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ABSTRACT. In this paper, we continue our considerations in [1, 2, 3] about a homoge-

neous integral-functional equation with a parameter a > 1. Here we assume that a ≥ 2,

disregarding some explicitly mentioned cases where a can be smaller than 2. We derive new

recursions which allow to calculate the solution and its derivatives effectively, and which

contain formulas of R. Schnabl [8] and W. Volk [10] as special cases for a = 2.
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1 Introduction

There exists a long history concerning compactly supported C∞-functions, which are so-

lutions of differential-functional equations, cf. [7], [3] and the literature quoted there. By

integration these equations can be transformed into integral-functional equations. Here, we

deal with the special equation

φ(t) = b

at∫
at−a+1

φ(τ)dτ

(
b =

a

a− 1

)
(1.1)

with the real variable t and a parameter a > 1. Applications of (1.1) to probability problems

were given by G.J. Wirsching for a = 3 in [11], and for a ≥ 3
2

in [12].

In this paper, we continue our considerations in [1, 2, 3] concerning the solutions of (1.1)

under the assumption a ≥ 2 disregarding some explicitly mentioned cases where a can be

smaller than 2, in particular, in Section 8. We derive new recursions which allow to calculate

the solution and its derivatives effectively, and which contain formulas of R. Schnabl [8] and

W. Volk [10] as special cases for a = 2. For convenience of the reader we first list those

results from [1, 2, 3] which are needed later on.
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For a > 1 equation (1.1) has a C∞-solution with the support [0, 1], which is uniquely deter-

mined by means of the normalization

1∫
0

φ(t)dt = 1 . (1.2)

In particular, it is φ(0) = φ(1) = 0. The solution of (1.1)-(1.2) is symmetric with respect to

the point 1
2
, monotone at both sides of 1

2
and it is strictly positive for t ∈ (0, 1). The Laplace

transform Φ of the solution φ of (1.1)-(1.2) is an entire function satisfying Φ(0) = 1 and the

functional equation

Φ(z) =
1− e−z/b

z/b
Φ
(z
a

)
. (1.3)

It has the Taylor series

Φ(z) =
∞∑

n=0

ρn(a)

n!
zn (z ∈ C)

where the coefficients are rational functions with respect to a and, starting with ρ0(a) = 1

for n ≥ 1, they can be determined by means of the recursion

ρn(a) =
1

(n+ 1)(an − 1)

n−1∑
ν=0

(
n+ 1

ν

)
ρν(a)(1− a)n−ν . (1.4)

Moreover, for fixed n, the functions (−1)nρn(a) are increasing for a ≥ 1 and it holds

1

2n
≤ (−1)nρn(a) ≤ 1

n+ 1
, (1.5)

cf. [1, (2.14)].

For a > 2, the solution φ of (1.1)-(1.2) is a polynomial on each component of an open

Cantor set with Lebesgue measure 1. These polynomials can be expressed by means of the

polynomials

ψn(t) =
n∑

ν=0

(
n

ν

)
ρn−ν(a)t

ν , (1.6)

which have the special values

ψn(0) = ρn(a), ψn(1) = (−1)nρn(a), (1.7)

and which have the generating function

etzΦ(z) =
∞∑

n=0

1

n!
ψn(t)zn (1.8)
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so that they are Appell polynomials, cf. [8], [1]. Note that in [1] we have used the abbrevia-

tion ψn for the polynomials (1.6) with 1
a

instead of a. In [3] we have modified the polynomials

(1.6) by

fn(t) = cnψn(t) (1.9)

where cn is given by

cn =
bn+1

n! a
n(n+1)

2

=
1

n! a
(n+1)(n−2)

2 (a− 1)n+1
. (1.10)

These polynomials can be calculated recursively by

fn(t) =
b

nan

(
t− 1

2

)
fn−1(t) +

1

n

n∑
ν=2

1

ν!
Bν

a
1
2
ν(ν+1−2n)

aν − 1
fn−ν(t) (n ≥ 1), (1.11)

starting with f0(t) = b and using the Bernoulli numbers

B0 = 1 , B1 = −1

2
, B2 =

1

6
, B3 = 0 , B4 = − 1

30
, . . . .

They satisfy the relations

fn(t)− fn(t− a+ 1) = fn−1

(
t

a

)
(1.12)

and

fn(t) = (−1)nfn(1− t) (1.13)

with n ∈ N0 and f−1 = 0. The simplest connection between the solution φ of (1.1)-(1.2) and

polynomials fn (n ≥ −1) is valid for a ≥ 2, and reads

φ
( τ

an+1

)
= fn(τ) (1 ≤ τ ≤ a− 1). (1.14)

In particular for n = 0, φ attains its maximum φ(t) = b for 1
a
≤ t ≤ 1− 1

a
. In order to state

more complicated connections between φ and fn we need an auxiliary sequence γk = γk(a)

defined as follows: If k ∈ N has the dyadic representation k = dp . . . d1d0 with dp = 1 and

dν ∈ {0, 1} then

γk = (a− 1)

p∑
ν=0

dνa
ν . (1.15)

The sequence γk (k ∈ N0) can also be defined by

γ2k = aγk , γ2k+1 = aγk + a− 1 , k = 0, 1, 2, . . . , (1.16)

so that in particular γ0 = 0 and γ1 = a− 1. For p ∈ N0 these numbers satisfy the relations

γ2p = (a− 1)ap, γ2p−1 = ap − 1, γ2p−2 = ap − a (p 6= 0), (1.17)



104 L. Berg, M. Krüppel

γ2k+1 = γ2k + γ1, γ2σκ = aσγκ (σ, κ ∈ N0), (1.18)

γk + γu + 1 = ap+1 if k + u+ 1 = 2p+1 (1.19)

and the inequality

γk+1 ≥ γk + γ1 (k ∈ N0, a ≥ 2). (1.20)

For integers a also the numbers γk are integers. In particular, for a = 2, we have γk = k.

