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ABSTRACT. In this paper, we continue our considerations in [1, 2, 3] about a homoge-
neous integral-functional equation with a parameter a > 1. Here we assume that a > 2,
disregarding some explicitly mentioned cases where a can be smaller than 2. We derive new
recursions which allow to calculate the solution and its derivatives effectively, and which

contain formulas of R. Schnabl [8] and W. Volk [10] as special cases for a = 2.
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1 Introduction

There exists a long history concerning compactly supported C'*°-functions, which are so-
lutions of differential-functional equations, cf. [7], [3] and the literature quoted there. By
integration these equations can be transformed into integral-functional equations. Here, we

deal with the special equation

o(t) = b / o(r)dr <b:ai1) (1.1)

with the real variable ¢ and a parameter a > 1. Applications of (1.1) to probability problems

were given by G.J. Wirsching for a = 3 in [11], and for a > % in [12].

In this paper, we continue our considerations in [1, 2, 3] concerning the solutions of (1.1)
under the assumption a > 2 disregarding some explicitly mentioned cases where a can be
smaller than 2, in particular, in Section 8. We derive new recursions which allow to calculate
the solution and its derivatives effectively, and which contain formulas of R. Schnabl [8] and
W. Volk [10] as special cases for a = 2. For convenience of the reader we first list those

results from [1, 2, 3] which are needed later on.
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For a > 1 equation (1.1) has a C'*°-solution with the support [0, 1], which is uniquely deter-

mined by means of the normalization

1

/gb(t)dt ~1. (1.2)

0

In particular, it is ¢(0) = ¢(1) = 0. The solution of (1.1)-(1.2) is symmetric with respect to
the point %, monotone at both sides of % and it is strictly positive for ¢ € (0,1). The Laplace
transform @ of the solution ¢ of (1.1)-(1.2) is an entire function satisfying ®(0) = 1 and the

functional equation

1—e2/b z
B(z) = —" g (-) . 1.3
@ =5 ( (13)
It has the Taylor series
(z € C)
n=0

where the coefficients are rational functions with respect to a and, starting with po(a) = 1

for n > 1, they can be determined by means of the recursion

pula) = (”* 1) (a)(1 —a)™™ . (1.4)

(n+1)( ~

Moreover, for fixed n, the functions (—1)"p,(a) are increasing for a > 1 and it holds

1 1

— < (=1)"p,(a) <
S S (1)) € ——

: (1.5)

of. [1, (2.14)].

For a > 2, the solution ¢ of (1.1)-(1.2) is a polynomial on each component of an open
Cantor set with Lebesgue measure 1. These polynomials can be expressed by means of the

polynomials
)= (”) presl@)t (16)

which have the special values

Un(0) = pnla),  Pn(1) = (=1)"pn(a), (1.7)

and which have the generating function

=1

tz

B(2) =D, —un(t)2 (18)
n=0
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so that they are Appell polynomials, cf. [8], [1]. Note that in [1] we have used the abbrevia-
tion v, for the polynomials (1.6) with £ instead of a. In [3] we have modified the polynomials
(1.6) by
fa(t) = cnthn(t) (1.9)
where ¢, is given by
(= U L . (1.10)

n(n+1) (n4+1)(n—2)
nla™ z nla™ 2 (a— 1)t

These polynomials can be calculated recursively by

na”

fn<t>=i( )fnl Z Lp,! ) =D, (1

starting with fy(f) = b and using the Bernoulli numbers

1 1 1
By=1), 31:_57 3226’ B3 =0, 342—%,
They satisfy the relations
t
falt) = fult —a+1) = foy (E) (1.12)
and
fu(t) = (=1)" fu(1 = 1) (1.13)

with n € Ny and f_; = 0. The simplest connection between the solution ¢ of (1.1)-(1.2) and
polynomials f,, (n > —1) is valid for a > 2, and reads

aﬁ(am) fulr)  (1<7<a-1). (1.14)

In particular for n = 0, ¢ attains its maximum ¢(t) = b for = <t<1-—=. In order to state
more complicated connections between ¢ and f,, we need an auxiliary sequence Y = Yk(a)
defined as follows: If k € N has the dyadic representation k = d,...ddy with d, = 1 and

d, € {0,1} then
P

Y = (a—1) Zd,,a”. (1.15)
v=0
The sequence v, (k € Np) can also be defined by
Yor = a7k, Yoksi=ay,+a—1, k=0,1,2,..., (1.16)

so that in particular 7o = 0 and 73, = a — 1. For p € Ny these numbers satisty the relations

