* < +\infty.$
- (h5) $f \in L^{\infty}(\mathbb{R}^N)$.
- (h6) The sets $\Omega^+ = \{x \in \mathbb{R}^N, f(x) > 0\}$ and $\Omega^- = \{x \in \mathbb{R}^N, f(x) < 0\}$ have non zero measures.
- (h7) $f \ge -\frac{\epsilon u_1 m}{l^{\gamma-2}C^{\gamma-1}}.$

Theorem 1.5 Assume that the hypotheses (h1) and (h2) are satisfied, N = 3, 4 so that $\gamma = 2^* = \frac{2N}{N-2} \in \mathbb{N}^*$.

- 1. If in addition the hypotheses (h4) and (h5) are satisfied, and if $\lambda > \lambda^*$, then the equation (1) has no positive solution.
- 2. Assume additionally that the hypotheses (h4) (h7) are satisfied, where the numbers $l \geq 1, \epsilon > 0, \epsilon$ involved in (h7) are small enough such that $\lambda_1 \leq \epsilon \gamma l^{\gamma-2}$ and $\epsilon < \frac{\lambda_1}{\gamma}$. If there holds $\lambda_1 + \epsilon l^{\gamma-2} < \lambda < \lambda^{**}$ with the same numbers ϵ, l as in (h7), then the equation (1) has at least a positive solution.

2 A bifurcation result

In this section, we follow a method developped in [6].

We obtain some results of the existence of solutions for the semilinear equation

$$(-\Delta + q)u = \lambda mu + f(x, u) \text{ in } \mathbb{R}^N$$
(1)

by considering bifurcating solutions from the zero solution. We suppose that the hypotheses (h1), (h2), (h3) are satisfied in all this section. We denote by $\langle ., . \rangle_q$ the inner product in $V_q(\mathbb{R}^N)$. We define the operator $T: \mathbb{R} \times V_q(\mathbb{R}^N) \to V_q(\mathbb{R}^N)$ by: $\forall \phi \in V_q(\mathbb{R}^N)$

$$< T(\lambda, u), \phi >_q = \int_{\mathbb{R}^N} \nabla u . \nabla \phi + q u \phi - \lambda \int_{\mathbb{R}^N} m u \phi - \int_{\mathbb{R}^N} f(x, u(x)) \phi(x) dx.$$

Lemma 2.1 The operator T is well defined.

Proof: Let $u \in V_q(\mathbb{R}^N)$. We introduce

$$\begin{split} F(\phi) &= \int_{\mathbb{R}^N} \nabla u \cdot \nabla \phi + q u \phi - \lambda \int_{\mathbb{R}^N} m u \phi - \int_{\mathbb{R}^N} f(x, u(x)) \phi(x) dx \text{ for all } \phi \in V_q(\mathbb{R}^N). \\ \text{Since } m \text{ is bounded, } f \text{ is Lipschitz in } u \text{ uniformly in } x \text{ and } f(x, 0) = 0, \text{ we deduce that:} \\ \forall \phi \in V_q(\mathbb{R}^N), \ |F(\phi)| \leq \text{const} \cdot ||u||_q ||\phi||_q. \text{ The operator } F \text{ is linear and continuous. By the} \\ \text{Riesz Theorem, we can well define the operator } T. \end{split}$$

Lemma 2.2 The operator T is continuous, Frechet differentiable with continuous derivatives given by: $\forall \phi \in V_q(\mathbb{R}^N), \ \forall \psi \in V_q(\mathbb{R}^N),$

$$< T'_{u}(\lambda, u)\phi, \psi >_{q} = \int_{\mathbb{R}^{N}} \nabla\phi.\nabla\psi + q\phi\psi - \lambda \int_{\mathbb{R}^{N}} m\phi\psi - \int_{\mathbb{R}^{N}} f'_{y}(x, u(x))\phi(x)\psi(x)dx.$$

$$< T'_{\lambda}(\lambda, u), \phi >_{q} = -\int_{\mathbb{R}^{N}} mu\phi \ ; \ < T''_{\lambda u}(\lambda, u)\phi, \psi >_{q} = -\int_{\mathbb{R}^{N}} m\phi\psi.$$

Proof: We do not give here the details of the proof which is technical but simple. Since m is bounded and f is Lipschitz in u uniformly in x, we obtain the continuity of T and T'_{λ} . By using the hypothesis that $f'_y(x, .)$ is bounded uniformly in x and using the Lebesgue Dominated Convergence Theorem, we get the continuity of T'_u .

Remarks $T'_u(\lambda_1, 0)$ is a continuous self-adjoint operator (by (h3)); the kernel $N(T'_u(\lambda_1, 0))$ is generated by u_1 . So $\dim N(T'_u(\lambda_1, 0)) = 1 = \dim R(T'_u(\lambda_1, 0))$. Moreover $T''_{\lambda u}(\lambda_1, 0)u_1 \notin R(T'_u(\lambda_1, 0))$.