Moreover, we need the sign sequence εk = (−1)ν(k), where ν(k) denotes the number of ”1s”

in the dyadic representation of k, i.e. ν(k) is the binary sum-of-digits function (cf. [4]).

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

εk 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

Table 1: The first numbers εk

In the case a ≥ 2 we define the following closed intervals

Gkn =

[
γ2k + 1

an+1
,
γ2k+1

an+1

]
, Fkn =

[
γk

an
,
γk + 1

an

]
(1.21)

with Gkn ⊂ Fkn, since

Fkn = F2k,n+1 ∪Gkn ∪ F2k+1,n+1 (1.22)

k = 0, 1, . . . , 2n− 1, n ∈ N0 (for a = 2 the intervals Gkn degenerate to a single point). In the

intervals Gkn, the solution φ of (1.1)-(1.2) has the representation

φ(t) =
2k∑

ν=0

ενfn(an+1t− γν) (t ∈ Gkn) (1.23)

for k = 0, 1, . . . , 2n − 1, n ∈ N0. Moreover, for t ∈ Fkn, i.e. t = γk+τ
an with 0 ≤ τ ≤ 1 we have

the main formula

φ

(
γk + τ

an

)
− εkφ

( τ
an

)
=

k−1∑
ν=0

ενfn−1(γk + τ − γν). (1.24)

Another relation is

φ

(
γk + τ

an+1

)
+ φ

(
γ` + τ

an+1

)
= fn−p

(
γk + τ

ap

)
(0 ≤ τ ≤ a, a ≥ 2, n ≥ p) (1.25)

where k is even and k = 2p + ` (0 ≤ ` < 2p, p ∈ N).
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Remark 1.1 Formula (1.25) is also valid for arbitrary k ∈ N (p ∈ N0) when 0 ≤ τ ≤ 1.

If k = 2σκ and ` = 2σλ with σ ∈ N and integers κ, λ then κ = 2p−σ + λ and, according to

(1.18), it holds
γk + τ

an+1
=
γκ + τ

aσ

an−σ+1

and an analogous formula with ` and λ instead of k and τ , respectively. Writing (1.25) for

0 ≤ τ ≤ 1 with κ, λ, n − σ, p − σ and τ
aσ instead of k, `, n, p and τ , respectively, we see

that (1.25) is even valid for 0 ≤ τ ≤ aσ (i.e. at least for 0 ≤ τ ≤ a when k is even). This

assertion is already contained in [2, Proposition 6.1], however without proof.

Finally, we quote a relation which is valid even for a ≥ 3
2
, namely

φ
( τ

an+1

)
+ (−1)nφ

(
1− τ

an+1

)
= fn(τ) (2− a ≤ τ ≤ a− 1, n ≥ −1), (1.26)

and the relation valid for a > 1

+∞∑
ν=−∞

φ
(
t− ν

b

)
= b (t ∈ R). (1.27)

2 Polynomial relations

First we state two sets of new formulas for the polynomials fn.

Proposition 2.1 The polynomials fn (n ∈ N0) satisfy the addition theorem

fn(at+ (1− a)s) = an

n∑
ν=0

(−1)ν

ν!
Bν(s)a

ν
2
(ν−1−2n)fn−ν(t) (s, t ∈ R) (2.1)

where Bν(s) are the Bernoulli polynomials, and the multiplication theorem

fn(t) = a−
n(n+1)

2

n∑
ν=0

(−1)n−ν

(n+ 1− ν)!
a

ν(ν−1)
2 fν(at) (t ∈ R). (2.2)

Proof: Equation (1.3) can be written in the form

e(at+(1−a)s) z
a Φ
(z
a

)
=
− z

b
e
−sz

b

e−
z
b − 1

etzΦ(z) (s, t ∈ R),

since b = a
a−1

. Expanding both sides into power series with respect to z, using (1.8) and the

generating function of the Bernoulli polynomials, and comparing the coefficients we obtain

the formula

ψn(at+ (1− a)s) =
n∑

ν=0

(
n

ν

)
(1− a)νBν(s)a

n−νψn−ν(t) (n ∈ N0).
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In view of (1.9) and

cn
cn−ν

=
(n− ν)!

n!

a
ν
2
(ν+1−2n)

(a− 1)ν

the last equation turns over into (2.1).

From (1.3) and (1.8) we obtain analogously

ψn(t) = n!
n∑

ν=0

ψν(at)

aνν!

1

(n+ 1− ν)!

(
−1

b

)n−ν

,

and in view of (1.9) and

cn
cν

=
ν!

n!
bn−ν a

ν(ν+1)
2

a
n(n+1)

2

(2.3)

we obtain (2.2) �

Formula (2.1) is equivalent for a = 1
2

and s = t to [8, (C)], and for s = 0 to a formula in [2,

p.1012].

Relation (2.2) is a generalization of (1.4), because for t = 0 it can be transferred into (1.4),

using (1.9) and the first relation of (1.7). Though formula (2.2) is not a usual recursion, it

is possible to calculate fn(t) recursively by means of it if we additionally use from (1.6) and

(1.9) that the polynomial must have the main term cnt
n. Relation (2.2) can be considered

as the inversion of (2.1) with s = 0 and vice versa.

3 Special recursions for the solutions

Formula [10, (1.14)] from W. Volk can be generalized to the case a ≥ 2, which shall be the

general assumption in the Sections 3− 7.

