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ABSTRACT. This paper is concerned with existence, uniqueness and long-time asymptotic

behavior of the solutions of the time-dependent Ginzburg-Landau equations of supercon-

ductivity, in the case where the applied magnetic field H is time-dependent. We first prove

existence and uniqueness of solutions with H1-initial data. This result is obtained under the

“φ = −ω(∇ · A)” gauge with ω > 0. These solutions become then uniformly bounded in

time for the H1-norm, by assuming time-uniform boundedness on H and its time derivative.
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1 Introduction

In this paper we consider the Ginzburg-Landau model for superconductivity in the nonsta-

tionary case. Based on an averaging method of the BCS theory, a time-dependent Ginzburg-

Landau model was derived by Gor’kov and Eliashberg in 1968 [1]. The study of this model

for superconductivity may give a better understanding of the physical state of a supercon-

ductor, especially for the high-temperature superconductors. It is known from the physics

literature that the realization of this physical phenomena and then the validation of this

model is only possible under temperatures near the critical temperature. The equations

describing the state of a superconducting material near the critical temperature are nonlin-

ear differential equations for the order-parameter ψ, the vector potential A and the electric

potential φ, whose evolution in presence of a magnetic field H is governed by the following

system

η

(

∂

∂t
+ iκφ

)

ψ = −
(

i

κ
∇ + A

)2

ψ +
(

1 − |ψ|2
)

ψ in Ω × (0,∞), (1.1)

∂A

∂t
+ ∇φ = −∇×∇× A + Js + ∇× H in Ω × (0,∞), (1.2)
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where Js is given by

Js ≡ Js(ψ,A) =
1

2iκ
(ψ∗∇ψ − ψ∇ψ∗) − |ψ|2A = −Re

[

ψ∗

(

i

κ
∇ + A

)

ψ

]

. (1.3)

Equations (1.1)-(1.3) are satisfied everywhere in a domain Ω, which is the region occupied

by the superconducting material and at all times t > 0. The associated boundary conditions

are

n ·
(

i

κ
∇ + A

)

ψ +
i

κ
γψ = 0 and n × (∇× A − H) = 0 on ∂Ω, (1.4)

where ∂Ω is the boundary of Ω and n the local outer unit normal to ∂Ω. They must be

satisfied at all times t > 0. Henceforth, the term
”
TDGL Equations“ refers to the system of

equations (1.1)-(1.4).

We assume that Ω is a bounded domain in R
n (n = 2 or 3) with a boundary ∂Ω of

class C1,1. The parameters appearing in the TDGL equations are dimensionless physical

constants; η is the friction coefficient and κ is the Ginzburg-Landau parameter. Here η mea-

sures the temporal rate of change and the value of κ determines the type of superconductor:

κ ≤ 1/
√

2 describes what is known as a type I superconductor and κ ≥ 1/
√

2 as a type II.

The function γ is defined and Lipschitz continuous on ∂Ω and γ(x) ≥ 0 for x ∈ ∂Ω. We use

the following common notation: ∇ ≡ grad, ∇· ≡ div, ∇× ≡ curl and ∇2 = ∇ · ∇ ≡ ∆, i is

the imaginary unit and a superscript* denotes the complex conjugation.

The order parameter ψ is a complex-valued function, it describes the center-of-mass

motion of the “superelectron”, whose density is ns = |ψ|2 and whose flux is Js. ψ = 0

corresponds to the normal state, and in a perfect superconducting state |ψ| = 1. The vector

potential A takes its values in R
n, it represents the magnetic potential, i.e. B = ∇×A. The

scalar potential φ determines the electric field E = −∂A
∂t

−∇φ. The vector H represents the

(externally) applied magnetic field; it is a given function of space and time, which is diver-

gence free, ∇·H = 0 at all time. The difference M = B−H is known as the magnetisation.

The trivial solution (ψ = 0, B = H, E = 0) represents the normal state, where all super-

conducting properties have been lost. For further physics details about Ginzburg-Landau

equations, one may consult [1] or [2].

