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LAURE CARDOULIS

Existence of Solutions for an Elliptic Equation In-
volving a Schrédinger Operator with Weight in all
of the Space

ABSTRACT. In this paper, we obtain some results about the existence of solutions for the
following elliptic semilinear equation (—A +q)u = Amu+ f(z,u) in RY where ¢ is a positive

potential satisfying lim,— 1. ¢(x) = +00 and m is a bounded positive weight.

1 Introduction

In this paper, we study the existence of solutions for the elliptic semilinear equation:
(—A 4+ q)u = dmu + f(x,u) in RY (1)

where the following hypotheses are satisfied:

(h1) ¢ € L} (RY) such that limp, o ¢(z) = 400 and ¢ > const > 0.

loc

(h2) m € L®(RY) such that Im; € R**, Im, € R*Y, Vo € RY, 0 < my < m(z) < mo.

We will specify later the hypothesis on f. We denote by A a real parameter.

The variational space is denoted by V,(RY) = {u € L*(RY), (—A + q)u € L*(RY)} which
is the completed of D(RV) for the norm ||uf|, = \/fRN |Vu|? + qu?.

Recall (see [1] for example) that the embedding of V,(RY) into L*(R") is compact.

We denote by [[ul|,, = 1/ [gv mu? for all u € L*(RY). According to the hypothesis (h2), ||.||m
is a norm in L?(R") equivalent to the usual norm. We denote by M the operator of multi-
plication by m in L?(RY). The operator (—A + ¢)™*M : (L2(RN),||.|lm) — (L2RY),]|-|lm)

is positive self-adjoint and compact. So its spectrum is discrete and consists of a positive

sequence f1; > ftg > ...ptn, — 0 when n — +o00. We denote by A\; = i and u; the correspond-

ing eigenfunction which satisfy (—A + ¢)u; = Aymuy in RY and [Juy]],,, = 1. (We know that
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A1 is simple and u; > 0 (see [2, Th2.2]).) By the Courant-Fischer formulas, A; is given by:

Jo [VOI* + g0

)\1 = Hlf{ f m¢2
RN

, ¢ € DRM)}.

We recall now some results already obtained for the existence of solutions in the linear cases
or semilinear cases.

Using the Lax-Milgram theorem and the above characterization of \;, we obtain the following
result:

Theorem 1.1 (see [3],[4]) We consider the linear case (i.e. f(v,u) = f(z).) As-
sume that the hypotheses (h1) and (h2) are satisfied and that f € L*(RY). If X < Ay, then
the equation (1) has a unique solution uy € V,(RN). Moreover, the Maximum Principle is
satisfied i.e.: if f >0 and A < Ay then uy > 0.

If X\ = A\ (which is the case of the Fredholm Alternative), then the equation (1) admits a

solution iff [on fui = 0.

Using a method of sub- and supersolutions and a Schauder Fixed Point Theorem (see [3])

or an approximation method (see [4]), we get the following results in the semilinear case:

Theorem 1.2 1. (see [3]). Assume that the hypotheses (hl) and (h2) are satisfied.
Assume also that f is Lipschitz in u uniformly in x and that:
30 € L*(RY),0 > 0,Yu >0, 0 < f(x,u) < su+6.
If X < Ay, the equation (1) has at least a positive solution.

2. (see [4]). Assume that the hypothesis (h1) is satisfied, N >3 and 0 < m € Lz (RV) N
L2 (RY). Assume also that f is Lipschitz in u uniformly in x and that: 30 € L*(RY),

Vi€ L2RY), [f(z,u)| < 6.
If A < A1, then the equation (1) has at least a solution.

Finally, for the linear case (i.e. f(z,u) = f(x)), assuming N = 2, m a radial weight and ¢
a radial potential with some strong properties of growth at infinity (not recalled here) (see

[5]), we obtain the following result for the Antimaximum Principle:

Theorem 1.3 (see [5]) Assume that the hypotheses (h1) and (h2) are satisfied.