Indeed, denote by $\langle u_1 \rangle$ the sub-space of $V_q(\mathbb{R}^N)$ generated by u_1 . Since $T'_u(\lambda_1, 0)$ is a self-adjoint operator, the range $R(T'_u(\lambda_1, 0))$ of $T'_u(\lambda_1, 0)$ is the orthogonal of $\langle u_1 \rangle$. But $\langle T''_{\lambda u}(\lambda_1, 0)u_1, u_1 \rangle_q = -\int_{\mathbb{R}^N} mu_1^2 \langle 0.$ So $T''_{\lambda u}(\lambda_1, 0)u_1 \notin R(T'_u(\lambda_1, 0)).$

We can now apply the Theorem 1.7 in [8] to obtain a local bifurcation result.

Theorem 2.1 Assume that the hypotheses $(h_1) - (h_3)$ are satisfied. Then there exist a number $\epsilon_0 > 0$, and two continuous functions $\eta : (-\epsilon_0, \epsilon_0) \to \mathbb{R}$ and $\psi : (-\epsilon_0, \epsilon_0) \to < u_1 >^{\perp}$ such that: $\eta(0) = \lambda_1, \psi(0) = 0$ and all non trivial solutions of $T(\lambda, u) = 0$ in a small neighbourhood of $(\lambda_1, 0)$ have the form $(\lambda_{\epsilon}, u_{\epsilon}) = (\eta(\epsilon), \epsilon u_1 + \epsilon \psi(\epsilon))$ for all $\epsilon \in (-\epsilon_0, \epsilon_0)$.

Remark $T(\lambda, u) = 0$ iff u is solution of the equation (1). So near λ_1 (including the cases where $\lambda > \lambda_1$), the equation (1) admits non trivial solutions.

Adding another hypothesis on f, we are going to study now the sign of u_{ϵ} for $\epsilon \in (-\epsilon_0, \epsilon_0)$. First, we study the asymptotic behaviour of each solution of the equation (1).

Lemma 2.3 Assume that the hypothesis (h1) - (h3) are satisfied. Let u be a solution of the equation (1). Then $\lim_{|x|\to+\infty} u(x) = 0$.

Proof: We have in a weak sense: $(-\Delta + q)u = \lambda mu + f(x, u) = [\lambda m + \frac{f(x, u)}{u}]u$ in \mathbb{R}^N . By (h3), $\exists K > 0, |f(x, u)| \leq K|u|$. Using (h2) we obtain that $\lambda m + \frac{f(x, u)}{u} \in L^{\infty}(\mathbb{R}^N)$. This implies by Theorem 4.1.3 in [3] combining with Theorem 8.17 in [9] that $\lim_{|x|\to+\infty} u(x) = 0$.

Theorem 2.2 Assume that the hypotheses (h1) - (h3) are satisfied. Assume also that the following hypothesis (h'3) is satisfied where: $(h'3) \exists R > 0, \exists \epsilon^* > 0, \forall x \in \mathbb{R}^N, \forall y \in \mathbb{R}^{*-}, |x| > R \text{ and } |\lambda - \lambda_1| < \epsilon^* \Rightarrow \lambda m(x)y + f(x, y) >$

0.

Then $u_{\epsilon} \geq 0$ for ϵ small enough.

Proof:

- i) Recall that $\lim_{|x|\to+\infty} u_{\epsilon}(x) = 0$.
- ii) Let $0 < \epsilon < \epsilon_0$. We have: $\forall x, u_{\epsilon}(x) = \epsilon u_1(x) + \epsilon \psi(\epsilon)(x)$. Since $u_1 > 0$ and $\psi(\epsilon) \to 0$ when $\epsilon \to 0$, we deduce that: $\exists \epsilon_1 > 0, 0 < \epsilon < \epsilon_1 \Rightarrow \forall x \in B(0, R), u_{\epsilon}(x) > 0$. We suppose that: $\exists x_0 \in \mathbb{R}^N, u_{\epsilon}(x_0) < 0$. Since $\lim_{|x| \to +\infty} u_{\epsilon}(x) = 0$, we deduce that

there exists $x_1 \in \mathbb{R}^N$, $|x_1| > R$ such that u_{ϵ} has a negative minimum in x_1 . If $(-\Delta + q)(u_{\epsilon})(x_1) > 0$, then there exists a bounded domain Ω , containing x_1 such that $\forall x \in \Omega$, $(-\Delta + q)(u_{\epsilon})(x) \ge 0$. By the Maximum Principle (see Corollary 3.2 in [9]), we have: $\inf_{\Omega} u_{\epsilon} = u_{\epsilon}(x_1) \ge$

inf_{$\partial\Omega$} $u_{\epsilon}^{-} \geq 0$ where $u_{\epsilon}^{-} = \max\{0, -u_{\epsilon}\}$. Since $u_{\epsilon}(x_{1}) < 0$, we get a contradiction. Therefore $(-\Delta + q)(u_{\epsilon})(x_{1}) \leq 0$. Using (h'3), we have also: $(-\Delta + q)(u_{\epsilon})(x_{1}) = \lambda m(x_{1})u_{\epsilon}(x_{1}) + f(x_{1}, u_{\epsilon}(x_{1})) > 0$.

So we get again a contradiction. Therefore $u_{\epsilon} \leq 0$.