Yor = (a — 1)a?, Yor_1 = af — 1, Yoo =aP —a (p#£0), (1.17)
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Vok+1 = Yok T V1, Yoo = a7V (0, r € No), (1.18)
Yo+ Yu+1=a"  if  k+u+1=2r"" (1.19)

and the inequality
Yer1 = +7 (K €No,a=2) (1.20)

For integers a also the numbers ~; are integers. In particular, for a = 2, we have v, = k.
Moreover, we need the sign sequence 5 = (—1)**), where v(k) denotes the number of ”1s”

in the dyadic representation of k, i.e. v(k) is the binary sum-of-digits function (cf. [4]).

klo 1 23|45 6 7/8 9 10 11|12 13 14 15
5k\1 1 -1 1\-1 11 -1\-1 1 1 -1\ 1 -1 -1 1

Table 1: The first numbers ¢,

In the case a > 2 we define the following closed intervals

= |2t e e+l

with G C Fjn, since
Fin = Fop i1 UGrn U Fopi g1 (1.22)

k=0,1,...,2" =1, n € Ny (for @ = 2 the intervals G,, degenerate to a single point). In the
intervals Gp,, the solution ¢ of (1.1)-(1.2) has the representation

o(t) = eufala™t—7,) (t € Grn) (1.23)

v=0

for k=0,1,...,2" — 1, n € Ny. Moreover, for t € Fj,, i.e. t = 7’;# with 0 <7 <1 we have

the main formula

a?’L

k—1
+T7 T
¢ (”’“ ) —ad (=) =D eufaalm+7 =) (1.24)
a v=0
Another relation is

¢ (7271117) +¢ <W—+T> = fn—p (% - T) (0<7<a,a>2,n>p) (1.25)

an+1

where k is even and k =2 + ¢ (0 < ¢ < 2P, p € N).
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Remark 1.1 Formula (1.25) is also valid for arbitrary & € N (p € Ny) when 0 < 7 < 1.
If k =29 and ¢ = 29\ with ¢ € N and integers «, A then x = 2P~ + X\ and, according to
(1.18), it holds

T

Yk +7 o Tk + ac
an+1 - anfUJrl

and an analogous formula with ¢ and X instead of k and 7, respectively. Writing (1.25) for

0<7<1with k, A\, n—0, p— 0 and = instead of k, ¢, n, p and 7, respectively, we see

a’

that (1.25) is even valid for 0 < 7 < a” (i.e. at least for 0 < 7 < @ when k is even). This

assertion is already contained in [2, Proposition 6.1], however without proof.

Finally, we quote a relation which is valid even for a > %, namely

T n 1—7
6 (i) + 000 (o ) =) @-asTSa-lazon, 02
and the relation valid for @ > 1
+oo U
Vz_:ooqs (t - 3) =b (teR). (1.27)

2 Polynomial relations

First we state two sets of new formulas for the polynomials f,,.

Proposition 2.1 The polynomials f, (n € Ny) satisfy the addition theorem

flat + (1 —a)s) =a™ ) (_,,1!)”Bu(s)ag(”‘“")fn_u@) (s,t €R) (2.1)

where B, (s) are the Bernoulli polynomials, and the multiplication theorem

folt) = a5 Y %’ flat)  (LER), (2:2)

Proof: Equation (1.3) can be written in the form

. Zer
plat+(1-a)s)2 gy (E) — L _"®®(z) (s,tE€R),
a e v —1

since b = ~*5. Expanding both sides into power series with respect to z, using (1.8) and the
generating function of the Bernoulli polynomials, and comparing the coefficients we obtain

the formula

dulat + (1= a)s) = 3 (”) (1= a)' Bus)a""ucalt)  (n € No).
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In view of (1.9) and

the last equation turns over into (2.1).

From (1.3) and (1.8) we obtain analogously

", (at 1 1\""
Ynll) :n!z% afy!)(n—i-l—l/)! (_E) ’

and in view of (1.9) and

| v(r+1)
Cn V. n—v a 2
C_ - Eb n(n+1) (23)
v : a2

we obtain (2.2) l

Formula (2.1) is equivalent for a = § and s = ¢ to [8, (C)], and for s = 0 to a formula in (2,
p.1012].

Relation (2.2) is a generalization of (1.4), because for ¢ = 0 it can be transferred into (1.4),
using (1.9) and the first relation of (1.7). Though formula (2.2) is not a usual recursion, it
is possible to calculate f,, () recursively by means of it if we additionally use from (1.6) and
(1.9) that the polynomial must have the main term c,t". Relation (2.2) can be considered

as the inversion of (2.1) with s = 0 and vice versa.