We denote by X'? = {f € L3 (R?), %(r, ) € L*(—m,m) for all v > 0, and 3C > 0,

If(r O + (& [ 12 (r, 0)|2d6)z < Cuy(r) for allr >0 and 0 €] — 7, 7.}

Assume that f >0 in R%, f > 0 in a subset with a non zero Lebesque measure and f € X2,
Let u be a solution of the equation (1).

Then 35(f) > 0,YA € (A1, A1 +6(f)), Fe(A, f) >0, u < —c(A, fug.
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In this paper, we sudy the existence of solutions for the equation (1) in the case A > Aj, A
near Aj.

For the linear case (i.e. f(x,u) = f(z)), if A € (A1, A2), A2 = —2 where o is the second
eigenvalue of (—A + ¢) "' M, then there are obviously existence and uniqueness of a solution
for the equation (1).

In the second section, following a bifurcation method developped in [6], we get the following

result:

Theorem 1.4 Assume that the hypotheses (h1) and (h2) are satisfied. Assume also that
f:RY xR — R (defined by f(x,y)) satisfies the following hypothesis (h3):

i) f(x,0) =0.

ii) f is Frechet differentiable with respect to the second variable y and its derivative f,(x,.)

is continuous and bounded, uniformly in x.
i) f,(z,0) = 0.
Then there ezists for \ sufficiently near Ay a nontrivial solution for the equation (1).

Finally, in the third section, following a method developped in [7] for the p-Laplacian in
a bounded domain of RY, we get results for the case where f(z,u) = f(z)|u(z)| 2u(x).
Before stating the results, we need some notations. We define for C' € R** the set X, o =
{uGV(RN), w <u<C ae}.
Let F(u) := [on flul? for all u € V,(RY).

* Jev Vu.Votque '
Let \* = supuev &) u>01infpev, m) {— F'(u)(¢) >0, ¢ > 0}} and

SN mud
Vu.V [
N = e, by o [TV pag) >0, 6> 0))
(Note that \** < \*.)

We consider also hypotheses of the following forms:

(h4) A; < A** < M < +00.
(h5) f € L=(RY).

(h6) The sets QF = {z € RY, f(x) > 0} and Q~ = {z € RY, f(z) < 0} have non zero

measures.

(W7) f > — e

—2Cy-1-

Theorem 1.5 Assume that the hypotheses (h1) and (h2) are satisfied, N = 3,4 so that
e
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1. If in addition the hypotheses (h4) and (hb) are satisfied, and if X > \*, then the

equation (1) has no positive solution.

2. Assume additionally that the hypotheses (h4) — (hT) are satisfied, where the numbers
I >1,e>0, € involved in (h7) are small enough such that \; < ey'=2 and € < %
If there holds \; + el"™2 < X < X* with the same numbers €,l as in (h7), then the

equation (1) has at least a positive solution.

2 A bifurcation result

In this section, we follow a method developped in [6].

We obtain some results of the existence of solutions for the semilinear equation
(—=A + q)u = dmu + f(z,u) in RY (1)

by considering bifurcating solutions from the zero solution. We suppose that the hypotheses
(h1),(h2), (h3) are satisfied in all this section. We denote by < .,. >, the inner product in
V,(RY). We define the operator T : R x V,(RY) — V,(RY) by: V¢ € V,(RY)

<T(A\u), ¢ >= /

R

y Vu.Vo+ qup — A /}RN mueg — f(z,u(z))p(x)dx.

RN

Lemma 2.1 The operator T is well defined.

Proof: Let u € V,(RY). We introduce

F(¢) = [on Vu.VO + qup — X [on mud — [ fz,u(x))(x)dx for all ¢ € V,(RY).