We sudy now the global nature of the continuum of solutions obtained by bifurcation from the $(\lambda_1, 0)$ solution. Using Theorems 1.3 and 1.40 in [10], we obtain the following result:

Theorem 2.3 There exists a continuum C of non trivial solutions for the equation (1) obtained by bifurcation from the $(\lambda_1, 0)$ solution, which is either unbounded or contains a point $(\lambda, 0)$ where $\lambda \neq \lambda_1$ is the inverse of an eigenvalue of the operator L. (L is defined by $< Lu, \phi >_q = \int_{\mathbb{R}^N} mu\phi$.) Since λ_1 is simple, C has two connected subsets C^+ and C^- which satisfy also the above alternatives.

Proof:

i) We define an operator S by setting $S(\lambda, u) = u - T(\lambda, u)$ i.e. $\forall \phi \in V_q(\mathbb{R}^N)$,

$$< S(\lambda, u), \phi >_q = \int_{\mathbb{R}^N} [\lambda m u \phi + f(x, u) \phi]$$

So u is a solution of the equation (1) iff $u = S(\lambda, u)$. We write $S(\lambda, u) = \lambda Lu + H(\lambda, u)$ where $\langle Lu, \phi \rangle_q = \int_{\mathbb{R}^N} mu\phi$ and $\langle H(\lambda, u), \phi \rangle_q = \int_{\mathbb{R}^N} f(x, u)\phi$.

- ii) For applying the results in [10], we must prove that $S : \mathbb{R} \times V_q(\mathbb{R}^N) \to V_q(\mathbb{R}^N)$ is continuous and compact, that $L : V_q(\mathbb{R}^N) \to V_q(\mathbb{R}^N)$ is linear and compact, that $H(\lambda, u) = O(||u||)$ for u near 0 uniformly on bounded intervals of λ and that $\frac{1}{\lambda_1}$ is a simple eigenvalue of L (which is true because it's a simple eigenvalue of $(-\Delta + q)^{-1}M$.)
- iii) We show here that S is continuous and compact. S is continuous since T is continuous. Let $((\lambda_n, u_n))_n$ be a bounded sequence in $\mathbb{R} \times V_q(\mathbb{R}^N)$. Since the embedding of $V_q(\mathbb{R}^N)$ into $L^2(\mathbb{R}^N)$ is compact, there exists a convergent subsequence, denoted also by $((\lambda_n, u_n))_n$ in $\mathbb{R} \times L^2(\mathbb{R}^N)$. We have: $\forall \phi \in V_q(\mathbb{R}^N)$,

Existence of Solutions for an Elliptic Equation ...

$$< S(\lambda_n, u_n) - S(\lambda_p, u_p), \phi >_q = \lambda_n \int_{\mathbb{R}^N} m u_n \phi - \lambda_p \int_{\mathbb{R}^N} m u_p \phi + \int_{\mathbb{R}^N} [f(x, u_n) - f(x, u_p)] \phi.$$

So $||S(\lambda_n, u_n) - S(\lambda_p, u_p)||_q^2 = (\lambda_n - \lambda_p) \int_{\mathbb{R}^N} m u_n [S(\lambda_n, u_n) - S(\lambda_p, u_p)]$
 $+ \lambda_p \int_{\mathbb{R}^N} m(u_n - u_p) [S(\lambda_n, u_n) - S(\lambda_p, u_p)] + \int_{\mathbb{R}^N} [f(x, u_n) - f(x, u_p)] [S(\lambda_n, u_n) - S(\lambda_p, u_p)].$

By (h2) and (h3) we deduce that $(S(\lambda_n, u_n))_n$ is a Cauchy sequence and therefore a convergent sequence. So S is compact.

- iv) We show here that L is linear and compact. L is obviously linear and continuous. Let $(u_n)_n$ be a bounded sequence in $V_q(\mathbb{R}^N)$. Since the embedding of $V_q(\mathbb{R}^N)$ into $L^2(\mathbb{R}^N)$ is compact, there exists a convergent subsequence, denoted also by $(u_n)_n$ in $L^2(\mathbb{R}^N)$. We have: $||Lu_n - Lu_p||_q^2 = \int_{\mathbb{R}^N} m(u_n - u_p)[Lu_n - Lu_p]$. By the Cauchy-Schwartz inequality, we get: $||Lu_n - Lu_p||_q \leq cst ||u_n - u_p||_{L^2(\mathbb{R}^N)}$. Therefore $(Lu_n)_n$ is a Cauchy sequence and so L is compact.
- v) Finally note that $H(\lambda, u)$ is independent of λ . We denote it H(u). We have: $||H(u)||_q^2 = \int_{\mathbb{R}^N} f(x, u)H(u) \leq cst ||u||_q ||H(u)||_q$. So H(u) = O(||u||).