3 Special recursions for the solutions

Formula [10, (1.14)] from W. Volk can be generalized to the case a > 2, which shall be the

general assumption in the Sections 3 — 7.

Proposition 3.1 Forn > 2 we have the recursion

n

1 1 1 . 1
-y - - — 45v(v+1-2n) -
¢<an) - 1_al—nz;V!a ¢<an+l—u) (31)

with the initial value ¢(£) =b.

Proof: According to (1.14) with 7 = 1 we have ¢(=4) = fn(1) so that (1.9) and (1.7) yield

¢ (an1+1) = (=1)"cppn(a) (3.2)
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and in particular ¢(+) = b. Substituting (3.2) into (1.4) we get

1 < (n+ (1
¢<an+1>:(n+1 :0< )V -1 gz5<au+1>’

1%

and in view of (2.3) we obtain the equation

1 a” 1 L u(p—1—2n) 1
¢ artl ) Z;_u a? ¢ ant2—p |7

which turns over into (3.1) replacing n by n —1 B

Formula [10, (1.14)] is the special case a = 2. Besides of (3.1) we also can state recursions
for ¢( 7). Inserting (1.14) into (1.11) with ¢ = 7 and into (2.1) with ¢ = s = 7, respectively,

we immediately obtain

Corollary 3.2 For1<7<a-1andn>1 we have the recursion formulas

2 (v+1-2n)

gZS<CL”T+1>:TL((1(7——_1)§(1)" 1 ( ) Z Bag” -1 (b(a’z——V) (3.3)

and

6 (=57) = 23 B g ryastmoamg (1) (3.4)

both with the initial value qﬁ(g) =

Equations (3.3) and (3.4), both for 7 = 1, lead to new recursions for ¢(=) which are different
from (3.1). Moreover, for 7 = a — 1 both equations yield recursions for ¢(2) which are the
initial values for more general recursions yielding ¢(2%). In order to state such recursions we
apply Taylor’s formula and hence we need the derivatives of higher order of the solutions.

Moreover, we have to extend the interval of validity of the main formula (1.24).

4 The domain of validity of the main formula

We preserve the assumption a > 2 and show that formula (1.24) with n € Ny and k €
{0,1,...,2™ — 1} has in fact a greater interval of validity when a > 2.

Proposition 4.1 The main formula (1.24) for the solution ¢ of (1.1)-(1.2) is valid even
for2—a<7t<a-1.
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Proof: Since (1.24) is trivial for £ = 0 we assume that £ > 1 and therefore also n > 1.

For convenience we introduce the notation Gom,, = [1,1 + aci,ffl] where m € Ny. Then
according to (1.21) every Fj, has two Gy, with m < n — 1 as neighbouring intervals. Since
t = ”’;# € Fy, for 0 < 7 <1 and |Gypy| = “a;nz, we see that t lies in intervals Gy, both
for 2—a <7 <0and for 1 <7 <a-—1. Hence, in both cases ¢(t) is a polynomial. But in
both cases also ¢(Z7) is a polynomial, namely 0 and f,_i(7), respectively, cf. (1.14). This
implies that the left-hand side of (1.24) is a polynomial spline for 2 —a < 7 < a — 1. But it

is also a C'*°-function, i.e. it must be a unique polynomial B

The interval 2 —a < 7 < a — 1 is optimal if k is odd, cf. (1.22). The case that k = 29k is

even can be reduced to the odd case as in Remark 1.1 using v = a;.

As consequence of Proposition 4.1, formula (1.26) can be generalized in the case a > 2 as

follows:

Proposition 4.2 Forne Ny, ke {0,1,...,2"~1} and2—a < 7 < a— 1, the solution
¢ of (1.1)-(1.2) has the property

o (L) carme (BET) P (1)

a” a”
where P is the polynomial

Pr) = cefurs (M) + S e (e £ 7= %) + farlnot 7 — )] (42)

v=0

Proof: The inequality 2 —a <7 < a— 1 implies 2 —a <1 —7 < a — 1. Hence, according
to Proposition 4.1 besides of (1.24) we also have

- 1 k-1
) (% : T) — &k ( a"T) - Vzogufn—ﬂ%c +1=7 =) (4.3)

Multiplying the last equation with (—1)""!, using (1.13) and (1.26) with n — 1 instead of n,
we obtain the assertion by adding (1.24) W