Since m is bounded, f is Lipschitz in « uniformly in x and f(z,0) = 0, we deduce that:
Vo € V,(RY), |F(¢)| < const - ||ul|4]|¢||,- The operator F is linear and continuous. By the

Riesz Theorem, we can well define the operator T O

Lemma 2.2 The operator T is continuous, Frechet differentiable with continuous deriva-
tives given by: Vo € V,(RY), Vb € V,(RY),

STt >~ [ Vovvraon=x [ mov— [ fiaa@)oleds

< T)/\(/\a u)7 ¢ Zq= — mu¢ ;< T)/\,u()‘a U)¢>¢ >q= _/ mgbd)
RN RN

Proof: We do not give here the details of the proof which is technical but simple. Since

m is bounded and f is Lipschitz in u uniformly in x, we obtain the continuity of T" and

Ty. By using the hypothesis that f;(x, .) is bounded uniformly in x and using the Lebesgue

Dominated Convergence Theorem, we get the continuity of 7). O]
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Remarks 7 (A1,0) is a continuous self-adjoint operator (by (h3)); the kernel N(T!(A1,0))
is generated by uy. So dim N(T)(A\,0)) = 1 = dim R(T},(\1,0)). Moreover TY,(A1,0)u; ¢
R(T!(\1,0)).

Indeed, denote by < u; > the sub-space of V,(R") generated by ;. Since T/ ()\,0) is a
self-adjoint operator, the range R(7)(\1,0)) of T/ ()A1,0) is the orthogonal of < u; >. But
<TY,(A, 0)ug, ug >4= — fRN mu? < 0.

So TY,(A1,0)ur € R(T(A\1,0)).

We can now apply the Theorem 1.7 in [8] to obtain a local bifurcation result.

Theorem 2.1 Assume that the hypotheses (h1) — (h3) are satisfied. Then there exist a
number ¢ > 0, and two continuous functions 0 : (—e, €9) — R and ¥ : (—€p, €0) —< ug >+
such that: n(0) = Ay, ¥(0) = 0 and all non trivial solutions of T'(A\,u) = 0 in a small
neighbourhood of (A1, 0) have the form (A, uc) = (n(€), eus + ep(€)) for all € € (—eg, €).

Remark T'(\ u) = 0 iff u is solution of the equation (1). So near \; (including the cases

where A > A1), the equation (1) admits non trivial solutions.

Adding another hypothesis on f, we are going to study now the sign of u, for € € (—ep, €).

First, we study the asymptotic behaviour of each solution of the equation (1).

Lemma 2.3 Assume that the hypothesis (h1) — (h3) are satisfied. Let u be a solution of
the equation (1). Then limjg|_ oo u(z) = 0.

Proof: We have in a weak sense: (—A+q)u = Amu+ f(z,u) = [Am+ @]u in RY. By (h3),
dK > 0, |f(z,u)| < K|ul|. Using (h2) we obtain that Am + @ € L>=(RY). This implies
by Theorem 4.1.3 in [3] combining with Theorem 8.17 in [9] that lim;|— o u(x) = 0. O

Theorem 2.2  Assume that the hypotheses (h1) — (h3) are satisfied. Assume also that
the following hypothesis (h'3) is satisfied where:

(W3) IR >0, 3e* > 0, Vo e RN Vy e R*™, |z| > R and |\ —\i| < ¢ = dm(x)y+ f(z,y) >
0.

Then u. > 0 for e small enough.

Proof:

i) Recall that lim o0 uc(x) = 0.

i) Let 0 < € < ¢y. We have: Vz, u.(z) = eus(x) + ep(e)(z). Since u; > 0 and ¥(e) — 0
when ¢ — 0, we deduce that:3e; > 0, 0 < € < €, = Vo € B(0, R), u.(x) > 0.
We suppose that: Jzg € RN, u.(z) < 0. Since lim 3| 400 ue(2) = 0, we deduce that
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there exists z; € RV, |z1] > R such that u, has a negative minimum in z;.

If (A + q)(ue)(z1) > 0, then there exists a bounded domain §2, containing z; such
that Vo € Q, (=A + q)(u.)(x) > 0.

By the Maximum Principle (see Corollary 3.2 in [9]), we have: infqu. = uc(z1) >
infapqu. > 0 where u- = max{0, —u.}. Since u.(z;) < 0, we get a contradiction.
Therefore (—A + q)(ue)(z1) < 0. Using (R'3), we have also: (—A + q)(ue)(z1) =
Am(xq)ue(xy) + f(z1,ue(z1)) > 0.