Several works have been devoted recently to questions of existence, uniqueness and long

time asymptotic behavior of the solutions of equations (1.1)-(1.4) when the applied mag-

netic field is stationary, i.e. H(t) = H0; as a bibliographical review, we refer to [3], [4], [5],

[6], [7] and [8]. To overcome the uniqueness deficiency in equations (1.1)-(1.4), the authors

in the mentioned references adopted some gauge transformation like the zero-electric gauge

(φ = 0), the London gauge (∇ · A = 0) or the Lorentz gauge (φ = −∇ · A). On the other
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hand, it is known that in presence of an applied time-independent magnetic field H, the

TDGL equations enjoy the free energy functional, whose advantage is the getting of some

estimates on the solutions.

In contrast to the above situation, Fleckinger, Kaper and Takáč considered in [9] equa-

tions (1.1)-(1.4) with a time-dependent magnetic field H(t). They established in the general

context of “φ = −ω(∇ · A)” gauge (ω > 0) the existence of a dynamical process. However,

some regularities of the solutions obtained are lost in the limit case ω = 0. When H is

stationary, this process becomes a dynamical system enjoying the existence of a global at-

tractor. Subsequently Kaper and Takáč [11] proved that in the special case where the applied

magnetic field is asymptotically stationary, the dynamical process generated by the TDGL

equations is asymptotically autonomous, i.e. its large-time asymptotic limit is a dynamical

system, whose attractor coincides with the one of the dynamical process.

In this paper, we present new, more general results concerning existence, uniqueness and

regularity of solutions to the TDGL equations when the applied magnetic field H exhibits

strong temporal fluctuations. In practice H is either time-independent or time-periodic. For

instance, we are able to show global existence for all times t ≥ 0 if H is time-periodic. The

Lyapunov functional method applied in [9], [10] and [11] is not suitable for treating other

than weak temporal fluctuations that disappear for large time with certain convergence

rate. Our method of proving global existence and boundedness of solutions for all times

t ≥ 0 significantly improves and extends the classical Lyapunov functional method. Our

discussion will rely on the choice of the “φ = −ω(∇ ·A)” gauge (ω > 0), introduced in [10].

We omit the degenerate case ω = 0. The outline of the paper is as follows. In section 2,

we introduce preliminary material, gauge invariance among others, and recall basic results

for use in subsequent sections. In section3, we first homogenize the boundary conditions,

give definitions of the function spaces we are going to use and assumptions on the data, and

after we reformulate the problem into an equivalent abstract initial value problem. Section 4

contains results concerning existence, uniqueness and regularity of solutions to the original

equations, the proof of local existence is based on the contraction mapping principle, while

global existence is derived from estimates on the energy type functional. In our existence

result, we obtain solutions of the TDGL equations fromH1-initial data and without requiring

L∞-bound of the initial order parameter ψ0. In section 5, we establish that the solutions

obtained become uniformly bounded with respect to t ≥ 0, this will lead to the existence of

an absorbing set for the process.
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2 Preliminaries

The TDGL equations are not mathematically well posed unless some gauge fixing has been

done. It is known in [12] that the solutions of equations (1.1)-(1.4) are unique up to a gauge

transformation Gχ

Gχ : (ψ, A, φ) −→
(

ψeiκχ, A + ∇χ, φ− ∂χ

∂t

)

,

here χ is a given real-valued function (sufficiently smooth) of position and time. In our

investigation we adopt the “φ = −ω(∇ ·A)” gauge. We restrict ourselves to the case ω > 0.

Formaly we determine this gauge by taking χ ≡ χω(x, t) as a solution of the following

boundary value problem

∂χ

∂t
− ω∆χ = φ+ ω(∇ · A) in Ω × (0,∞),

n · (∇χ) = −n · A on ∂Ω × (0,∞).

The initial condition χ(·, 0) = χ0 can be chosen arbitrarily. By virtue of the current gauge,

A and φ satisfy the identities

φ+ ω(∇ · A) = 0 in Ω × (0,∞), (2.1)

n · A = 0 on ∂Ω × (0,∞). (2.2)

On the other hand the TDGL equations may be given as

η
∂ψ

∂t
= −

(

i

κ
∇ + A

)2

ψ + iηκωψ(∇ · A) +
(

1 − |ψ|2
)

ψ in Ω × (0,∞), (2.3)

∂A

∂t
= −∇×∇× A + ω∇(∇ · A) + Js + ∇× H in Ω × (0,∞), (2.4)

where Js is given by (1.3) and the boundary conditions become

n · ∇ψ + γψ = 0, n · A = 0, n × (∇× A − H) = 0 on ∂Ω × (0,∞). (2.5)

For the initial condition, we put

ψ(·, 0) = ψ0 and A(·, 0) = A0 in Ω, (2.6)

where ψ0 and A0 are given.