5 On the derivatives of higher order

As before it shall be a > 2. Besides of the intervals (1.21) we need the open intervals

o 1
Fin= (% o > (k=0,1,...,2" — 1, n € Ny), (5.1)

ar’  an
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with the decomposition
Fin=Fatnt1 U GrnU Fopi1n41 (5.2)

where the three sets on the right-hand side are disjoint. As in [3] we introduce the set

oo 2"—1
n=0 k=0
and its complement C'M = (0,1) \ M which can also be represented as
oo 2"—1 o
CM =) Frn- (5.3)
n=0 k=0
For t in one of the intervals }% om 1t holds
m(m+1) o
S () =g T b G(a™t —v0)  (t EFpm) (5.4)

and otherwise we have ¢(™(t) = 0, cf. [2]. This means that for fixed ¢ € (0,1) and m € Ny
we have ¢ (t) # 0 if and only if there is an index ¢ satisfying

0<a™ —y <1, (5.5)

le. t Ef%gm. Note that there exists at most one number ¢ = ¢, with (5.5), since the intervals
Fpn (€ =0,1,...,2™ — 1) are pairwise disjoint. Next, we modify [3, Definition 2.2]:

Definition 5.1 For given t € (0,1) we define a sequence &,, = d,(a,t) (m € Ny) by
Om = 1 if (5.5) is satisfied for a certain index ¢ = {,,, and by 6,, = 0 elsewhere.

Lemma 5.2 If for given t € (0,1) it holds 6,, = 1 (m € N) then §,,_1 = 1, too, with the

corresponding indezx (1 = [22].

Proof: We have d,, = 1 if and only if ¢ G[%gm with ¢ = {,,. But, according to (5.2), ¢ E}C«z’gm
implies that ¢ € F,,,—1 with k = [£]. This yields the assertion W

Proposition 5.3 The derivatives of the solution ¢ of (1.1)-(1.2) have the following
property:

1. Fort € M, ie. t € Gy, with fived k, n, it holds ¢ (t) # 0 when 0 < m < n and
¢™ () = 0 when m > n + 1.

2. Fort € CM it holds ¢'™(t) # 0 for all m € N.

Proof: 1. In the case a = 2, where the interval Gy, degenerates to the point ¢t = gﬁﬂ, it

is known that ¢™(¢) = 0 for m > n, cf. [2, (4.8)] or [9, p.575]. For a > 2 and t € G, the
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function ¢ is a polynomial of degree n according to (1.23) and hence ¢ (t) = 0 for m > n,
too. But (5.2) shows that it is also t € Fy, and hence ¢{™(¢) # 0 in view of (5.4). Lemma
5.2 implies ¢{™(t) # 0 for m < n.

2. In view of (5.3) the supposition t € C'M implies that for each m we have t E}%em with
¢ = {,, defined above, and hence (5.4) implies ¢™(t) # 0 R

In order to determine the sequences ¢,, and ¢, from Definition 5.1 explicitly for a given t =
2% € (0,1), which is necessary for a later application, we introduce the dyadic representation
k=d,d,_...dido (5.6)

with d; € {0,1}, i.e. k=dp2° +...4 d12+ dp, where p < n since k < 2". For convenience
we extend the coefficients by d; = 0 for p +1 < j < n. In the next lemma we shall show
that in Definition 5.1 it holds ,, = [5:5=], i.e.

by =dpmp + dp_pi12 + ...+ d,2™ (5.7)
when m € {0,...,n — 1}.

Lemma 5.4 Assume that t = 2% € (0,1) with k from (5.6) and n € N. If k has the
form k =272k + 1) with o,k € Ny then it holds 6,, = 1 form € {0,...,n— o — 1} with the

corresponding index (5.7), and 6,, =0 form >n —o.

Proof: With (1.15) and the above notations we have

m dO dn—m—l
at =", =m|(—">+...+ .
a a

(5.8)

The assumption k£ = 27(2x + 1) means d, = 1 and in the case ¢ > 0 additionally d; = 0 for
0 < j <o, so that (5.8) reduces to

1 d, -
at —y,, =M ( — n—ai—rln—l +...+ 1) ) (5.9)
a a a
Choosing m = n — ¢ we obtain a" %t — v, = 0. In view of (1.20) this implies that

a"’t —~, > 1 for v < {,, and that a"°t — v, <0 for v > {,,, i.e. ,_, = 0. Lemma 5.2

yields 6,, = 0 for all m > n —o. For m € {0,...,n — o — 1} equation (5.9) implies that
a—1 1

<a"t =, <1-—

anfo'fm anfo'fm

0<

Hence, for these m it holds ¢,, = 1 and the corresponding index reads (5.7) B
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6 More general recursions

The announced recursion formula for ¢(1%) in the case a > 2 is a consequence of the following

Theorem 6.1 Assume that n € N and that k = 2°(2k + 1), 0 < k < 2", has the dyadic
representation (5.6). Then for 2 —a <1 <a—1 it holds

o(B7) e ()4 T e () o

where Cy, is given by (5.7) and

T =do+d12+ ...+ dp_pp 12" (6.2)

te. k=2"""0  +r,,.