So we get again a contradiction. Therefore u. < 0.

]

We sudy now the global nature of the continuum of solutions obtained by bifurcation from
the (A1, 0) solution. Using Theorems 1.3 and 1.40 in [10], we obtain the following result:

Theorem 2.3 There exists a continuum C of non trivial solutions for the equation (1)
obtained by bifurcation from the (A\1,0) solution, which is either unbounded or contains a
point (X, 0) where A # Ay is the inverse of an eigenvalue of the operator L. (L is defined by
< Lu,¢ >,= fRN mug.) Since Aiis simple, C has two connected subsets CT and C~ which
satisfy also the above alternatives.

Proof:
i) We define an operator S by setting S(\,u) = u — T(\, u) i.e. Vo € V,(RY),

< S\ u), ¢ >.= / [Amug + f(x,u)e].
RN

So wu is a solution of the equation (1) iff u = S(A, u). We write S(\, u) = ALu+ H (A, u)

where < Lu, ¢ >,= [on mug and < H(A, u),¢ >= [on f(x,u)o.

ii) For applying the results in [10], we must prove that S : R x V,(RY) — V,(RY) is
continuous and compact, that L : V,(RY) — V,(R") is linear and compact, that
H(A\ u) = O(||lul|) for v near 0 uniformly on bounded intervals of A and that % is a

simple eigenvalue of L (which is true because it’s a simple eigenvalue of (—A+¢q)~'M.)

iii) We show here that S is continuous and compact. S is continuous since 7" is continuous.
Let ((An,un))n be a bounded sequence in R x V,(RY). Since the embedding of V,(R")
into L?(RY) is compact, there exists a convergent subsequence, denoted also by
(A, Up))n in R x L2(RY).

We have: V¢ € V,(RY),
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< S()‘na un) - SO‘}?? up)’ ¢ >¢= Ay f]RN Mup® — Ap fRN muy¢ + fRN [f(a% un) - f($’ up)]¢'
So 1S (Ans wn) = S(Ap, up)ll7 = (M = Ap) [ mun[S(An, un) — S(Ap, up)]

+Ap /RN (U —p) [S (A, Un ) =S (Np, )]+ /RN Lf (2, ) — F (2, )] [S (A, 1) =S (Ap, ).

By (h2) and (h3) we deduce that (S(\,,u,)), is a Cauchy sequence and therefore a

convergent sequence. So S is compact.

iv) We show here that L is linear and compact. L is obviously linear and continuous.
Let (un)n, be a bounded sequence in V,(RY). Since the embedding of V,(RY) into
L*(RY) is compact, there exists a convergent subsequence, denoted also by (u,), in
L*(RM).
We have: ||Lu, — Luy||? = [ox m(un — up)[ Lty — Luy).
By the Cauchy-Schwartz inequality, we get: ||Lu, — Luyll; < cstlu, — upl|p2@ny.

Therefore (Luy,), is a Cauchy sequence and so L is compact.

v) Finally note that H(\,u) is independant of A\. We denote it H(u). We have: ||H (u)|2 =

Jon [, ) H (u) < est|ull]|H (u)]l,-
So H(u) = O([[ul])-

0
3 Existence of positive solutions
We follow here a method developped in [7] for the p-Laplacian in a bounded domain.
Our results are more restrictive than in [7] because of the unboundedness of our domain.
We consider the equation
(—A + qQ)u = dmu + flu[""*u in RY (1)

for which the hypotheses (h1) and (h2) are satisfied, and N = 3,4 so that 7 = 2* = 2% € N*.
Our aim is to study the existence of positive solutions for the equation (1) where A > ;.
We deﬁne for C € R*", C' > uy, the set X, 0 = {ue V,RY), uy <u<C ae}

Let F(u) := [on flu]” and Hy(u) := [on [Vul® + qu? — X [pn mu? for all u € V,(RY).