Now we introduce notations conventions concerning functional spaces, in order to re-

formulate the gauged TDGL equations (2.3)-(2.6) as an abstract evolution equation in a

real Banach space. Throughout, for p ≥ 1, Lp(Ω) will denote the usual Lebesgue space,
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with the norm ‖ · ‖p , (·, ·) is the usual inner-product in L2(Ω). For nonnegative integer

m, we will denote by Hm(Ω) the usual Sobolev space, with norm ‖ · ‖Hm . In the case of

nonintegers m, Hm(Ω) is the fractional Sobolev space defined by interpolation, see [12]. The

corresponding spaces of complex-valued functions will be denoted by Lp(Ω) and Hm(Ω) and

the corresponding spaces of vector valued functions will be denoted by Lp(Ω) and Hm(Ω).

Without any possible ambiguity, we use the same symbol ‖·‖p to indicate the norms in Lp(Ω)

and Lp(Ω), and the inner-product for p = 2 is defined in the usual way. We sometimes use

‖ · ‖X to denote the norm defined on a Banach space X. To fix the time-dependence of the

functions entering equations (2.3)-(2.5), we define the following spaces: For any given T > 0,

p ≥ 1 and any given Banach space X,

Lp(0, T ;X) =

{

u : t ∈ (0, T ) → u(·, t) ∈ X measurable, and

∫ T

0

‖u(·, t)‖p
X dt <∞

}

,

L∞(0, T ;X) =

{

u : t ∈ (0, T ) → u(·, t) ∈ X measurable, and sup
0<t<T

‖u(·, t)‖X <∞
}

,

W 1,p(0, T ;X) =

{

u ∈ Lp(0, T ;X) absolutely continuous :
∂u

∂t
∈ Lp(0, T ;X)

}

.

The spaces Wm,p(0, T ;X) are defined in similar ways. C(0, T ;X) denotes the space of con-

tinuously X-valued functions defined in [0, T ].

For later purpose we recall some known inequalities and formulas concering vector-valued

functions, details and proofs are contained in [13] and [14].

Poincaré inequality: For all A ∈ H1(Ω), with n · A = 0 on ∂Ω

λ0‖A‖2
H1 ≤ ‖∇× A‖2

2 + ‖∇ · A‖2
2, (2.7)

λ0 is a positive constant.

Green′s formulas:

(i) For any A ∈ H(div; Ω) := {A ∈ L2(Ω) : ∇ · A ∈ L2(Ω)} and ϕ ∈ H1(Ω)
∫

Ω

(∇ · A)ϕ dx+

∫

Ω

A · (∇ϕ) dx =

∫

∂Ω

(n · A)ϕ dσ(x). (2.8)

(ii) For any A ∈ H(curl; Ω) := {A ∈ L2(Ω) : ∇× A ∈ L2(Ω)} and B ∈ H1(Ω)
∫

Ω

(∇× A) · B dx−
∫

Ω

A · (∇× B) dx =

∫

∂Ω

B · (A × n) dσ(x). (2.9)

Gronwall′s inequality: Let η(t) be a positive, absolutely continuous function on [0, T ],

T > 0, satisfying η′(t) ≤ µ(t)η(t) + ν(t) a.e. t ∈ [0, T ], where µ and ν are integrable on
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[0, T ], then

η(t) ≤ e
∫ t
0

µ(s)ds

[

η(0) +

∫ t

0

e−
∫ s
0

µ(r)drν(s) ds

]

for all t ∈ [0, T ]. (2.10)

3 Abstract Equation

Before we start to reformulate the gauged TDGL equations (2.3)-(2.6) into an equivalent

abstract initial-value problem, we turn the boundary condition in the right hand side of

(2.5) into a homogenous one. This is achieved at each fixed instant. At each time t, assume

H ∈ L2(Ω) and consider AH the unique weak solution of the strongly elliptic boundary-value

problem

∇ · AH = 0 and ∇×∇× AH = ∇× H in Ω, (3.1)

n · AH = 0 and n × (∇× AH − H) = 0 on ∂Ω. (3.2)

The existence of AH is guaranted by the Lax-Milgram theorem applied to the continuous

and coercive bilinear form

Q(A,B) =

∫

Ω

(∇× A) · (∇× B) dx+ ω

∫

Ω

(∇ · A)(∇ · B) dx,

on the space {A ∈ H1(Ω) : n · A = 0 on ∂Ω}.