Proof: Owing to Proposition 4.1, the function

fﬁ)=¢(%;”)—fm(§g

is a polynomial of degree at most n when 2 —a < 7 < a — 1. According to Taylor’s formula

and ¢(™(0) = 0 for all m, we get

=3 e ()"

where ¢ = 2&. Using Definition 5.1 and (5.4) we get equation

Z%mn mad gt — )
With (5.7) and (6.2), equation (5.8) can be written as
r
Mt — = —= 6.3
a f)/fm an_m ? ( )

and the assertion follows from Lemma 5.4 B

Applying formula (6.1) with even k and 7 = a — 1, then in view of v, + a — 1 = 741, cf.
(1.18), and b = —5 we obtain

Corollary 6.2 Assume that n € N and that k = 2°(2k + 1) is even, 0 < k < 2", with
the dyadic representation (5.6). Then it holds

n—o—1

o) =m0 () + X gt e () o9

with the notations (5.7) and (6.2).
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Note that the values ¢(1;) can be determined recursively by both formulas of Corollary
3.2 with 7 = 7. Using ¢(2%) as initial values, all further ¢(2£) with 1 < k < 2" can be

computed recursively by means of (6.4) in view of 2t = Jt

The formulas (6.4) are recursions for the right end points of the intervals G from (1.21). Left

end points can be reduced to right ones by means of the symmetry of ¢ with respect to %

According to (6.3), Proposition 6.1 with a = 2 and 7 = 1 yields the

Corollary 6.3 Fora=2,ncNandk=1,2,...,2" — 1, we have the equation

k+1 1 "t m k
o 2 (m+3—2n) o
gb( o ) = er (—2n) + E —m!agmzz b (2n_m ém) : (6.5)

m=0

where 0, = [5:5=] and k = 27(2k + 1).

Note that after a simple calculation, (6.5) for k =1 and n + 1 instead of n yields

n

1 1 1 1
¢ (2n) T 1 —91l-n Z m!2 ¢ <2n+1m> ’ (6'6)

ie. (3.1) with a = 2, cf. [10, (1.14)]. Therefore, (6.5) with the initial value ¢(3) = 2 is a
recursion for all (;5(2%) without additional knowledge where it suffices to use it only for even

k with k < 272, considering the symmetry of ¢ and the relation

¢(t)+¢(%—t>_2 (0§t§%>7

cf. (1.26) for n =0 and a = 2. The first ¢(£) are calculated in [3, p.216].

7 Reduced polynomial representations

The polynomial representation (1.23) for ¢ is rather redundant, since the terms can be
reduced by means of (1.12). One reduced formula was already set up in [2, (6.3)], to which
we shall come back later on after some preliminaries. Though the following results are valid

also for a = 2, they are only interesting in the case a > 2.

Let k, £, m be even and u, v odd numbers from Ny, such that, for some numbers p, ¢ from

N, we have
k=2"+0 (0<(0<20—2), k+u=2r"—1 (7.1)

and for the same or another odd u

u=2"+v (1<v<27-1), u+m =20 — 1. (7.2)
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In (7.1) it is always & > 2, and in (7.2) it is w > 3. For fixed n € N we introduce the

notations
Ve +T n Yu + -7
Ok =@ ( il ) ; pu = (—1)"¢ (T) : (7.3)
Proposition 7.1 In the case (7.1) it holds
o Ve +T
Y= —e+ fn—p ( aP > ) (74>
Yo+ T
Pr = (_1)pS0u + fnfpfl ( 1 ) y (75)

when n > p, and in the case (7.2)

pu = (Vo + (1 s (22T, 7o)
Py = —Py + (_1>qfn*q (’Yma:_ i B 71) ’ (77>

when n > q, all formulas are valid for

0<7<a. (7.8)

Proof: Relation (7.4) is only another notation for (1.25). Replacing in (1.26) n by n—p—1

as well as 7 by 257 and considering (1.19) we obtain (7.5). The condition concerning 7 is

equivalent to
a”+1(2 —a)— vy <17< ap+1(a —1) — %,

and these inequalities are satisfied in view of (7.8), 2 < a, k < 2P*1 — 2 (1.20) and (1.17).
Solving (7.5) with respect to ¢, and putting &k = m as well as p = ¢ we obtain (7.6). Given
(7.2), we can write u — 1 = k, v — 1 = ¢, and we obtain the first relation of (7.1) with ¢
instead of p. Replacing 7 in (7.4) by a — 7, whereby the condition (7.8) remains invariant,

and considering

YVta—T=7+1-"T

(cf.(1.18)) as well as (1.13) with n — ¢ instead of n and (1.19) concerning the second relation
of (7.2), we obtain (7.7) B