Proposition 3.1 For n ≥ 2 we have the recursion

φ

(
1

an

)
=

1

1− a1−n

n∑
ν=2

1

ν!
a

1
2
ν(ν+1−2n)φ

(
1

an+1−ν

)
(3.1)

with the initial value φ( 1
a
) = b.

Proof: According to (1.14) with τ = 1 we have φ( 1
an+1 ) = fn(1) so that (1.9) and (1.7) yield

φ

(
1

an+1

)
= (−1)ncnρn(a) (3.2)
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and in particular φ( 1
a
) = b. Substituting (3.2) into (1.4) we get

φ

(
1

an+1

)
=

1

(n+ 1)(an − 1)

n−1∑
ν=0

(
n+ 1

ν

)
cn
cν

(a− 1)n−νφ

(
1

aν+1

)
,

and in view of (2.3) we obtain the equation

φ

(
1

an+1

)
=

an

an − 1

n+1∑
µ=2

1

µ!
a

1
2
µ(µ−1−2n)φ

(
1

an+2−µ

)
,

which turns over into (3.1) replacing n by n− 1 �

Formula [10, (1.14)] is the special case a = 2. Besides of (3.1) we also can state recursions

for φ( τ
an ). Inserting (1.14) into (1.11) with t = τ and into (2.1) with t = s = τ , respectively,

we immediately obtain

Corollary 3.2 For 1 ≤ τ ≤ a− 1 and n ≥ 1 we have the recursion formulas

φ
( τ

an+1

)
=

(τ − 1
2
)

n(a− 1)an−1
φ
( τ
an

)
+

1

n

n∑
ν=2

1

ν!
Bν

a
ν
2
(ν+1−2n)

aν − 1
φ
( τ

an−ν

)
(3.3)

and

φ
( τ

an+1

)
=

an

1− an

n∑
ν=1

(−1)ν

ν!
Bν(τ)a

ν
2
(ν−1−2n)φ

( τ

an+1−ν

)
, (3.4)

both with the initial value φ( τ
a
) = b.

Equations (3.3) and (3.4), both for τ = 1, lead to new recursions for φ( 1
an ) which are different

from (3.1). Moreover, for τ = a− 1 both equations yield recursions for φ( γ1

an ) which are the

initial values for more general recursions yielding φ( γk

an ). In order to state such recursions we

apply Taylor’s formula and hence we need the derivatives of higher order of the solutions.

Moreover, we have to extend the interval of validity of the main formula (1.24).

4 The domain of validity of the main formula

We preserve the assumption a ≥ 2 and show that formula (1.24) with n ∈ N0 and k ∈
{0, 1, . . . , 2n − 1} has in fact a greater interval of validity when a > 2.

Proposition 4.1 The main formula (1.24) for the solution φ of (1.1)-(1.2) is valid even

for 2− a ≤ τ ≤ a− 1.
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Proof: Since (1.24) is trivial for k = 0 we assume that k ≥ 1 and therefore also n ≥ 1.

For convenience we introduce the notation G2m,m = [1, 1 + a−2
am+1 ] where m ∈ N0. Then

according to (1.21) every Fkn has two G`m with m ≤ n− 1 as neighbouring intervals. Since

t = γk+τ
an ∈ Fkn for 0 ≤ τ ≤ 1 and |G`,n−1| = a−2

an , we see that t lies in intervals G`m both

for 2− a ≤ τ ≤ 0 and for 1 ≤ τ ≤ a− 1. Hence, in both cases φ(t) is a polynomial. But in

both cases also φ( τ
an ) is a polynomial, namely 0 and fn−1(τ), respectively, cf. (1.14). This

implies that the left-hand side of (1.24) is a polynomial spline for 2− a ≤ τ ≤ a− 1. But it

is also a C∞-function, i.e. it must be a unique polynomial �

The interval 2 − a ≤ τ ≤ a − 1 is optimal if k is odd, cf. (1.22). The case that k = 2σκ is

even can be reduced to the odd case as in Remark 1.1 using γk = aσγκ.

As consequence of Proposition 4.1, formula (1.26) can be generalized in the case a ≥ 2 as

follows:

Proposition 4.2 For n ∈ N0, k ∈ {0, 1, . . . , 2n−1} and 2−a ≤ τ ≤ a−1, the solution

φ of (1.1)-(1.2) has the property

φ

(
γk + τ

an

)
+ (−1)n−1φ

(
γk + 1− τ

an

)
= P (τ) (4.1)

where P is the polynomial

P (τ) = εkfn−1(τ) +
k−1∑
ν=0

εν [fn−1(γk + τ − γν) + fn−1(γν + τ − γk)] . (4.2)

Proof: The inequality 2− a ≤ τ ≤ a− 1 implies 2− a ≤ 1− τ ≤ a− 1. Hence, according

to Proposition 4.1 besides of (1.24) we also have

φ

(
γk + 1− τ

an

)
− εkφ

(
1− τ

an

)
=

k−1∑
ν=0

ενfn−1(γk + 1− τ − γν). (4.3)

Multiplying the last equation with (−1)n−1, using (1.13) and (1.26) with n− 1 instead of n,

we obtain the assertion by adding (1.24) �

5 On the derivatives of higher order

As before it shall be a ≥ 2. Besides of the intervals (1.21) we need the open intervals

◦
F kn=

(
γk

an
,
γk + 1

an

)
(k = 0, 1, . . . , 2n − 1, n ∈ N0), (5.1)
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with the decomposition
◦
F kn =

◦
F 2k,n+1 ∪ Gkn ∪

◦
F 2k+1,n+1 (5.2)

where the three sets on the right-hand side are disjoint. As in [3] we introduce the set