The mapping H ∈ L2(Ω) 7−→ AH ∈ H1(Ω) is linear, time independent and continuous,

see [9].

The gauged TDGL equations (2.3)-(2.4) are equivalent to a problem in terms of ψ and

the reduced vector potential Ã := A − AH

η
∂ψ

∂t
= −

(

i

κ
∇ + Ã + AH

)2

ψ + iηκωψ(∇ · Ã) +
(

1 − |ψ|2
)

ψ in Ω × (0,∞), (3.3)

∂Ã

∂t
= −∇×∇× Ã + ω∇(∇ · Ã) + J̃s − |ψ|2AH − ∂AH

∂t
in Ω × (0,∞), (3.4)

where J̃s = Js(ψ, Ã) is given by the expression in (1.3), and the boundary condition (2.5)

reduces to

n · ∇ψ + γψ = 0, n · Ã = 0 and n × (∇× Ã) = 0 on ∂Ω × (0,∞). (3.5)

The supplemented initial condition is

ψ(·, 0) = ψ0 and Ã(·, 0) = Ã0 = A0 − AH(0) in Ω. (3.6)
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We come now to introduce a convenient abstract frame for the system of equations (3.3)-

(3.6). In the sequel we will consider the solutions ψ and Ã of the system of equations

(3.3)-(3.6) as a vector representing the pair

ũ = (ψ, Ã) = (ψ,A − AH), (3.7)

so we adopt the notations

L
p(Ω) = Lp(Ω) × Lp(Ω) and H

s(Ω) = Hs(Ω) × Hs(Ω),

and indicate, without any possible confusion, the norm in L
p(Ω) by ‖·‖p. We set X = L

2(Ω)

and define some suitable operators related to the dissipative terms in (3.3) and (3.4), we

define two linear operators L1 and L2 respectively from H1(Ω) and H1(Ω) to their dual

spaces by

(L1ψ, φ) =

∫

Ω

∇ψ · ∇φ∗ dx+

∫

∂Ω

γψφ∗ dσ(x), (3.8)

(L2A,B) =

∫

Ω

(∇× A) · (∇× B) dx+ ω

∫

Ω

(∇ · A)(∇ · B) dx. (3.9)

Operators L1 and L2 are selfadjoint and positive definite. Moreover the classical theory of

second order differential operators allows the extension of L1 and L2 as unbounded linear

selfadjoint operators respectively on L2(Ω) and L2(Ω), in which case L1ψ = −∆ψ and

L2A = ∇×∇× A − ω∇(∇ · A) in Ω, with

D(L1) = {ψ ∈ H2(Ω) : n · ∇ψ + γψ = 0 on ∂Ω},
D(L2) = {A ∈ H2(Ω) : n · A = 0 on ∂Ω}.

Let A be the linear selfadjoint operator in X defined by

D(A) = D(L1) ×D(L2),

Av =

(

− 1

ηκ2
∆ψ , ∇×∇× A − ω∇(∇ · A)

)

, v = (ψ,A) ∈ D(A) .
(3.10)

Since A is positive definite on X, it is then a sectorial operator. It follows that −A is the

infinitesimal generator of an holomorphic semigroup (e−At)t≥0, see [15] and [16], Fractional

powers Aα are well defined for α ∈ R, they are unbounded for α > 0 and Xα := D(Aα) is

a closed linear subspace of H
2α(Ω) for 0 < α < 1 and contains the range of e−At for α ≥ 0

and t > 0. In particular we have

X1/2 = {v = (ψ,A) ∈ H
1(Ω) : n · A = 0 on ∂Ω}. (3.11)

In general it is possible to consider A as a linear operator in L
p(Ω) with 1 < p < ∞, we

will use the same symbol A if no confusion is possible. In this case the Lp-theory for elliptic
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differential operators proves that −A generates an holomorphic semigroup (e−At)t≥0 in L
p(Ω).