In the following we restrict (7.8) to the inequality

1<7r<a—-1
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which includes the condition a > 2. In view of (1.14), (7.6) and (7.3) it holds for these 7

¥o = fn(T)a Y1 = fn(T - 71)' (79)

By means of the formulas of Proposition 7.1 we can reduce the index k of yj successively
down to 1 or 0, where we have the representations (7.9). In this way it is possible to arrive

at formulas of the type
p+1

ok =2 0ifas() (7.10)

with 0; € {—1,0,1} and suitable arguments by the polynomials f. It would be sufficient
to carry out this reduction only by means of (7.4). Then (7.10) is the already mentioned

formula [2, (6.3)] and the signs of the non-vanishing terms in (7.10) alternate. But there are
further possibilities.

k l m 44
p )
b4
u v 9.
q 4

Figure 1: Graph of (7.1) and (7.2) Figure 2: Graph in the case k = 44

oo
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1
—_
w
—
1
—_

7 3 1 ) 1
2 1 0 2 0
12 4 0 14 6 2 0
3 2 -1 3 2 1 -1

ek OV
S
O =

Figure 3: The cases 8 < k < 16
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In order to describe them in detail we identify w in (7.1) and (7.2), visualize these relations by
the directed graph in Figure 1, and proceed with the nodes ¢, m, v analogously down to the
endpoints 1 and 0, respectively. There are two possibilities to label the nodes, namely, either
by means of the numbers k and u (written over the node), or by means of the exponents p
and ¢ (written down the node) corresponding to them in (7.1-2). For the end points 1 and 0
we define ¢ = 0 in the first and p = —1 in the second case. For example, Figure 2 shows the
graph in the case k = 44 (p = 5), and Figure 3 the graphs in the cases 8 < k < 16 (p = 3).

In the following we mainly characterize the nodes by means of the exponential labels p, q.

In general for p € N, d; € {0, 1}, assume that (5.6) is the dyadic representation of a given

even number £ with d, = 1 and dy = 0. For 0 < 7 < p we introduce the extended notations

ki=djd;j_y...dy,  uj=d;dj_...dy (7.11)
with d; from (5.6) and Ej = 1 —d;. The directed graph belonging to k& > 2 has the following
structure. It has p 4+ 2 nodes p, ..., 1,0, —1 with the root p and two end points 0, —1. For
convenience the nodes j are placed on a first line with the end point —1 when d; = 1, whereas
they are placed on a second line with the endpoint 0 when c_ij = 1. The corresponding number
(7.11) belonging to a fixed node j is k; on the first line (k_; = 0) and u; on the second one.
Every node, which is no end point, is the start point of exactly two arcs, one to the next
smallest j on the same line, and one to the next smallest j on the other line. In particular,

for every j > 1 there is an arc from j to j — 1.

Let ¢ be the length of a fixed path from p to one of the end points, obviously 1 < ¢ < p, where
there always exist two paths of maximal length ¢/ = p. But we are interested in shortest

paths.

Proposition 7.2 (i) Forj =p,p—1,...,1 let ]@, ]/y\] be the arcs of the graph belonging
to a given even integer k. We get a shortest path, if we choose successively the arcs jz; with
zj = min(z;,y;).

(1) Suppose that in the representation (5.6) of k there are { —1 > 0 disjunct pairs (d;+1,d;)
of the form (1,0) or (0,1) for j =p—2,...,1. Then € is the length of the shortest path.

Proof: (i) Let ¢(j) be the length of a shortest path from p to j, so that {(p) = 0. Let J be
the set of the nodes j belonging to the path with the arcs j/z\] This path is a shortest path
if Bellman’s equation

{(zj) = min £(i) + 1 (7.12)

ZZ]'
is satisfied for all j € J with j > 1, cf. [5, p. 101]. For all these j it is max(z;,y;) = j — 1
and therefore z; < j — 2. This means z; +1 < j — 1, where z; and z; + 1 lie on different

lines. Hence, for all j € J with j < p the nodes j and 7 + 1 lie on different lines. For the
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first arc pz, it is €(z,) = 1 < (2, + 1). If £(5) < L(j + 1) for a fixed j € J with j < p, then
U(z)) = L(j)+1=40(j —1) < £(z; + 1), which implies that ¢(j) < £(j 4+ 1) for all j € J
with j < p. Moreover, we see that the possible ¢ in (7.12) are either j,j —1,...,2; + 1 or
j+1,7,...,2;+1, cf. Figure 4 or an analogous figure with interchanged lines, and Bellman’s

equation (7.12) is satisfied indeed.

