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ABSTRACT. For a special rational difference equation of order two oscillating series solution

are constructed. An example is given where Bessel functions arise as coefficients.
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A detailed investigation of the rational difference equation

xn+2 =
α+ βxn+1 + γxn

A+Bxn+1 + Cxn

(n ∈ N0) (1)

with non-negative parameters (A+B+C > 0) is contained in the book Kulenović and Ladas

[3]. Under the conditions

A+B + C = α+ β + γ = 1 (2)

it has the positive equilibrium x̃ = 1, and the corresponding linearized equation has the

characteristic equation D(s) = 0 with

D(s) = s2 + (B − β)s+ C − γ . (3)

In the case that the zeros of (3) are real, series solutions of (1) were constructed in [2]. Here,

we deal with the case

C > γ +
1

4
(β −B)2 (4)

where the zeros

z =
1

2

(
β −B + i

√
4(C − γ)− (β −B)2

)
(5)

and z of (3) are complex, and we construct series solutions which are oscillating. In the

following we use the notation

gjk(r) =
1− rj+1

1− r

1− rk+1

1− r
− 1− rj+k (6)
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with j, k ∈ N0. Moreover, we put r = |z| where (2), (4) and (5) imply that 0 < r =
√
C − γ ≤ 1. Some calculations were carried out by means of the DERIVE system.

Proposition 1 Under the assumptions (2), (4) and r < 1 the difference equation (1)

has the solution

xn =
∞∑

j=0

∞∑
k=0

cjka
jznjakznk (7)

with c00 = c10 = c01 = 1, an arbitrary complex a, and

cjk = − 1

D(zjzk)

j∑
µ=0

′ k∑
ν=0

′
cµνcj−µ,k−νz

µzν(Bzjzk + Czµzν) (8)

for j + k ≥ 2, where the primes at the sums shall indicate that the pairs (0, 0) and (j, k) are

excluded for (µ, ν). The series (7) converges for

λ|a|rn < 1 (9)

where

λ = sup
j+k≥2

1

|D(zjzk)|
(
Brj+kgjk(r) + Cgjk(r

2)
)
. (10)

Proof: Writing (1) in the form

xn+2(A+Bxn+1 + Cxn) = α+ βxn+1 + γxn

and replacing xn by means of (7) with c00 = c10 = c01 = 1, we obtain by comparing

coefficients that the coefficients cjk can be determined recursively by (8), whereas a remains

arbitrary.

In order to prove the convergence condition (9) we show that

|cjk| ≤ λj+k−1 (11)

for j + k ≥ 1. This estimate is valid in the case j + k = 1. Assuming that |cµν | ≤ λµ+ν−1 is

valid for 0 ≤ µ ≤ j, 0 ≤ ν ≤ k but 1 ≤ µ+ ν < j + k, then (8) implies the estimate

|cjk| ≤
1

|D(zjzk)|
(
Brj+kgjk(r) + Cgjk(r

2)
)
λj+k−2 ,

and (11) is proved by induction in view of (10)

The coefficients of (7) satisfy cjk = cjk. Writing z = reiϕ, cjka
jak = %jke

iϑjk and using

cjka
jznjakznk + ckja

kznkajznj = 2%jkr
(j+k)n cos(nϕ(j− k)+ϑjk), we see that the solution (7)

oscillates around the equilibrium 1 when a 6= 0.

The estimate (9) implies that (7) converges at least for

n >
ln(λ|a|)

ln 1
r

.
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Proposition 2 The supremum (10) allows the estimate

λ ≤ 2(Br + C)

(1− r)2
. (12)

Proof: We use the abbreviations x = rj, y = rk. In view of D(s) = (z − s)(z − s) we have∣∣D (zjzk
)∣∣ ≥ (r − xy)2 ,

so that (12) is valid if we show that both

0 ≤ 2r

(1− r)2
− xy

(r − xy)2

(
(1− rx)(1− ry)

(1− r)2
− 1− xy

)
(13)

and

0 ≤ 2

(1− r)2
− 1

(r − xy)2

(
(1− r2x2)(1− r2y2)

(1− r2)2
− 1− x2y2

)
. (14)

The right-hand side of (13) can be written as

ry(1− x)(r − x) + rx(1− y)(r − y) + r(r − y)(r − xy) + (r − x)(r2 − xy2) (15)

divided by the positive denominator (1− r)2(r − xy)2, and the right-hand side of (14) as

r2(x− y)2 + 3(r2 − xy)2 + 4r(r2 − xy)(1− xy) (16)

divided by the positive denominator (1−r2)2(r−xy)2. In view of xy ≤ r2 < 1 the expression

(16) is always non-negative. For both x ≤ r and y ≤ r also the expression (15) is non-

negative. In the case x = 1 and y ≤ r2 the expression (15) can be written as

r(r − y)2 + (r − y)(r2 − y)

so that it is also non-negative and, in view of the symmetry of (14), also the case x ≤ r2 and

y = 1 is settled

The right-hand sides of (13) and (14) vanish for x = y = r.

Example 3 Pielou’s equation

xn+2 =
2xn+1

1 + xn

,

cf. [3, Theorem 4.4.1 (b)], is a special case of (1), (2) with the non-vanishing coefficients

A = C = 1
2
, β = 1. Hence, z = 1

2
(1 + i) with r = 1√

2
, and

c20 =
1

5
(2− i) , c11 = 0 , c30 =

1

15
(1− 2i) , c21 =

1

5
(1 + 2i) .
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The estimate (12) seems to be rather bad because it only yields λ ≤ 6 + 4
√

2.

The case r > 1 is impossible in view of (2). If r = 1 without z being a root of unity, then

the coefficients (8) exist, but the convergence of (7) is an open problem. If z is a root of

unity, then the general solution of (1) is periodic and we do not need the expansion (7). A

special example is Lyness’ equation with C = 1 and α = β2 having 5-periodic solutions,

cf. [3, p. 71].

A further one is

Example 4 with C = β = 1, i.e.

xn+2 =
xn+1

xn

(17)

and 6-periodic solutions, cf. [3, p. 48]. The general positive solution of (17) reads

xn = exp(azn + a zn) (18)

with z = e
iπ
3 and an arbitrary complex constant a. In this case the corresponding expansion

(7) has the coefficients cjk = 1
j!k!

and it can be written in a finite form. In order to show this

we introduce the notation a = %eiϑ and write it first as

xn =
+∞∑

`=−∞

I`(2%) exp
[
i
(πn

3
+ ϑ
)
`
]

(19)

with the Bessel functions

I`(2%) =
∞∑

k=0

1

k!(k + `)!
%`+2k .

Setting ` = 6µ+ ν, expression (19) turns over into the finite Fourier sum

xn =
5∑

ν=0

Cν(%, ϑ) exp
[
i
(πn

3
+ ϑ
)
ν
]

(20)

with

Cν(%, ϑ) =
+∞∑

µ=−∞

I6µ+ν(2%) exp(6iϑµ) . (21)

The series (21) converges in view of

I`(2%) = I−`(2%) ∼
%`

`!

as `→∞. The coefficients in (20) can be simplified using the discrete Fourier transform as

in [1, p. 1073].
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[3] Kulenović, M.R. S., and Ladas, G. : Dynamics of Second Order Rational Difference

Equations. Boca Raton etc. 2002

received: March 26, 2003

Author:

Lothar Berg

Universität Rostock

Fachbereich Mathematik

18051 Rostock

Germany

e-mail: lothar.berg@mathematik.uni-rostock.de