3 Existence of positive solutions

We follow here a method developped in [7] for the p-Laplacian in a bounded domain. Our results are more restrictive than in [7] because of the unboundedness of our domain. We consider the equation

$$(-\Delta + q)u = \lambda m u + f|u|^{\gamma - 2}u \text{ in } \mathbb{R}^N$$
(1)

for which the hypotheses (h1) and (h2) are satisfied, and N = 3, 4 so that $\gamma = 2^* = \frac{2N}{N-2} \in \mathbb{N}^*$. Our aim is to study the existence of positive solutions for the equation (1) where $\lambda > \lambda_1$. We define for $C \in \mathbb{R}^{*+}$, $C \ge u_1$, the set $X_{q,C} = \{u \in V_q(\mathbb{R}^N), u_1 \le u \le C \quad a.e.\}$ Let $F(u) := \int_{\mathbb{R}^N} f|u|^{\gamma}$ and $H_{\lambda}(u) := \int_{\mathbb{R}^N} |\nabla u|^2 + qu^2 - \lambda \int_{\mathbb{R}^N} mu^2$ for all $u \in V_q(\mathbb{R}^N)$. Let $\lambda^* = \sup_{u \in V_q(\mathbb{R}^N), u \ge 0} \{\inf_{\phi \in V_q(\mathbb{R}^N)} \{\frac{\int_{\mathbb{R}^N} \nabla u. \nabla \phi + qu\phi}{\int_{\mathbb{R}^N} mu\phi}, F'(u)(\phi) \ge 0, \phi \ge 0\}\}$ and $\lambda^{**} = \sup_{u \in X_{q,C}} \{\inf_{\phi \in V_q(\mathbb{R}^N)} \{\frac{\int_{\mathbb{R}^N} \nabla u. \nabla \phi + qu\phi}{\int_{\mathbb{R}^N} mu\phi}, F'(u)(\phi) \ge 0, \phi \ge 0\}\}.$ (Note that $\lambda^{**} \le \lambda^*$.) Let $l \ge 1, \epsilon > 0, \epsilon$ be small enough such that $\lambda_1 \le \epsilon \gamma l^{\gamma-2}$ and $\epsilon < \frac{\lambda_1}{\gamma}$. **Remark** There holds $\lambda_1 \leq \lambda^*$. On the contrary, if $\lambda_1 > \lambda^*$, then by the characterization of λ_1 we have $H_{\lambda_1}(u_1) = 0$. By the definition of λ^* , $\exists \phi \in V_q(\mathbb{R}^N)$, $\phi \geq 0$, $F'(u_1)(\phi) \geq 0$, $\frac{\int_{\mathbb{R}^N} \nabla u_1 \cdot \nabla \phi + q u_1 \phi}{\int_{\mathbb{R}^N} m u_1 \phi} \leq \lambda^* < \lambda_1$. So $H'_{\lambda_1}(u_1)(\phi) < 0$. We have: $\forall \eta \in \mathbb{R}^{*+}$, $H_{\lambda_1}(u_1 + \eta \phi) = H_{\lambda_1}(u_1) + \eta H'_{\lambda_1}(u_1)(\phi) + \|\eta \phi\| h(\eta \phi)$ with $h(\eta \phi) \to$

0 when $\eta \to 0$. Therefore, for η small enough, we have $H_{\lambda_1}(u_1 + \eta\phi) < 0$ and this contradicts the definition of λ_1 .

Theorem 3.1 Assume that the hypotheses (h1) - (h7) are satisfied, N = 3, 4 and $\gamma = 2^* = 2N/(N-2)$.

- a) If $\lambda > \lambda^*$, then the equation (1) has no positive solution.
- b) If $\lambda_1 + \epsilon l^{\gamma-2} < \lambda < \lambda^{**}$, then the equation (1) has at least a positive solution.

Proof:

- i) By (h7) we have: $f \ge -\frac{\epsilon u_1 m}{l^{\gamma-2}C^{\gamma-1}} \ge -\frac{\lambda_1 m}{\gamma l^{\gamma-2}C^{\gamma-2}} \ge -\frac{\epsilon m}{u_1^{\gamma-2}}$.
- ii) Since $H^1(\mathbb{R}^N) \subset L^{2^*}(\mathbb{R}^N)$ with continuous imbedding, we deduce that $V_q(\mathbb{R}^N) \subset L^{2^*}(\mathbb{R}^N)$ with continuous imbedding.

Note that $\forall \phi \in V_q(\mathbb{R}^N)$, $F'(u)(\phi) = \gamma \int_{\mathbb{R}^N} f|u|^{\gamma-2} u\phi$ and $H'_{\lambda}(u)(\phi) = 2 \int_{\mathbb{R}^N} [\nabla u . \nabla \phi + qu\phi - \lambda m u\phi].$ Note also that u is a solution of the equation (1) iff $\forall \phi \in V_q(\mathbb{R}^N)$, $H'_{\lambda}(u)(\phi) = \frac{2}{\gamma}F'(u)(\phi).$ Moreover, if $t \in \mathbb{R}^{*+}$, $F'(tu)(\phi) = t^{\gamma-1}F'(u)(\phi)$ and $H'_{\lambda}(tu)(\phi) = tH'_{\lambda}(u)(\phi).$

Assume here that $\lambda > \lambda^*$.

So: $\forall u \in V_q(\mathbb{R}^N), u \geq 0, \exists \phi \geq 0, F'(u)(\phi) \geq 0 \text{ and } H'_{\lambda}(u)(\phi) < 0.$ Therefore the equation (1) has no positive solution.

Assume now that $\lambda_1 + \epsilon l^{\gamma-2} < \lambda < \lambda^{**}$.