M =
∞⋃

n=0

2n−1⋃
k=0

Gkn

and its complement CM = (0, 1) \M which can also be represented as

CM =
∞⋂

n=0

2n−1⋃
k=0

◦
F kn . (5.3)

For t in one of the intervals
◦
F `m it holds

φ(m)(t) = ε`a
m(m+1)

2 bmφ(amt− γ`) (t ∈
◦
F `m) (5.4)

and otherwise we have φ(m)(t) = 0, cf. [2]. This means that for fixed t ∈ (0, 1) and m ∈ N0

we have φ(m)(t) 6= 0 if and only if there is an index ` satisfying

0 < amt− γ` < 1, (5.5)

i.e. t ∈
◦
F `m. Note that there exists at most one number ` = `m with (5.5), since the intervals

F`m (` = 0, 1, . . . , 2m − 1) are pairwise disjoint. Next, we modify [3, Definition 2.2]:

Definition 5.1 For given t ∈ (0, 1) we define a sequence δm = δm(a, t) (m ∈ N0) by

δm = 1 if (5.5) is satisfied for a certain index ` = `m, and by δm = 0 elsewhere.

Lemma 5.2 If for given t ∈ (0, 1) it holds δm = 1 (m ∈ N) then δm−1 = 1, too, with the

corresponding index `m−1 = [ `m

2
].

Proof: We have δm = 1 if and only if t ∈
◦
F `m with ` = `m. But, according to (5.2), t ∈

◦
F `m

implies that t ∈
◦
F k,m−1 with k = [ `

2
]. This yields the assertion �

Proposition 5.3 The derivatives of the solution φ of (1.1)-(1.2) have the following

property:

1. For t ∈ M , i.e. t ∈ Gkn with fixed k, n, it holds φ(m)(t) 6= 0 when 0 ≤ m ≤ n and

φ(m)(t) = 0 when m ≥ n+ 1.

2. For t ∈ CM it holds φ(m)(t) 6= 0 for all m ∈ N0.

Proof: 1. In the case a = 2, where the interval Gkn degenerates to the point t = 2k+1
2n+1 , it

is known that φ(m)(t) = 0 for m > n, cf. [2, (4.8)] or [9, p.575]. For a > 2 and t ∈ Gkn the
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function φ is a polynomial of degree n according to (1.23) and hence φ(m)(t) = 0 for m > n,

too. But (5.2) shows that it is also t ∈
◦
F kn and hence φ(n)(t) 6= 0 in view of (5.4). Lemma

5.2 implies φ(m)(t) 6= 0 for m ≤ n.

2. In view of (5.3) the supposition t ∈ CM implies that for each m we have t ∈
◦
F `m with

` = `m defined above, and hence (5.4) implies φ(m)(t) 6= 0 �

In order to determine the sequences δm and `m from Definition 5.1 explicitly for a given t =
γk

an ∈ (0, 1), which is necessary for a later application, we introduce the dyadic representation

k = dpdp−1 . . . d1d0 (5.6)

with dj ∈ {0, 1}, i.e. k = dp2
p + . . . + d12 + d0, where p < n since k < 2n. For convenience

we extend the coefficients by dj = 0 for p + 1 ≤ j ≤ n. In the next lemma we shall show

that in Definition 5.1 it holds `m = [ k
2n−m ], i.e.

`m = dn−m + dn−m+12 + . . .+ dn2m (5.7)

when m ∈ {0, . . . , n− 1}.

Lemma 5.4 Assume that t = γk

an ∈ (0, 1) with k from (5.6) and n ∈ N. If k has the

form k = 2σ(2κ+ 1) with σ, κ ∈ N0 then it holds δm = 1 for m ∈ {0, . . . , n− σ− 1} with the

corresponding index (5.7), and δm = 0 for m ≥ n− σ.

Proof: With (1.15) and the above notations we have

amt− γ`m = γ1

(
d0

an−m
+ . . .+

dn−m−1

a

)
. (5.8)

The assumption k = 2σ(2κ+ 1) means dσ = 1 and in the case σ > 0 additionally dj = 0 for

0 ≤ j < σ, so that (5.8) reduces to

amt− γ`m = γ1

(
1

an−σ−m
+

dσ+1

an−σ−m−1
+ . . .+

dn−m−1

a

)
. (5.9)

Choosing m = n − σ we obtain an−σt − γ`m = 0. In view of (1.20) this implies that

an−σt − γν ≥ 1 for ν < `m and that an−σt − γν ≤ 0 for ν ≥ `m, i.e. δn−σ = 0. Lemma 5.2

yields δm = 0 for all m ≥ n− σ. For m ∈ {0, . . . , n− σ − 1} equation (5.9) implies that

0 <
a− 1

an−σ−m
≤ amt− γ`m ≤ 1− 1

an−σ−m
< 1.

Hence, for these m it holds δm = 1 and the corresponding index reads (5.7) �
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6 More general recursions

The announced recursion formula for φ( γk

an ) in the case a ≥ 2 is a consequence of the following

Theorem 6.1 Assume that n ∈ N and that k = 2σ(2κ+ 1), 0 < k < 2n, has the dyadic

representation (5.6). Then for 2− a ≤ τ ≤ a− 1 it holds

φ

(
γk + τ

an

)
= εkφ

( τ
an

)
+

n−σ−1∑
m=0

ε`m

τm

m!
bma

m(m+1−2n)
2 φ

( γrm

an−m

)
(6.1)

where `m is given by (5.7) and

rm = d0 + d12 + . . .+ dn−m−12
n−m−1, (6.2)

i.e. k = 2n−m`m + rm.