On the other hand we consider the initial value problem for the transformed solution

ũ = (ψ, Ã)
dũ

dt
+ Aũ = F(t, ũ(t)) for t > 0 and ũ(0) = ũ0, (3.12)

in X, where F(t, ũ) = (ϕ,F), ũ0 = (ψ0, Ã0), ϕ and F are given by the following

ϕ ≡ ϕ(t, ψ, Ã) =
1

η

[

− 2i

κ
(∇ψ) · (Ã + AH) − i

κ
(1 − ηκ2ω)ψ(∇ · Ã)

−ψ|Ã + AH|2 +
(

1 − |ψ|2
)

ψ
]

, (3.13)

F ≡ F(t, ψ, Ã) = J̃s − |ψ|2AH − ∂AH

∂t
. (3.14)

Let ũ0 ∈ H
1(Ω), we say that ũ is a mild solution of equation (3.12) on the interval [0, T ],

for some T ∈ (0,∞), if ũ : [0, T ] −→ H
1(Ω) is continuous and

ũ(t) = e−Atũ0 +

∫ t

0

e−A(t−s)F(s, ũ(s)) ds for 0 ≤ t ≤ T. (3.15)

In particular a mild solution plays the role of a weak solution (ψ, Ã) for the system of

equation (3.3)-(3.5). Of course the existence of a weak solution u = (ψ,A) to the gauged

TDGL equations (2.3)-(2.5) requires some regularity about AH; this suggests that some

control should be imposed on the time-dependence of H. Clearly, in definition (3.15) of

mild solution, the action of the semigroup (e−At) on F is in L
3/2(Ω), this is because F maps

[0, T ] × H
1(Ω) in L

3/2(Ω), so it is to distinguish that the operator A appearing under the

symbol integral in (3.15) is considered in L
3/2(Ω). Furthermore we see that the regularity of

the integral in (3.15) introduced by the term ∂AH

∂t
, namely

∫ t

0
e−L2(t−s) ∂AH

∂s
(s) ds, determines

the regularity of the mild solution ũ of equation (3.12).

4 Existence and Uniqueness

In this section, we study the existence and uniqueness of a mild solution of the initial value

problem (3.12). We assume the applied magnetic field H(t) in L2(Ω) at each t ≥ 0 and

(H0) H ∈ L∞ (0, T ;L2(Ω)) ∩W 1,2 (0, T ;L2(Ω)) , 0 < T <∞.

Note that by virtue of [9], (H0) implies

t ∈ [0, T ] −→
∫ t

0

e−L2(t−s)∂AH

∂t
(s) ds ∈ H1(Ω) is Hölder continuous. (4.1)
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Theorem 1 For every initial data ũ0 = (ψ0, Ã0) ∈ X1/2 the initial value problem (3.12)

has a unique mild solution ũ = (ψ, Ã) such that

ũ ∈ C
(

0, T ; H1(Ω)
)

∩W 1,2
(

0, T ; L2(Ω)
)

.

Proof: The proof of local existence and uniqueness is based on the contraction mapping

principle. To this goal, we construct a Banach space C (0, τ ; H1(Ω)) (τ small enough) such

that the mapping G defined from the integral equation in (3.15), namely

Gũ(t) = e−Atũ0 +

∫ t

0

e−A(t−s)F(s, ũ(s)) ds, (4.2)

acts as a contraction map on some closed subset. We need to prove the following properties

F(t, ·) : H
1(Ω) −→ L

3/2(Ω) is locally Lipschitz for each t ∈ [0, T ], (4.3)

e−At : L
3/2(Ω) −→ H

1(Ω) for t > 0 and

∫ τ

0

‖e−At‖L(L3/2,H1) dt <∞. (4.4)

Given (4.3) and (4.4), the standard proof of [15, theorem 3.3.3] can be used; we show

that there are some positive constants τ and ε both small enough such that if we denote

X =
{

v ∈ C
(

0, τ ;X1/2
)

: v(0) = ũ0, ‖v(t) − ũ0‖H1 ≤ ε
}

, then G : X → X is a contraction

map and hence possesses a unique fixed point.

In order to establish (4.3), we need to estimate each term separately. Let two elements

ũ1 = (ψ1, Ã1) and ũ2 = (ψ2, Ã2) of H
1(Ω), we have for example

‖∇ψ2 · Ã2 −∇ψ1 · Ã1‖3/2 ≤ ‖∇(ψ2 − ψ1)‖2‖Ã2‖6 + ‖∇ψ1‖2‖Ã2 − Ã1‖6

≤ C‖ũ2 − ũ1‖H1 ,

where C is a positive constant depending only on the norm of ũ1 and ũ2 in H
1(Ω). Here

we have used the continuous Sobolev imbedding of H1(Ω) in L6(Ω). For the other terms in

F , we argue analogously. It follows that if BR denotes the ball of radius R centered at the

origin in H
1(Ω), then

‖F(t, ũ1) −F(t, ũ2)‖3/2 ≤ C‖ũ1 − ũ2‖H1 for all ũ1, ũ2 ∈ BR, (4.5)

C is the Lipschitz constant, it depends on R but not on t.