We are going to prove that the equation (1) admits at least a positive solution by using the sub and supper solutions method and a Schauder Fixed Point Theorem.

a) Note by the definition of λ^{**} that:

 $\exists u^* \in X_{q,C}, \forall \phi \ge 0, F'(u^*)(\phi) \ge 0 \Rightarrow H'_{\lambda}(u^*)(\phi) > 0. \ (e)$ We suppose that $\forall 0 < t \le l, \exists \psi_t \ge 0, H'_{\lambda}(tu^*)(\psi_t) < \frac{2}{\gamma}F'(tu^*)(\psi_t).$ Existence of Solutions for an Elliptic Equation ...

If $\forall t, \forall \psi_t, F'(tu^*)(\psi_t) \geq 0$, then: Let $\phi \geq 0$ such that $F'(u^*)(\phi) < 0$. So $\forall t > 0, H'_{\lambda}(tu^*)(\phi) \geq \frac{2}{\gamma}F'(tu^*)(\phi)$ i.e. $\forall t > 0, t^{\gamma-2} \int_{\mathbb{R}^N} f(u^*)^{\gamma-1}\phi \leq \int_{\mathbb{R}^N} [\nabla u^* \cdot \nabla \phi + qu^* \phi - \lambda m u^* \phi].$ When $t \to 0$, we get: $0 \leq H'_{\lambda}(u^*)(\phi)$. So $F'(u^*)(\phi) < 0 \Rightarrow H'_{\lambda}(u^*)(\phi) \geq 0$. Using the property (e), we get: $\forall \phi \geq 0, H'_{\lambda}(u^*)(\phi) \geq 0$. In particular, for $\phi = u_1$, we obtain: $\lambda_1 \int_{\mathbb{R}^N} mu^* u_1 \geq \lambda \int_{\mathbb{R}^N} mu^* u_1 > 0$. Since $\lambda_1 < \lambda$, we get a contradiction.

If $\forall t, \forall \psi_t, F'(tu^*)(\psi_t) \leq 0$, then:

Let $\phi \geq 0$ such that $F'(tu^*)(\phi) > 0$. We have $H'_{\lambda}(tu^*)(\phi) \geq \frac{2}{\gamma}F'(tu^*)(\phi) > 0$. So $\forall t$, $\int_{\mathbb{R}^N} [\nabla u^* \cdot \nabla \phi + qu^* \phi - \lambda m u^* \phi] \geq t^{\gamma-2} \int_{\mathbb{R}^N} f(u^*)^{\gamma-1} \phi > 0$ and this is impossible for t large enough (because we can take a bigger l.)

Then we have: $\exists \phi \geq 0$, $\exists \psi \geq 0$, $H'_{\lambda}(u^*)(\phi) < \frac{2}{\gamma}t^{\gamma-2}F'(u^*)(\phi) < 0$ and $0 < H'_{\lambda}(u^*)(\psi) < \frac{2}{\gamma}t^{\gamma-2}F'(u^*)(\psi)$ (for at least one t). Since $F'(u^*)$ is a continuous function, $\exists \alpha \in (0, 1)$, $F'(u^*)(\alpha \phi + (1 - \alpha)\psi) = 0$. Therefore we deduce that $H'_{\lambda}(u^*)(\alpha \phi + (1 - \alpha)\psi) > 0$. But: $\frac{\alpha\gamma}{2t^{\gamma-2}}H'_{\lambda}(u^*)(\phi) < \alpha F'(u^*)(\phi) = -(1 - \alpha)F'(u^*)(\psi) < -\frac{(1 - \alpha)\gamma}{2t^{\gamma-2}}H'_{\lambda}(u^*)(\psi)$.

So $\frac{\gamma}{2t^{\gamma-2}}[\alpha H'_{\lambda}(u^*)(\phi) + (1-\alpha)H'_{\lambda}(u^*)(\psi)] < 0$ and we get a contradiction.

- Therefore $\exists t \in (o, l], \forall \phi \geq 0, H'_{\lambda}(tu^*)(\phi) \geq \frac{2}{\gamma}F'(tu^*)(\phi)$ i.e. tu^* is a supper solution of the equation (1). Note that $tu^* \geq su_1$ if $0 < s \leq t$. Let s > 0 such that $\frac{1}{s} \leq l^{\gamma-3}$. This is possible because we can choose l sufficiently big such that $\frac{1}{l^{\gamma-3}} \leq t \leq l$.
- b) We show now that su_1 is a sub solution of the equation (1). We have: $\frac{\lambda_1 - \lambda}{s^{\gamma - 2}} < -\epsilon$ (since $l \ge s$) and $f \ge -\frac{\epsilon m}{u_1^{\gamma - 2}}$. So: $fu_1^{\gamma - 1} > \frac{\lambda_1 - \lambda}{s^{\gamma - 2}}mu_1$ and therefore su_1 is a sub solution of the equation (1). c) Let $\sigma = [su_1, tu^*]$ and the operator T be defined by T(u) = v with v solution of

 $(-\Delta + q)v = \lambda mu + f|u|^{\gamma-2}u$ in \mathbb{R}^N . We want to prove that $T(\sigma) \subset \sigma$ and that T is a continuous compact operator. Let $u \in \sigma$ and T(u) = v. We have, in a weak sense: $(-\Delta + q)(v - su_1) = \lambda mu + fu^{\gamma-1} - \lambda_1 msu_1$.