Proof: Owing to Proposition 4.1, the function

f(τ) = φ

(
γk + τ

an

)
− εkφ

( τ
an

)
is a polynomial of degree at most n when 2− a ≤ τ ≤ a− 1. According to Taylor’s formula

and φ(m)(0) = 0 for all m, we get

f(τ) =
n∑

m=0

1

m!
φ(m)(t)

( τ
an

)m

where t = γk

an . Using Definition 5.1 and (5.4) we get equation

f(τ) =
n∑

m=0

δmε`m

τm

m!
bma

m
2

(m+1−2n)φ(amt− γ`m).

With (5.7) and (6.2), equation (5.8) can be written as

amt− γ`m =
γrm

an−m
, (6.3)

and the assertion follows from Lemma 5.4 �

Applying formula (6.1) with even k and τ = a − 1, then in view of γk + a − 1 = γk+1, cf.

(1.18), and b = a
a−1

we obtain

Corollary 6.2 Assume that n ∈ N and that k = 2σ(2κ + 1) is even, 0 < k < 2n, with

the dyadic representation (5.6). Then it holds

φ
(γk+1

an

)
= εkφ

(γ1

an

)
+

n−σ−1∑
m=0

ε`m

1

m!
a

m
2

(m+3−2n)φ
( γrm

an−m

)
(6.4)

with the notations (5.7) and (6.2).
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Note that the values φ( γ1

an ) can be determined recursively by both formulas of Corollary

3.2 with τ = γ1. Using φ( γ1

an ) as initial values, all further φ( γk

an ) with 1 < k < 2n can be

computed recursively by means of (6.4) in view of γ2`

an = γ`

an−1 .

The formulas (6.4) are recursions for the right end points of the intervals G from (1.21). Left

end points can be reduced to right ones by means of the symmetry of φ with respect to 1
2
.

According to (6.3), Proposition 6.1 with a = 2 and τ = 1 yields the

Corollary 6.3 For a = 2, n ∈ N and k = 1, 2, . . . , 2n − 1, we have the equation

φ

(
k + 1

2n

)
= εkφ

(
1

2n

)
+

n−σ−1∑
m=0

1

m!
ε`m2

m
2

(m+3−2n)φ

(
k

2n−m
− `m

)
, (6.5)

where `m = [ k
2n−m ] and k = 2σ(2κ+ 1).

Note that after a simple calculation, (6.5) for k = 1 and n+ 1 instead of n yields

φ

(
1

2n

)
=

1

1− 21−n

n∑
m=2

1

m!
2

m
2

(m+1−2n)φ

(
1

2n+1−m

)
, (6.6)

i.e. (3.1) with a = 2, cf. [10, (1.14)]. Therefore, (6.5) with the initial value φ(1
2
) = 2 is a

recursion for all φ( k
2n ) without additional knowledge where it suffices to use it only for even

k with k < 2n−2, considering the symmetry of φ and the relation

φ(t) + φ

(
1

2
− t

)
= 2

(
0 ≤ t ≤ 1

2

)
,

cf. (1.26) for n = 0 and a = 2. The first φ( k
2n ) are calculated in [3, p.216].

7 Reduced polynomial representations

The polynomial representation (1.23) for φ is rather redundant, since the terms can be

reduced by means of (1.12). One reduced formula was already set up in [2, (6.3)], to which

we shall come back later on after some preliminaries. Though the following results are valid

also for a = 2, they are only interesting in the case a > 2.

Let k, `, m be even and u, v odd numbers from N0, such that, for some numbers p, q from

N, we have

k = 2p + ` (0 ≤ ` ≤ 2p − 2), k + u = 2p+1 − 1 (7.1)

and for the same or another odd u

u = 2q + v (1 ≤ v ≤ 2q − 1), u+m = 2q+1 − 1. (7.2)
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In (7.1) it is always k ≥ 2, and in (7.2) it is u ≥ 3. For fixed n ∈ N we introduce the

notations

ϕk = φ

(
γk + τ

an+1

)
, ϕu = (−1)nφ

(
γu + 1− τ

an+1

)
. (7.3)

Proposition 7.1 In the case (7.1) it holds

ϕk = −ϕ` + fn−p

(
γk + τ

ap

)
, (7.4)

ϕk = (−1)pϕu + fn−p−1

(
γk + τ

ap+1

)
, (7.5)

when n ≥ p, and in the case (7.2)

ϕu = (−1)qϕm + (−1)q+1fn−q−1

(
γm + τ

aq+1

)
, (7.6)

ϕu = −ϕv + (−1)qfn−q

(
γm + τ

aq
− γ1

)
, (7.7)

when n ≥ q, all formulas are valid for

0 ≤ τ ≤ a. (7.8)

Proof: Relation (7.4) is only another notation for (1.25). Replacing in (1.26) n by n−p−1

as well as τ by γk+τ
ap+1 and considering (1.19) we obtain (7.5). The condition concerning τ is

equivalent to

ap+1(2− a)− γk ≤ τ ≤ ap+1(a− 1)− γk,

and these inequalities are satisfied in view of (7.8), 2 ≤ a, k ≤ 2p+1 − 2, (1.20) and (1.17).