The proof of the claim in (4.4) uses the smoothing action of the semigroup e−At and
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some imbedding theorems established for second-order elliptic differential operators. More

precisely, rather than (4.4) we can check

‖e−At‖L(L3/2,H1) ≤ Ct−γe−δt for all t > 0, (4.6)

for some positive constants C, δ and γ > 3/4 independent on t. We refer to [14, theorem

1.6.1] for the proof of this, see also [16].

Next, to show the solution ũ = (ψ, Ã) of equation (3.12) is global, some estimates on

the energy type functional defined in H
1(Ω) by

Eω[ψ,A] =

∫

Ω

[

∣

∣

∣

∣

(

i

κ
∇ + A

)

ψ

∣

∣

∣

∣

2

+
1

2

(

1 − |ψ|2
)2

+ 2ω(∇ · A)2

+|∇ × A − H|2
]

dx+
1

κ2

∫

∂Ω

γ|ψ|2 dσ(x), (4.7)

are needed. In fact, from the consideration on H stated in (H0), it can be shown ( see [9]),

that the pair u = (ψ,A) related to ũ = (ψ, Ã) by (3.7) satisfies

u ∈ L∞
(

0, T ; H1(Ω)
)

∩W 1,2
(

0, T ; L2(Ω)
)

and ∇ · A ∈ L2
(

0, T ; H1(Ω)
)

.

Thus, again by (H0), we obtain

ũ ∈ L∞
(

0, T ; H1(Ω)
)

∩W 1,2
(

0, T ; L2(Ω)
)

.

However, this regularity result concerning ũ can be improved by the smoothness of the

action of e−At to prove continuity of ũ. In fact, we have as claimed in (4.1) the map

t ∈ [0, T ] −→
∫ t

0
e−L2(t−s) ∂AH

∂t
(s) ds ∈ H1(Ω) is continuous, it suffices then to show that

t ∈ [0, T ] −→
∫ t

0

e−A(t−s)F ′ (s, ũ(s)) ds ∈ H
1(Ω) is continuous,

where F ′ (t, ũ(t)) = F (t, ũ(t)) +
(

0, ∂AH

∂t
(t)

)

. At first, we remark that

(t −→ F ′(t, ũ(t))) ∈ L∞
(

0, T ; L3/2(Ω)
)

. (4.8)

To check this, we shall estimate each term in F ′ separately. For example

‖∇ψ(t) · Ã(t)‖3/2 ≤ ‖∇ψ(t)‖2‖Ã(t)‖6 ≤ C‖ψ(t)‖H1‖Ã(t)‖H1 ,

where C is the Sobolev constant relative to the continuous imbedding of H1(Ω) in L6(Ω).

The other remaining terms can be estimated in the similar way, which confirm (4.8). In the

sequel, we define

Fλ(t) =

∫ t−λ

0

e−A(t−s)F ′(s, ũ(s)) ds for λ ≤ t ≤ T,

Fλ(t) = 0 for 0 ≤ t ≤ λ.
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For λ > 0 small, Fλ is well defined and continuous. Indeed we write for λ < t < T

Fλ(t+ h) −Fλ(t) = I1 + I2

where

I1 =

∫ t−λ

0

e−A(t−s)(e−Ah − I)F ′(s, ũ(s)) ds

I2 =

∫ t+h−λ

t−λ

e−A(t+h−s)F ′(s, ũ(s)) ds.

By using (4.6), we have

‖I1‖H1 ≤ C

∫ t−λ

0

(t− s)−γe−δ(t−s)‖(e−Ah − I)F ′(s, ũ(s))‖3/2 ds.

Furthermore thanks to (4.8), we can apply Lebesgue theorem to obtain

‖I1‖H1 −→ 0 as h→ 0

On the other hand

‖I2‖H1 ≤ C

∫ t+h−λ

t−λ

(t+ h− s)−γe−δ(t+h−s)‖F ′(s, ũ(s))‖3/2 ds

≤ C sup
0≤t≤T

‖F ′(s, ũ(s))‖3/2

∫ h+λ

λ

s−γe−δs ds

and we obtain

‖I2‖H1 −→ 0 as h→ 0

When h → 0−, we obtain a similar estimate and the remaining case 0 ≤ t ≤ λ is trivial.