By $(h7), f \geq -\frac{\epsilon u_1 m}{l^{\gamma-2}C^{\gamma-1}}.$

So, since u > 0, we have: $\lambda mu + fu^{\gamma-1} - \lambda_1 msu_1 \ge -\frac{\epsilon u_1 m}{l^{\gamma-2}C^{\gamma-1}}u^{\gamma-1} + \lambda mu - \lambda_1 msu_1$. Moreover $u \in \sigma$ so $u^{\gamma-1} \le l^{\gamma-1}C^{\gamma-1}$ and $\lambda mu + fu^{\gamma-1} - \lambda_1 msu_1 \ge m[\lambda u - (\lambda_1 + \frac{\epsilon l}{\epsilon})su_1] > 0$.

Therefore, since $u \ge su_1$ and $\lambda > \lambda_1 + \epsilon l^{\gamma-2} \ge \lambda_1 + \epsilon \frac{l}{s}$, we obtain that: $(-\Delta + q)(v - su_1) \ge 0.$

By the Maximum Principle, we deduce that $v \ge su_1$.

Moreover we have: $\forall \phi \geq 0$, $< (-\Delta + q)(tu^* - v), \phi >_{L^2(\mathbb{R}^N)} \geq \int_{\mathbb{R}^N} [\lambda m(tu^* - u) + f((tu^*)^{\gamma-1} - u^{\gamma-1})]\phi$. By (h7), since $t \leq l$ and $\lambda_1 < \lambda$ we have: $f \geq -\frac{\lambda_1 m}{\gamma C^{\gamma-2} l^{\gamma-2}} \geq -\frac{\lambda_1 m}{\gamma C^{\gamma-2} t^{\gamma-2}} \geq -\frac{\lambda m}{\gamma C^{\gamma-2} t^{\gamma-2}}$. But $\lambda m(tu^* - u) + f((tu^*)^{\gamma-1} - u^{\gamma-1}) \geq 0$ iff $f \geq -\frac{\lambda m}{\sum_{i=0}^{\gamma-2} (tu^*)^i u^{\gamma-2-i}}$. Since $\sum_{i=0}^{\gamma-2} (tu^*)^i u^{\gamma-2-i} \leq \gamma C^{\gamma-2} t^{\gamma-2}$, we get $f \geq -\frac{\lambda m}{\sum_{i=0}^{\gamma-2} (tu^*)^i u^{\gamma-2-i}}$. Therefore, by the Maximum Principle, we obtain $(-\Delta + q)(tu^* - v) \geq 0$ and so $v \leq tu^*$.

d) Let $(u_n)_n$ be a convergent sequence in σ , with limit u for the norm $\|.\|_q$. Let $T(u_n) = v_n$ and T(u) = v. We have: $\forall n$, $\|v_n - v\|_q^2 \leq cst \|u_n - u\|_q \|v_n - v\|_q + \|f\|_{\infty} \int_{\mathbb{R}^N} |u_n^{\gamma-1} - u^{\gamma-1}| |v_n - v|$. Since $u_n, u \in \sigma$, $|u_n^{\gamma-1} - u^{\gamma-1}| \leq cst |u_n - u|$ we obtain that: $\|v_n - v\|_q \leq cst \|u_n - u\|_q$ and so T is a continuous operator. We finish this proof by showing that T is compact. Let now $(u_n)_n$ be a bounded sequence in σ for the norm $\|.\|_q$. Since the embedding of $V_q(\mathbb{R}^N)$ into $L^2(\mathbb{R}^N)$ is compact, there exists a convergent subsequence, denoted also by $(u_n)_n$, in $L^2(\mathbb{R}^N)$. Let $T(u_n) = v_n$. We have: $\forall n, p$ $\|v_n - v_p\|_q^2 = \lambda \int_{\mathbb{R}^N} m(u_n - u_p)(v_n - v_p) + \int_{\mathbb{R}^N} f(u_n^{\gamma-1} - u_p^{\gamma-1})(v_n - v_p)$. Since $|u_n^{\gamma-1} - u_p^{\gamma-1}| \leq cst |u_n - u_p|$ we obtain that: $\|v_n - v_p\|_q \leq cst \|u_n - u_p\|_{L^2(\mathbb{R}^N)}$. We can deduce that $(v_n)_n$ is a Cauchy sequence and so T is a compact operator.

To finish, we obtain some results assuring the validity of the hypothesis (h4). First, we need the following lemma: (we still follow a method developed in [7]).