Solving (7.5) with respect to ϕu and putting k = m as well as p = q we obtain (7.6). Given

(7.2), we can write u − 1 = k, v − 1 = `, and we obtain the first relation of (7.1) with q

instead of p. Replacing τ in (7.4) by a − τ , whereby the condition (7.8) remains invariant,

and considering

γk + a− τ = γu + 1− τ

(cf.(1.18)) as well as (1.13) with n− q instead of n and (1.19) concerning the second relation

of (7.2), we obtain (7.7) �

In the following we restrict (7.8) to the inequality

1 ≤ τ ≤ a− 1



114 L. Berg, M. Krüppel

which includes the condition a ≥ 2. In view of (1.14), (7.6) and (7.3) it holds for these τ

ϕ0 = fn(τ), ϕ1 = fn(τ − γ1). (7.9)

By means of the formulas of Proposition 7.1 we can reduce the index k of ϕk successively

down to 1 or 0, where we have the representations (7.9). In this way it is possible to arrive

at formulas of the type

ϕk =

p+1∑
j=0

σjfn−j(·) (7.10)

with σj ∈ {−1, 0, 1} and suitable arguments by the polynomials f . It would be sufficient

to carry out this reduction only by means of (7.4). Then (7.10) is the already mentioned

formula [2, (6.3)] and the signs of the non-vanishing terms in (7.10) alternate. But there are

further possibilities.
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In order to describe them in detail we identify u in (7.1) and (7.2), visualize these relations by

the directed graph in Figure 1, and proceed with the nodes `, m, v analogously down to the

endpoints 1 and 0, respectively. There are two possibilities to label the nodes, namely, either

by means of the numbers k and u (written over the node), or by means of the exponents p

and q (written down the node) corresponding to them in (7.1-2). For the end points 1 and 0

we define q = 0 in the first and p = −1 in the second case. For example, Figure 2 shows the

graph in the case k = 44 (p = 5), and Figure 3 the graphs in the cases 8 ≤ k < 16 (p = 3).

In the following we mainly characterize the nodes by means of the exponential labels p, q.

In general for p ∈ N, dj ∈ {0, 1}, assume that (5.6) is the dyadic representation of a given

even number k with dp = 1 and d0 = 0. For 0 ≤ j ≤ p we introduce the extended notations

kj = djdj−1 . . . d0, uj = djdj−1 . . . d0 (7.11)

with dj from (5.6) and dj = 1− dj. The directed graph belonging to k ≥ 2 has the following

structure. It has p + 2 nodes p, . . . , 1, 0,−1 with the root p and two end points 0, −1. For

convenience the nodes j are placed on a first line with the end point −1 when dj = 1, whereas

they are placed on a second line with the endpoint 0 when dj = 1. The corresponding number

(7.11) belonging to a fixed node j is kj on the first line (k−1 = 0) and uj on the second one.

Every node, which is no end point, is the start point of exactly two arcs, one to the next

smallest j on the same line, and one to the next smallest j on the other line. In particular,

for every j ≥ 1 there is an arc from j to j − 1.

Let ` be the length of a fixed path from p to one of the end points, obviously 1 ≤ ` ≤ p, where

there always exist two paths of maximal length ` = p. But we are interested in shortest

paths.

Proposition 7.2 (i) For j = p, p−1, . . . , 1 let ĵxj, ĵyj be the arcs of the graph belonging

to a given even integer k. We get a shortest path, if we choose successively the arcs ĵzj with

zj = min(xj, yj).

(ii) Suppose that in the representation (5.6) of k there are `− 1 ≥ 0 disjunct pairs (dj+1, dj)

of the form (1, 0) or (0, 1) for j = p− 2, . . . , 1. Then ` is the length of the shortest path.

Proof: (i) Let `(j) be the length of a shortest path from p to j, so that `(p) = 0. Let J be

the set of the nodes j belonging to the path with the arcs ĵzj. This path is a shortest path

if Bellman’s equation

`(zj) = min
îzj

`(i) + 1 (7.12)

is satisfied for all j ∈ J with j ≥ 1, cf. [5, p. 101]. For all these j it is max(xj, yj) = j − 1

and therefore zj ≤ j − 2. This means zj + 1 ≤ j − 1, where zj and zj + 1 lie on different

lines. Hence, for all j ∈ J with j < p the nodes j and j + 1 lie on different lines. For the



116 L. Berg, M. Krüppel

first arc p̂zp it is `(zp) = 1 ≤ `(zp + 1). If `(j) ≤ `(j + 1) for a fixed j ∈ J with j < p, then

`(zj) = `(j) + 1 = `(j − 1) ≤ `(zj + 1), which implies that `(j) ≤ `(j + 1) for all j ∈ J

with j < p. Moreover, we see that the possible i in (7.12) are either j, j − 1, . . . , zj + 1 or

j+1, j, . . . , zj +1, cf. Figure 4 or an analogous figure with interchanged lines, and Bellman’s

equation (7.12) is satisfied indeed.

(ii) To every arc ĵzj of the just constructed shortest path with p − 2 ≥ zj ≥ 1 we consider

the nodes i with j > i ≥ zj. These nodes contain the pair (zj +1, zj) with nodes on different

lines, but no other such pairs which are disjoint to (zj + 1, zj), cf. Figure 4. These pairs

correspond to the pairs (dj+1, dj) of the proposition. Since we have to consider also the arc

with the end point −1 or 0 the number ` of all arcs exceeds the number of the just mentioned

pairs by 1 �

-

- - -

-

µ R 1
µ

- - - -

-

µ
z q R

j zj

j + 1 j − 1 · · · zj + 1

j j − 1 · · · zj + 1

j + 1 zj

Figure 4: The neighbourhood of ĵzj

As a simple consequence of Proposition 7.2/(ii) we get

Corollary 7.3 The length `k of the shortest path belonging to the even k from (7.1)

satisfies the estimate

`k ≤
[
p+ 1

2

]
. (7.13)

The smallest numbers k such that `k = n ∈ N are πn = 2
3
(4n−1) since these are the numbers

k = 2p + 2p−2 + . . .+ 2 = 2
3
(2p+1 − 1) with odd p and n = p+1

2
.