(7i) To every arc j/z\j of the just constructed shortest path with p —2 > z; > 1 we consider
the nodes ¢ with j > i > z,. These nodes contain the pair (z; + 1, z;) with nodes on different
lines, but no other such pairs which are disjoint to (z; + 1, z;), cf. Figure 4. These pairs
correspond to the pairs (d;;1,d;) of the proposition. Since we have to consider also the arc
with the end point —1 or 0 the number ¢ of all arcs exceeds the number of the just mentioned

pairs by 1 i

i+ 1 j—1 Z+1

Figure 4: The neighbourhood of ]Z?

As a simple consequence of Proposition 7.2/(ii) we get

Corollary 7.3 The length () of the shortest path belonging to the even k from (7.1)

satisfies the estimate

|
0 < {’%} . (7.13)
2
3

The smallest numbers k such that ¢, = n € N are 7, = (4™ — 1) since these are the numbers
k=20 42024 42=2(2rt! — 1) with odd p and n = 2.

For a given k£ > 2 formula (7.10) or a more complicated formula arises, if we construct the
corresponding graph, choose a path from p to —1 or 0 and apply the formulas of Proposition
7.1 as well as (7.9). If we take the path along the first line, then we only have to apply

formula (7.4). This possibility is preferable if many of the d; in (5.6) vanish. In the case that
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many c_lj vanish it is preferable to use the path from p down to and then along the second

line, i.e. to apply first formula (7.5) and then always (7.7). Another possibility yields the

zigzag path, where the formulas (7.5), (7.6) are applied alternately.

19;

40:

59:

44 12 4 0
5 3 2 -1
44 12 3 0
5 3 1 -1
44 12 3 1
5 3 1 0
44 19 3 0
> 4 1 -1
44 19 3 1
D 4 1 0

Figure 5: Shortest paths of Figure 2

We call (7.10) a minimal formula if we have used a shortest path for the construction. The
graph in Figure 2 for k = 44 = 25+ 23+ 2% and u = 19 = 2% 4+ 2! + 29 has five shortest paths

which we obtain if we disregard the dotted arcs, and which are shown in Figure 5. To these

shortest paths belong the formulas

¢ (BET) = fos (257

¢ (
20 ¢ (GET) = fas (
3%: ¢ (WHT) = fu- 5(
40 (ET) = famo (M50

16 () = fus (17 -
with n > 5. The equivalence of these formulas can be checked by means of (1.12). The first

W2+ frs (2 — 1) = fu(T — M),
712+T - '71) + fr—2 (a2) - fn(7_>7

fn—a (mH ’71) + fa1 (— - ’71) — falT —m)

formula is that one where only (7.4) is applied. The second one is the formula corresponding
to the path of Proposition 7.2 and the last one is that where after the first step only (7.7)

is applied. It is remarkable that all these minimal formulas are alternating. The zigzag case

44 — 19 — 12 — 3 — 0 does not yield a minimal formula.

A minimal formula (7.10) is called optimal formula, if the indices j with o; # 0 are maximal,

i.e. if the degrees of the polynomials are minimal. In the foregoing examples formula 4°

is optimal. However, since the practical advantage of optimal formulas is small, we do not

investigate existence and uniquiness of them.
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8 Formulas for a greater domain of «a

Finally, we give up the general assumption a > 2.

8.1. Recursions in the case a > 2. First we remark that for 7 = £ equation (1.26), which

is valid for a > %, implies

6 (g ) = 3fn(3) (et 81)
and n = 0 yields X )
o(3) -3 (82)
in view of fy(t) = 0.
Proposition 8.1 Fora> % and n > 1 we have the recursions
n v(2v+1—4n)
¢ (ﬁ) - % ; (211/)!32”a =1 ¢ (2a2n12v+1) (83)
and om 1-20
¢(§$;0::&:—1§;1;£ﬂ B%M@“PM%<ZE;5E> (8.4)

both with the initial value (8.2).