Let \* = Supuevq(RN u>0{lnf¢evq(RN JR VuVotquo , F'(u)(¢) >0, ¢ > 0}} and

]wai)
Vu.V u
X = sup e, o Ainfpev, ) {5t ™ B (u)(6) > 0, ¢ > 0}}.
(Note that \** < A*.)
Let [ > 1, € > 0, € be small enough such that \; < eyl?~2? and € < %
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Remark There holds A\; < A*. On the contrary, if A\; > A\*, then by the characterization

of \; we have Hy, (u;) = 0. By the definition of \*, 3¢ € V,(RY), ¢ > 0, F'(u1)(¢) >
0 Jzn Vu1.Votqui e <M <AL

JpN mu1é

So Hj\ (u1)(¢) < 0.
We have: vy € R, Hy, (ur + 1) = Hy, (wn) + nHj, (u)(6) + [16]lh(16) with h(né) —
0 when n — 0. Therefore, for  small enough, we have H), (u1 +n1¢) < 0 and this contradicts
the definition of A;.

Theorem 3.1 Assume that the hypotheses (h1) — (h7) are satisfied, N = 3,4 and v =
2* = 2N/(N — 2).

a) If A > \*, then the equation (1) has no positive solution.

b) If Ay + el"72 < X < \**, then the equation (1) has at least a positive solution.

Proof:
i) By (h7) we have: f > — Sl > — 40— > — .

ii) Since HY(RY) C L* (RY) with continuous imbedding, we deduce that V,(R") c L* (RY)

with continuous imbedding.

Note that Vo € V,(RY), F'(u)(¢) =7 [an [lu[""?u¢ and
Hi(u)(¢) = 2 [ [Vu. Vo + qud — Amug)].
Note also that u is a solution of the equation (1) iff V¢ € V,(RY), Hj(u)(¢) =
2P (u)(9).
Moreover, if t € R*T, F'(tu)(¢) = 7" F'(u)(¢) and Hj(tu)(¢) = tH}(u)(9).

Assume here that A > \*.
So: Yu € V,(RY), u > 0,3¢ > 0, F'(u)(¢) > 0 and Hj(u)(¢) < 0. Therefore the

equation (1) has no positive solution.

Assume now that \; + el772 < X\ < \**,
We are going to prove that the equation (1) admits at least a positive solution by using

the sub and supper solutions method and a Schauder Fixed Point Theorem.

a) Note by the definition of \** that:
Ju* € X0, Vo >0, F'(u*)(¢) > 0= Hi(u*)(¢) > 0. (e)
We suppose that VO < ¢ <, Iy, > 0, Hj(tu*)(¢y) < %F’(tu*)(wt).
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If Vt, Yoy, F'(tu*)(¢y) > 0, then:
Let ¢ > 0 such that F'(u*)(¢) < 0.
So YVt > 0, H}(tu*)(¢) > %F'(tu*)(gb) e Vt>0,t772 [y f(u*) 71 <
Jan [Vu* Vo + qu*dp — Amu*¢|.
When ¢t — 0, we get: 0 < H{(u")(¢).
So F'(u”)(¢) < 0= Hj(u")(¢) = 0.
Using the property (e), we get: Yo > 0, Hi(u*)(¢) > 0.
In particular, for ¢ = uy, we obtain: Ay fpx mu*uy > A [y mu*u; > 0.
Since A\; < A, we get a contradiction.
If Vt, Yiby, F'(tu*)(¢y) < 0, then:
Let ¢ > 0 such that F'(tu*)(¢) > 0. We have H| (tu*)(qﬁ) 2F’(tu*)(qﬁ) > 0.
So Vt, [on [VUu* Vo +qu*e— Amu*¢] > 1772 [y f(u*)"'¢ > 0 and this is impos-
sible for ¢ large enough (because we can take a blgger l.)
Then we have: 3¢ > 0, Iy > 0, H}(u*)(¢) < %t'V*QF’(u*)((b) < 0 and
0 < Hy(u*)(¢) < 2072F'(u*) () (for at least one t).
Since F'(u*) is a continuous function, Ja € (0,1), F'(u*)(a¢ + (1 — a)y) = 0.
Therefore we deduce that H(u*)(a¢ + (1 — a)y) > 0.
But: 522 Hy(u)(9) < aF'(u)(9) = —(1 — o) F(u) (1) < — L2202 F} (u) ().