Lemma 3.1 $\forall u \in V_q(\mathbb{R}^N), u > 0, \forall \phi \in V_q(\mathbb{R}^N), \phi \ge 0,$ $H'_{\lambda}(u)((\frac{\phi}{u})^{\gamma-1}\phi) - H'_{\lambda}(\phi)((\frac{\phi}{u})^{\gamma-1}u) \le 0.$

Proof: We denote by $A = H'_{\lambda}(u)((\frac{\phi}{u})^{\gamma-1}\phi) - H'_{\lambda}(\phi)((\frac{\phi}{u})^{\gamma-1}u).$ We have: $A = 2 \int_{\mathbb{R}^N} [\nabla u . \nabla((\frac{\phi}{u})^{\gamma-1}\phi) - \nabla \phi . \nabla((\frac{\phi}{u})^{\gamma-1}u)].$ $A = 2 \int_{\mathbb{R}^N} [\phi \nabla u . \nabla((\frac{\phi}{u})^{\gamma-1}) - u \nabla \phi . \nabla((\frac{\phi}{u})^{\gamma-1})].$ Existence of Solutions for an Elliptic Equation ...

Since
$$\nabla((\frac{\phi}{u})^{\gamma-1}) = (\gamma-1)(\frac{\phi}{u})^{\gamma-2}[\frac{1}{u}\nabla\phi - \frac{\phi}{u^2}\nabla u]$$
, we get:

$$A = 2(\gamma-1)\int_{\mathbb{R}^N}(\frac{\phi}{u})^{\gamma-2}[2\frac{\phi}{u}\nabla u.\nabla\phi - (\frac{\phi}{u})^2|\nabla u|^2 - |\nabla\phi|^2] \le 0.$$

So we get the last theorem:

Theorem 3.2 Assume that the hypotheses (h1), (h2), (h5) are satisfied, N == 3, 4 and $\gamma = 2^*$.

- i) If $\Omega^+ = \{x \in \mathbb{R}^N, f(x) > 0\}$ is a nonempty, bounded domain of \mathbb{R}^N with a smooth frontier $\partial \Omega^+$, then $\lambda^* < +\infty$.
- ii) If $F(u_1) \ge 0$, then $\lambda^* = \lambda_1 < +\infty$.
- iii) Moreover $\lambda_1 < \lambda^*$ iff $F(u_1) < 0$.

Proof:

i) Consider the following equation (-Δ+q)u = λmu defined in Ω⁺ with Dirichlet condition on ∂Ω⁺. We denote by λ₁₊ the first eigenvalue (which is simple and positive) and by φ₁ the first eigenfunction associated i.e:
(-Δ+q)φ₁ = λ₁₊mφ₁ in Ω⁺, φ₁ > 0 in Ω⁺, φ₁ = 0 on ∂Ω⁺. Since suppφ₁ ⊂ Ω⁺, by the above lemma, we get:
∀u ∈ D(ℝ^N), H'_{λ1+}(u)((φ₁/u)^{γ-1}φ₁) ≤ 0
i.e. ∀u ∈ D(ℝ^N), u ≥ 0

$$\frac{\int_{\mathbb{R}^N} [\nabla u \cdot \nabla ((\frac{\phi_1}{u})^{\gamma-1} \phi_1) + qu(\frac{\phi_1}{u})^{\gamma-1} \phi_1]}{\int_{\mathbb{R}^N} mu(\frac{\phi_1}{u})^{\gamma-1} \phi_1} \le \lambda_{1+} < +\infty.$$

Moreover, $F'(u)((\frac{\phi_1}{u})^{\gamma-1}\phi_1) = \gamma \int_{\Omega^+} f \phi_1^{\gamma} \ge 0.$ So $\lambda^* \le \lambda_{1+} < +\infty.$

ii) As remarked before, there holds always λ* ≥ λ₁. We need to show that λ* ≤ λ₁, under the condition that F(u₁) ≥ 0. We use again the above lemma.
We have H'_{λ1}(u₁)((^{u₁}/_u)^{γ-1}u) = 0 so ∀u ∈ D(ℝ^N), H'_{λ1}(u)((^{u₁}/_u)^{γ-1}u₁) ≤ 0.

Therefore, $\forall u \in \mathcal{D}(\mathbb{R}^{\mathcal{N}}), u \geq 0$

$$\frac{\int_{\mathbb{R}^N} [\nabla u \cdot \nabla ((\frac{u_1}{u})^{\gamma-1} u) + qu(\frac{u_1}{u})^{\gamma-1} u_1]}{\int_{\mathbb{R}^N} mu(\frac{u_1}{u})^{\gamma-1} u_1} \le \lambda_1 < +\infty$$

Since $F'(u)((\frac{u_1}{u})^{\gamma-1}u_1) = \gamma F(u_1) \ge 0$ we get that $\lambda^* \le \lambda_1$ and therefore $\lambda^* = \lambda_1$.

iii)