For a given k ≥ 2 formula (7.10) or a more complicated formula arises, if we construct the

corresponding graph, choose a path from p to −1 or 0 and apply the formulas of Proposition

7.1 as well as (7.9). If we take the path along the first line, then we only have to apply

formula (7.4). This possibility is preferable if many of the dj in (5.6) vanish. In the case that
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many dj vanish it is preferable to use the path from p down to and then along the second

line, i.e. to apply first formula (7.5) and then always (7.7). Another possibility yields the

zigzag path, where the formulas (7.5), (7.6) are applied alternately.

- - -

- - -

- - -

- - -

- - -

10:

20:

30:

40:

50:

44 12 4 0

5 3 2 -1

44 12 3 0

5 3 1 -1

44 12 3 1

5 3 1 0

44 19 3 0

5 4 1 -1

44 19 3 1

5 4 1 0

Figure 5: Shortest paths of Figure 2

We call (7.10) a minimal formula if we have used a shortest path for the construction. The

graph in Figure 2 for k = 44 = 25 +23 +22 and u = 19 = 24 +21 +20 has five shortest paths

which we obtain if we disregard the dotted arcs, and which are shown in Figure 5. To these

shortest paths belong the formulas

10 : φ
(

γ44+τ
an+1

)
= fn−5

(
γ44+τ

a5

)
− fn−3

(
γ12+τ

a3

)
+ fn−2

(
γ4+τ

a2

)
− fn(τ),

20 : φ
(

γ44+τ
an+1

)
= fn−5

(
γ44+τ

a5

)
− fn−4

(
γ12+τ

a4

)
+ fn−2

(
τ
a2

)
− fn(τ),

30 : φ
(

γ44+τ
an+1

)
= fn−5

(
γ44+τ

a5

)
− fn−4

(
γ12+τ

a4

)
+ fn−1

(
τ
a
− γ1

)
− fn(τ − γ1),

40 : φ
(

γ44+τ
an+1

)
= fn−6

(
γ44+τ

a6

)
− fn−4

(
γ12+τ

a4 − γ1

)
+ fn−2

(
τ
a2

)
− fn(τ),

50 : φ
(

γ44+τ
an+1

)
= fn−6

(
γ44+τ

a6

)
− fn−4

(
γ12+τ

a4 − γ1

)
+ fn−1

(
τ
a
− γ1

)
− fn(τ − γ1)

with n ≥ 5. The equivalence of these formulas can be checked by means of (1.12). The first

formula is that one where only (7.4) is applied. The second one is the formula corresponding

to the path of Proposition 7.2 and the last one is that where after the first step only (7.7)

is applied. It is remarkable that all these minimal formulas are alternating. The zigzag case

44− 19− 12− 3− 0 does not yield a minimal formula.

A minimal formula (7.10) is called optimal formula, if the indices j with σj 6= 0 are maximal,

i.e. if the degrees of the polynomials are minimal. In the foregoing examples formula 40

is optimal. However, since the practical advantage of optimal formulas is small, we do not

investigate existence and uniquiness of them.
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8 Formulas for a greater domain of a

Finally, we give up the general assumption a ≥ 2.

8.1. Recursions in the case a ≥ 3
2
. First we remark that for τ = 1

2
equation (1.26), which

is valid for a ≥ 3
2
, implies

φ

(
1

2a2n+1

)
=

1

2
f2n

(
1

2

)
(n ∈ N0) (8.1)

and n = 0 yields

φ

(
1

2a

)
=
b

2
(8.2)

in view of f0(t) = b.

Proposition 8.1 For a ≥ 3
2

and n ≥ 1 we have the recursions

φ

(
1

2a2n+1

)
=

1

2n

n∑
ν=1

1

(2ν)!
B2ν

aν(2ν+1−4n)

a2ν − 1
φ

(
1

2a2n−2ν+1

)
(8.3)

and

φ

(
1

2a2n+1

)
=

a2n

a2n − 1

n∑
ν=1

1− 21−2ν

(2ν)!
B2νa

ν(2ν−1−4n)φ

(
1

2a2n−2ν+1

)
(8.4)

both with the initial value (8.2).

Proof: Substituting (8.1) into (1.11) with t = 1
2

and 2n instead of n, we get (8.3). From

(2.1) with t = s = 1
2

and 2n instead of n, we obtain analogously

φ

(
1

2a2n+1

)
= a2n

n∑
ν=0

1

(2ν)!
B2ν

(
1

2

)
aν(2ν−1−4n)φ

(
1

2a2n−2ν+1

)
,

and by means of the well-known relation Bν

(
1
2

)
= − (1− 21−ν)Bν , cf. [6, p.22], it follows

(8.4) �

8.2. The maximum value. Equation (1.27) yields for a ≥ 4
3

the relation

φ

(
t− 1

b

)
+ φ(t) + φ

(
t+

1

b

)
= b

(
2

a
− 1 ≤ t ≤ 2− 2

a

)
. (8.5)

Putting t = 1
2

in (8.5), we obtain for the maximum value of the solution φ of (1.1)-(1.2) that

φ

(
1

2

)
= b− 2φ

(
1

a
− 1

2

) (
a ≥ 4

3

)
, (8.6)
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since 1
a

+ 1
b

= 1 and φ is symmetric. In order to give an application for (8.1), we define

αn (n ∈ N) as the real solution of a2n(2 − a) = 1 which is different from 1 where α1 =
1
2
(1 +

√
5) = 1.618 . . ., αn < αn+1 < 2 and

αn = 2− 1

4n
+O

( n

16n

)
(n→∞).