So s [aHy (u*) (@) + (1 — a)Hy (u*)(¥)] < 0 and we get a contradiction.

Therefore 3t € (o0,1], Yo > 0, H (tu*)(¢) > %F’(tu*)(gb) i.e. tu* is a supper solution of
the equation (1). Note that tu* > su; if 0 < s <t¢. Let s > 0 such that <3,
<t<lI.

This is possible because we can choose [ sufficiently big such that n =

b) We show now that suy is a sub solution of the equation (1).
We have: 2=2 < —¢ (since [ > s) and f > —-<

sY— 2 Y2
Uy

So: ful™! ’\1 —3mu; and therefore su; is a sub solution of the equation (1).

c) Let 0 = [sul,tu | and the operator T be defined by T'(u) = v with v solution of
(—A + q)v = Amu + flu[""?u in RY.
We want to prove that T'(0) C o and that T is a continuous compact operator.
Let u € o0 and T'(u) =
We have, in a weak sense: (—A + ¢)(v — suy) = Amu + fu’™' — A\ymsu;.

By (h7), f = —55555=

n=2c—1-
So, since u > 0, we have: Amu+ fu?’"'—\ymsu; > —mf;‘gﬁlu%l—i-)\mu—)\lmsul.
Moreover u € o so vt < [7~1C7 1

and dmu + fu'™t — Aymsu; > m[du — (A + %l)sul] > 0.
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Therefore, since u > su; and A > A\ + el7™2 > )\ + eé, we obtain that:
(=A+q)(v—su;) > 0.
By the Maximum Principle, we deduce that v > su;.

Moreover we have: Vo > 0, < (=A + q)(tu* — v), ¢ >r2en> [pn[Am(tu* —

w) + ()™ = w7 )]e.
By (A7), since t <[ and A\; < A we have:

A1m A1m m
f fl _707—12[7—2 = _—yCv—l%v—? = _fycw)i%v—Q'
But Mm(iu” —u) + F((10 )7~ — 007 2 0 > o
Since 32172 (tu*) 27 < 4C7HI72 we get f > — Am

Z (tu*)zu’y 2—i°
Therefore, by the Maximum Principle, we obtain (— A q)(tu* —v) > 0 and so

v < tu*.

d) Let (u,), be a convergent sequence in o, with limit u for the norm ||.||,. Let
T(u,) = v, and T'(u) = v.
We have: Vn,
lvn = vllg < estllun = ullgllvn = vllg + 1flloe feu [0 = wHlon —v].
Since uy,,u € o, |ul~t — w7t < est|u, — u| we obtain that:
|vn —v|lq < estlju, —u||, and so T is a continuous operator. We finish this proof
by showing that 7" is compact. Let now (u,), be a bounded sequence in ¢ for the
norm ||.||,. Since the embedding of V,(RY) into L?(RY) is compact, there exists
a convergent subsequence, denoted also by (uy),, in L2(RY). Let T(u,) = v,.
We have: Vn,p
[vn — Up||2 A Jan m(un = up) (v — vp) + fon ful ™! — ugil)(vn — Up)-
Since |u) " —u) 7 < cst|un — u,| we obtain that:
[on = vpllg < estllun — up||L2@n).

We can deduce that (v,), is a Cauchy sequence and so T is a compact operator.

O

To finish, we obtain some results assuring the validity of the hypothesis (h4). First, we need

the following lemma: ( we still follow a method developped in [7]).

Lemma 3.1 Vuce X/CI(RN), u>0,Vo € VZI(RN), ¢ >0,
H{(u)((£)7'¢) — Hy(9)(($) ') < 0.