Therefore Fλ ∈ C (0, T ; H1(Ω)).

Now for t ∈ [t0, t1] ⊂ (0, T ) , we estimate

∥

∥

∥

∥

Fλ(t) −
∫ t

0

e−A(t−s)F ′(s, ũ(s)) ds

∥

∥

∥

∥

H1

≤
∫ t

t−λ

‖e−A(t−s)F ′(s, ũ(s))‖H1 ds

≤ C

∫ λ

0

s−γe−δs ds.

Passing to limit λ → 0+, uniformly for t0 ≤ t ≤ t1 (t0 and t1 are arbitrary), we obtain

that the map
(

t ∈ (0, T ) −→
∫ t

0
e−A(t−s)F ′(s, ũ(s)) ds

)

is continuous. It remains to show

continuity for t=0 and t=T and this is achieved analogously. Therefore

ũ = (ψ, Ã) ∈ C
(

0, T ; H1(Ω)
)

.
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Remark 1 It is not hard to see that the order parameter ψ satisfies moreover the

“maximum principle”: if ψ0 ∈ L∞(Ω) then

|ψ(x, t)| ≤ max (1, ‖ψ0‖∞) for all (x, t) ∈ Ω̄ × [0, T ]. (4.9)

As a consequence of theorem 1, we obtain that the pair (ψ, Ã) is a weak solution of equations

(3.3) and (3.4), while the boundary condition (3.5) is satisfied in some sense of traces.

Observe that theorem 1 includes a comparable result for the pair u = (ψ,A), providing

that continuity of AH in time occurs. Such a regularity is completely controlled by the

continuity of H in time and the hypothesis (H0) seems to be only a natural minimal condition

for the existence and uniqueness result in theorem 1. However condition (H0) may be

strengthened by requiring that H ∈ C (0, T ;L2(Ω)), in this case we obtain the solution

u = (ψ,A) ∈ C (0, T ; H1(Ω)) and satisfies the gauged TDGL equations (2.3)-(2.4) in a weak

sense.

We now concentrate on the regularity of the dependence of the solution ũ on the initial

data ũ0. As in [9], we can verify as well that the map ũ0 ∈ X1/2 −→ ũ ∈ C (0, T ; H1(Ω)) is

uniformly Lipschitz continuous on bounded subsets of X1/2. This implies the following

Theorem 2 The solutions of the abstract initial-value problem (3.12) generate a dynam-

ical process U = {U(t, s) : 0 ≤ s ≤ t ≤ T} on X1/2 by the definition

ũ(t) = U(t, s)ũ(s) for 0 ≤ s ≤ t ≤ T. (4.10)

Also, for 0 ≤ s < t ≤ T , each map U(t, s) : X1/2 → X1/2 is compact.

We omit the proof since the arguments are similar.

Remark 2 Let us mention that in the particular case, where the magnetic field H is time

constant, the result obtained in [10] concerning asymptotic behavior of the mild solution as

t→ ∞ remains true, namely the process U becomes a dynamical system S = {S(t) : t ≥ 0}
on X1/2, by the definition

S(t− s) = U(t, s) for t ≥ s ≥ 0.

Moreover the dynamical system enjoys the following properties

(i) The functional Eω defined in (4.7) is a Liapunov functional for S.

(ii) Each ũ0 ∈ X1/2 has a relatively compact orbit in H
1(Ω).

(iii) The ω-limit set of each ũ0 ∈ X1/2 is a nonempty compact connected
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set of divergence-free equilibria.

(iv) There is a global attractor for S.

Here the sense of definitions is borrowed from [17].

5 Global Boundedness

In the sequel, we would like to show that in a special case of a smooth magnetic field H, the

solutions ψ and A of the gauged TDGL equations (2.3)-(2.5) become bounded uniformly

with respect to t ≥ 0. In what follows C will denote various constants depending only on

the data κ, η, H and the constants entering the equations (2.3)-(2.4), but not on t. Also we

use the symbol ∂t to denote the time derivative d
dt

. Throughout this section, we shall assume

that H(t) ∈ H1(Ω) for t ≥ 0 with H ∈ C (0, T ;L2(Ω)) for all T > 0, u0 = (ψ0,A0) ∈ X1/2,

with ψ0 ∈ L∞(Ω) and ‖ψ0‖∞ ≤ 1. Let u = (ψ,A) the corresponding solution of the TDGL

equations starting from u0. Remark that since H is time continuous, it is also the case for

the solution u. We have the following estimate on the L2-norm of ψ and A.