Hence, by (8.1) with a = αn >
3
2
, formula (8.6) turns over into the explicit formula

φ

(
1

2

)
= b− f2n

(
1

2

)
(a = αn, n ∈ N).

For arbitrary a > 1 it follows from (1.27) with t = 1
2

that the maximum value φ(1
2
) has the

form

φ

(
1

2

)
= c(a)b

where c(a) = 1 for a ≥ 2, and where 0 < c(a) < 1 for 1 < a < 2. Moreover, c(a) → 0 as

a→ 1 in view of

c(a) =
1

b
φ

(
1

2

)
= 1− 2

b

∞∑
ν=1

φ

(
1

2
− ν

b

)
→ 1− 2

∫ 1/2

0

φ(t)dt = 0,

where we have used (1.27), 1
b
→ 0, the symmetry of φ and (1.2).

On the other side, φ(1
2
) →∞ as a→ 1, since otherwise we would get a contradiction to the

solution φ(t) = δ(t− 1
2
) of (1.1)-(1.2) for a = 1, cf. [1, p.164].

8.3. Special series. We denote by ap (p ∈ N0) the positive solution of ap(2− a) = a− 1.

Then a0 = 3
2
, a1 = α1 and ap < ap+1 < 2. Moreover, it is

ap = 2− 1

2p
+O

( p
4p

)
(p→∞)

and a2n > αn for n ∈ N.

Lemma 8.2 For a ≥ ap and n ∈ N0 we have

φ

(
1

an(ap + 1)

)
= (−1)nφ

(
ap

an(ap + 1)

)
+ fn−1

(
1

ap + 1

)
. (8.7)

Proof: Applying (1.26) with τ = 1
ap+1

and n − 1 instead of n yields (8.7) in view of

1− τ = ap

ap+1
, when

2− a ≤ 1

ap + 1
≤ a− 1.

The first inequality is equivalent to

ap(2− a) ≤ a− 1 (8.8)
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and therefore valid for a ≥ ap. The second inequality is equivalent to ap(1−a) ≤ a−2 which

follows from (8.8) in view of ap > 1 �

In the case a ≥ 2 equation (8.7) is valid for all p ∈ N0 since ap < 2. Owing to φ(0) = 0 and

(1.13), p→∞ yields the known formula φ
(

1
an

)
= fn−1(1), cf. (1.14).

Proposition 8.2 Assume that a ≥ ap with p ∈ N, q ∈ Z and q ≤ p. Then the solution

φ of (1.1)-(1.2) has the expansion

φ

(
aq

ap + 1

)
= −

∞∑
ν=1

ηνfνp−q−1

(
1

ap + 1

)
(8.9)

where

ην = (−1)
ν(ν+1)p

2
+νq. (8.10)

Proof: For ν ∈ N we have n = νp− q ∈ N0 and equation (8.7) reads

φ

(
aq

aνp(ap + 1)

)
= (−1)νp−qφ

(
aq

a(ν−1)p(ap + 1)

)
+ fνp−q−1

(
1

ap + 1

)
.

Multiplication with ην from (8.10) yields the relation

ηνφν = ην−1φν−1 + ηνfνp−q−1

(
1

ap + 1

)
(8.11)

where φν = φ( aq

aνp(ap+1)
). In view of η0 = 1 and φν → 0 as ν →∞ we obtain by summation

over ν ≥ 1 that

0 = φ0 +
∞∑

ν=1

ηνfνp−q−1

(
1

ap + 1

)
and this implies the assertion �

Remark 8.4 1. The coefficients ην , given by (8.10), are 4-periodic with η1 = (−1)p+q,

η2 = (−1)p, η3 = (−1)q and η4 = 1. By means of (1.5) and (1.7) it can be shown that, for

0 ≤ t ≤ 1, the polynomial fn satisfies the inequality |fn(t)| ≤ 1
n+1

cn with cn from (1.10).

This means that the series (8.9) are rapidly convergent.

2. In the case a ≥ a1 equation (8.9) for p = 1 and q = 0 yields

φ

(
1

a+ 1

)
=

∞∑
ν=0

(−1)
ν(ν+3)

2 fν

(
1

a+ 1

)
.

In view of (1.12) with t = a2

a+1
and (1.13) with t = a

a+1
it is easy to see that the foregoing

equation is equivalent to

φ

(
1

a+ 1

)
=

∞∑
ν=0

(−1)νf2ν+1

(
a2

a+ 1

)
,
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i.e. [3, (5.9)] is not only true for a ≥ 2 but even for a ≥ a1.

3. Since the number x = 1
a+1

has the expansion

1

a+ 1
= γ1

∞∑
ν=1

1

a2ν

it follows by [3, Proposition 4.4] that x belongs to CM . This means for a ≥ 2 that 1
a+1

never

lies in one of the intervals Gkn, so that φ( 1
a+1

) cannot be calculated by means of the formulas

in [1] or [2]. Analogously, this comes true for the more general left-hand side of (8.9).
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[3] Berg, L., and Krüppel, M. : Series expansions for the solution of an integral-functional

equation with a parameter. Results Math. 41 (2001), 213-228

[4] Flajolet, F., Grabner, P., Prodinger, H., and Tichy, R. F. : Mellin transform and

asymptotics: digital sums. Theoret. Comput. Sci. 123 (1994), 291-314

[5] Jungnickel, D. : Graphen, Netzwerke und Algorithmen. BI Wissenschaftsverlag,

Mannheim et. al., 1994

[6] Nörlund, N. E. : Vorlesungen über Differenzenrechnung. Berlin, 1924

[7] Rvachev, V. A. : Compactly supported solutions of functional-differential equations

and their applications. Russian Math. Surveys 45:1 (1990), 87-120
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