Proof: Substituting (8.1) into (1.11) with ¢ = 1 and 2n instead of n, we get (8.3). From

(2.1) with ¢ = s = 1 and 2n instead of n, we obtain analogously

1 o 1 1 1
o n - v(2v—1—4n)
¢ (2a2n+1) =a Zo (2y>!Bzu (2) a ¢ <2a2n2u+1) )

and by means of the well-known relation B, (%) = —(1-2"")B,, cf. [6, p.22], it follows
(8.4) W

8.2. The maximum value. Equation (1.27) yields for a > % the relation

¢G—%)+Mﬂ+¢@+%>:b (%—1§t§2—§). (8.5)

Putting ¢ = 3 in (8.5), we obtain for the maximum value of the solution ¢ of (1.1)-(1.2) that

¢(%)—b_z¢(§—%) (zg) (5.6)
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since £ + ¢+ = 1 and ¢ is symmetric. In order to give an application for (8.1), we define
a, (n € N) as the real solution of a*"(2 — a) = 1 which is different from 1 where a; =
1(1++5) =1618..., a, < ayy1 <2 and

an:2—4in+0<%) (n — 00).

Hence, by (8.1) with a = a,, > 2, formula (8.6) turns over into the explicit formula

6(3)=t-tu(3) (@-annen

For arbitrary a > 1 it follows from (1.27) with ¢ = 1 that the maximum value ¢(3) has the

s (%) — c(a)b

where ¢(a) = 1 for a > 2, and where 0 < c¢(a) < 1 for 1 < a < 2. Moreover, c¢(a) — 0 as

form

a — 1 in view of

o0 1/2
c(a):%¢(%):1_%Z¢(%_%)H1_2/0 o(t)dt = 0,
v=1

where we have used (1.27), 3 — 0, the symmetry of ¢ and (1.2).
(

On the other side, ¢ %
solution ¢(t) = 6(¢t — 3) of (1.1)-(1.2) for a = 1, cf. [1, p.164].

) — 00 as a — 1, since otherwise we would get a contradiction to the

8.3. Special series. We denote by a, (p € Ny) the positive solution of a?(2 —a) = a — 1.

Then ag = %, a; = o and a, < apy1 < 2. Moreover, it is

1 p
ap:2—§+o<ﬂ> (p — 00)
and as, > a,, for n € N.

Lemma 8.2 Fora > a, and n € Ny we have

(oten)-crolaen) (o).

Proof: Applying (1.26) with 7 = ap#ﬂ and n — 1 instead of n yields (8.7) in view of
l—7= a;}il, when
2—a< <a-—1.
ab +1

The first inequality is equivalent to

a?2—a)<a-1 (8.8)
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and therefore valid for a > a,. The second inequality is equivalent to a?(1 —a) < a—2 which

follows from (8.8) in view of a”» > 1 W

In the case a > 2 equation (8.7) is valid for all p € Ny since a, < 2. Owing to ¢(0) = 0 and
(1.13), p — oo yields the known formula ¢ (=) = f,—1(1), cf. (1.14).

Proposition 8.2 Assume that a > a, withp € N, g € Z and q < p. Then the solution
¢ of (1.1)-(1.2) has the expansion

a? = 1
¢(ap+1> :_;””f”“l (ap+1> (8.9

Ty = (_1)u(u;-1)l’+z/q. (810)

where

Proof: For v € N we have n = vp — ¢ € Ny and equation (8.7) reads

al vp—q a’ 1
¢ (avp(ap + 1)) = (=" <a<v1)p(ap + 1)> o (ap + 1) '

Multiplication with 7, from (8.10) yields the relation

1
nud)u = 77u71¢u71 + nufz/pqul (Clp T 1) (811)

where ¢, = gb(#) In view of 7y = 1 and ¢, — 0 as ¥ — oo we obtain by summation

aP+1)
over v > 1 that
> 1
0=¢o+ ; Mo fup—q—1 (ap——i—l)

and this implies the assertion W

Remark 8.4 1. The coefficients 7,, given by (8.10), are 4-periodic with 7, = (—1)P*4,
ne = (—1)?, n3 = (—1)? and ny = 1. By means of (1.5) and (1.7) it can be shown that, for
0 <t < 1, the polynomial f, satisfies the inequality |f,(t)| < ¢, with ¢, from (1.10).
This means that the series (8.9) are rapidly convergent.

2. In the case a > a; equation (8.9) for p = 1 and ¢ = 0 yields

() =20 ().

v=0

In view of (1.12) with t = #21 and (1.13) with ¢ = £ it is easy to see that the foregoing

equation is equivalent to

o () = S0 (557).

v=0
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i.e. [3, (5.9)] is not only true for a > 2 but even for a > a.
3. Since the number x = a+r1 has the expansion

1 oo
a+1

1
=N 2

v=1

it follows by [3, Proposition 4.4] that x belongs to C' M. This means for a > 2 that ﬁ never
lies in one of the intervals Gy, so that gb(ﬁ) cannot be calculated by means of the formulas

in [1] or [2]. Analogously, this comes true for the more general left-hand side of (8.9).
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