Proof: We denote by A = Hj(u)((£)71¢) — H\(¢)((£) ).
We have: A =2 [Ly[Vu.V((£)71¢) — V. V((£) ).
A =2 fon[oVu V() —uVe. V()]
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Since V((£)771) = (v — 1)(£)2[AV¢ — £ V], we get:
A=2(y = 1) [en(2)7222Vu.Vo — (2)%|Vul* - Vo[ < 0. O

So we get the last theorem:

Theorem 3.2 Assume that the hypotheses (h1), (h2), (h5) are satisfied, N == 3,4 and
v = 2%

i) If QF = {x € RN, f(z) > 0} is a nonempty, bounded domain of RY with a smooth
frontier OQT, then \* < +oo0.

ii) If F(uy) >0, then \* = A\ < +00.

iii) Moreover Ay < X* iff F(uy) < 0.
Proof:

i) Consider the following equation (—A+gq)u = Amu defined in Q* with Dirichlet condition
on 9. We denote by A, the first eigenvalue (which is simple and positive) and by
¢1 the first eigenfunction associated i.e:
(—A+q)p1 = Aymer in Q7 ¢ > 01in Q1) ¢ =0 on 90T,
Since suppp; C QF, by the above lemma, we get:
Vu € D(EY), H,, (u)((2)7161) <0
ie. Yu € DRVY), u >0

Jan [Vu.V((2)771¢1) + qu(2) 1]
fRN mu(%)%l@

Moreover, F'(u)((%)"161) = 7 [, 67 > 0.
So \* < Ay < 4o00.

S A1+ < +00.

ii) As remarked before, there holds always A* > A;. We need to show that \* < A\;, under
the condition that F'(u;) > 0. We use again the above lemma.
We have H} (u)((*)"'u) = 0 so
Vu € D(RY), H} (u)((“)" " uy) < 0.
Therefore, Yu € D(RV), u >0

Jan [Vu- V() ) + qu(t)" ']

< A\ < +o0.
Jan mu(®) 1y = >

Since F'(u)((%) " uy) = vF(u1) > 0 we get that \* < Ay and therefore \* = ;.
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iii)

1. We denote by A\~ = infyey, &), >0, F(4)>0

L. Cardoulis

a) Moreover, if \; < A\*, then, by i) we obtain F'(u;) < 0.
b) Assume now that F'(u;) < 0.

Jen VOl +al4P]
f]RN m|¢\2 ’

We are going to prove that \; < A~ then that A= < \*.

Let W = {¢ € V,(RY), ¢ > 0, F(¢) > 0}. Since W C V,(RY), we have
A1 < A7, Since uy € W, then Ay < A™.

We have to prove now that A= < \*.

. First we prove that Ju™ € V,(RY), v~ >0, F(u™) > 0,

\- = Jav [V Pl
o .[]RN mlu~|? ’
On the contrary, we suppose that
" 2 2
Vu € V,(RY), u >0, F(u) > 0= A~ < LTt
R

Let v > 0 such that F'(v) > 0. Then H,-(v) > 0.
Since A\; < A7, we have Hy-(u;) < 0 and so H)-(nu;) < 0 for all n > 0.

Since the function H),- is continuous, we get:

da € (0,1), Hy-(anuy + (1 — a)v) = 0.

Then F(anu; + (1 —a)v) <O0.

Since F((1 — a)v) > 0, there exists 7 > 0 small enough such that F'(anu; +
(1 —a)v) > 0.

So we get a contradiction and therefore we can deduce the existence of u™.

. Finally, we have to prove that A= < \*.

On the contrary, we suppose that A~ > \*.
_ Vu~ .Vo+qu™ ¢ _
So 39 € V,(RY), 6> 0, F'(u”)(¢) > 0, e verncel
ie. Hi_(u)(¢) <0.
Since F(u~) > 0 and F'(u~)(¢) > 0, then F(u~ + n¢) > 0 for n > 0 small
enough.

Moreover, since H}_(u")(¢) < 0 and Hy-(u~) = 0, we can choose 7 > 0

small enough such that Hy-(u~™ 4+ n¢) < 0.
Jen V(™ 4n9)*+a(u”+n¢)?

] _ . .
Ton ) < A~ and this contradicts the

So we obtain that:
definition of \~.

Therefore A~ < \*.
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