- a) Moreover, if $\lambda_1 < \lambda^*$, then, by *ii*) we obtain $F(u_1) < 0$.
- b) Assume now that $F(u_1) < 0$.
 - 1. We denote by $\lambda^{-} = \inf_{\phi \in V_q(\mathbb{R}^N), \phi \ge 0, F(\phi) \ge 0}, \frac{\int_{\mathbb{R}^N} [|\nabla \phi|^2 + q|\phi|^2]}{\int_{\mathbb{R}^N} m|\phi|^2}$. We are going to prove that $\lambda_1 < \lambda^-$ then that $\lambda^- \le \lambda^*$. Let $W = \{\phi \in V_q(\mathbb{R}^N), \phi \ge 0, F(\phi) \ge 0\}$. Since $W \subset V_q(\mathbb{R}^N)$, we have $\lambda_1 \le \lambda^-$. Since $u_1 \notin W$, then $\lambda_1 < \lambda^-$. We have to prove now that $\lambda^- \le \lambda^*$.
 - 2. First we prove that $\exists u^- \in V_q(\mathbb{R}^N)$, $u^- \geq 0$, $F(u^-) \geq 0$, $\lambda^- = \frac{\int_{\mathbb{R}^N} [|\nabla u^-|^2 + q|u^-|^2]}{\int_{\mathbb{R}^N} m|u^-|^2}$. On the contrary, we suppose that $\forall u \in V_q(\mathbb{R}^N)$, $u \geq 0$, $F(u) \geq 0 \Rightarrow \lambda^- < \frac{\int_{\mathbb{R}^N} [|\nabla u|^2 + q|u|^2]}{\int_{\mathbb{R}^N} m|u|^2}$. Let $v \geq 0$ such that F(v) > 0. Then $H_{\lambda^-}(v) > 0$. Since $\lambda_1 < \lambda^-$, we have $H_{\lambda^-}(u_1) < 0$ and so $H_{\lambda^-}(\eta u_1) < 0$ for all $\eta > 0$. Since the function H_{λ^-} is continuous, we get: $\exists \alpha \in (0, 1), H_{\lambda^-}(\alpha \eta u_1 + (1 - \alpha)v) = 0$. Then $F(\alpha \eta u_1 + (1 - \alpha)v) < 0$. Since $F((1 - \alpha)v) > 0$, there exists $\eta > 0$ small enough such that $F(\alpha \eta u_1 + (1 - \alpha)v) > 0$. So we get a contradiction and therefore we can deduce the existence of u^- .
 - 3. Finally, we have to prove that $\lambda^{-} \leq \lambda^{*}$. On the contrary, we suppose that $\lambda^{-} > \lambda^{*}$. So $\exists \phi \in V_{q}(\mathbb{R}^{N}), \phi \geq 0, F'(u^{-})(\phi) \geq 0, \frac{\int_{\mathbb{R}^{N}} [\nabla u^{-} \cdot \nabla \phi + qu^{-} \phi]}{\int_{\mathbb{R}^{N}} mu^{-} \phi} < \lambda^{-}$ i.e. $H'_{\lambda^{-}}(u^{-})(\phi) < 0$. Since $F(u^{-}) \geq 0$ and $F'(u^{-})(\phi) \geq 0$, then $F(u^{-} + \eta \phi) \geq 0$ for $\eta > 0$ small enough. Moreover, since $H'_{\lambda^{-}}(u^{-})(\phi) < 0$ and $H_{\lambda^{-}}(u^{-}) = 0$, we can choose $\eta > 0$ small enough such that $H_{\lambda^{-}}(u^{-} + \eta \phi) < 0$. So we obtain that: $\frac{\int_{\mathbb{R}^{N}} [|\nabla(u^{-} + \eta \phi)|^{2} + q(u^{-} + \eta \phi)^{2}]}{\int_{\mathbb{R}^{N}} m(u^{-} + \eta \phi)^{2}} < \lambda^{-}$ and this contradicts the definition of λ^{-} .

Therefore $\lambda^{-} \leq \lambda^{*}$.

References

- [1] Abbakhati-Mchachti, A. : Systèmes semilinéaires d'équations de Schrödinger. Thèse numéro 1338, Université de Toulouse III, France 1993
- [2] Agmon, S.: Bounds on Exponential Decay of Eigenfunctions of Schrödinger Operators. Schrödinger Operators, (Como, 1984), Springer-Verlag, pp 1-38, Berlin 1985
- [3] **Cardoulis, L.** : *Problèmes elliptiques : applications de la théorie spectrale et étude de systèmes, existence de solutions.* Thèse, Université Toulouse I, 1997
- [4] Cardoulis, L.: Existence of Solutions for some Semilinear Elliptic Systems. Rostock. Math. Kolloq. 56, 29-38, 2002
- [5] Alziary, B., and Cardoulis, L. : An Anti-Maximum Principle for a Schrödinger Equation in \mathbb{R}^2 with an Indefinite Weight Function. preprint
- [6] Brown, K.J., and Stravakakis, N. : Global Bifurcation Results for a Semilinear Elliptic Equation on all of \mathbb{R}^n . Duke Math.J. 85, No.1, 77-94, 1996
- [7] Il'Yasov, Y.: On positive solutions of indefinite elliptic equations. C. R. Acad. Sci. Paris, t.3, Série I, p. 533-538, 2001
- [8] Crandall, M. G., and Rabinowitz, P. H. : Bifurcation from Simple Eigenvalues. Journ. of Funct. Anal. 8, 321-340, 1971
- [9] Gilbarg, D., and Trudinger, N. S. : Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin 1983
- [10] Rabinowitz, P. H. : Some Global Results for nonlinear Eigenvalues Problems. Journ. of Funct. Anal. 7, 487-513, 1971

received: November 19, 2003

Author:

Laure Cardoulis Université de Toulouse 1 Place Anatole France 31000 Toulouse France e-mail: cardouli@math.univ-tlse1.fr