Lemma 1 Assume H ∈ L∞ (0,∞;L2(Ω)), then there exists C > 0 such that

‖ψ(t)‖2
2 + ‖A(t)‖2

2 ≤ C
[

e−λ0ω0t
(

‖ψ0‖2
2 + ‖A0‖2

2

)

+ 1
]

for all t ≥ 0, (5.1)

where ω0 = min(1, ω).

Proof: Multiplying the equation (2.3) by the complex conjugate ψ∗, integrating over Ω and

taking the real part, we obtain

η

2
∂t‖ψ‖2

2 = − 1

κ2

∫

∂Ω

γ|ψ|2 dσ(x) −
∥

∥

∥

∥

(

i

κ
∇ + A

)

ψ

∥

∥

∥

∥

2

2

+ ‖ψ‖2
2 − ‖ψ‖4

4. (5.2)

On the other hand taking the inner product of (2.4) with A, it yields from (2.8) and (2.9)

1

2
∂t‖A‖2

2 = −‖∇× A‖2
2 − ω‖∇ · A‖2

2 +

∫

Ω

A · Js dx+

∫

Ω

H · (∇× A) dx. (5.3)

The last two terms in the right-hand side of (5.3) can be majorized as follows: let ε > 0,

replace Js in (1.3), so we can apply (4.9) and standard Hölder’s and Young’s inequalities to

obtain

∣

∣

∣

∣

∫

Ω

A · Js dx

∣

∣

∣

∣

≤ ε

2
‖A‖2

2 +
1

2ε

∥

∥

∥

∥

(

i

κ
∇ + A

)

ψ

∥

∥

∥

∥

2

2

,
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∣

∣

∣

∣

∫

Ω

H · (∇× A) dx

∣

∣

∣

∣

≤ ε

2
‖∇ × A‖2

2 +
1

2ε
‖H‖2

2.

Thanks to (2.7), we get

1

2
∂t

(

η‖ψ‖2
2 + ε‖A‖2

2

)

≤ −1

2

∥

∥

∥

∥

(

i

κ
∇ + A

)

ψ

∥

∥

∥

∥

2

2

− ελ0ω0‖A‖2
H1 + ε2‖A‖2

H1

+‖ψ‖2
2 +

1

2
‖H‖2

2. (5.4)

Set ζ(t) = η‖ψ(t)‖2
2 + ε‖A(t)‖2

2. Since H ∈ L∞ (0,∞;L2(Ω)), it follows by choosing 0 < ε <
λ0ω0

2
that

∂tζ(t) + λ0ω0ζ(t) ≤ C for all t ≥ 0.

Thus after substituting in inequality (2.10), we obtain

ζ(t) ≤ e−λ0ω0tζ(0) +
C

λ0ω0

for all t ≥ 0.

This concludes the proof of the lemma.

The next theorem establishes the H1-norm global boundedness of the solutions ψ and

A of the TDGL equations (2.3)-(2.6).

Theorem 3 Provided H ∈ W 1,∞ (0,∞;L2(Ω)), there exists C > 0 such that

‖ψ(t)‖2
H1 + ‖A(t)‖2

H1 ≤ C
[

e−εt
(

‖ψ0‖2
H1 + ‖A0‖2

H1

)

+ 1
]

for all t ≥ 0, (5.5)

where ε > 0 is small enough.

Proof: First we estimate the H1-norm of A. Taking the inner product of (2.4) with ∂tA,

we have

1

2
∂t

(

‖∇ × A‖2
2 + ω‖∇ · A‖2

2

)

= −
∫

Ω

∂tH · (∇× A) dx+ ∂t

(
∫

Ω

H · (∇× A) dx

)

− ‖∂tA‖2
2 +

∫

Ω

Js · ∂tA dx. (5.6)

Using similar arguments as above, we get

∣

∣

∣

∣

∫

Ω

∂tH · (∇× A) dx

∣

∣

∣

∣

≤ ε

2
‖∇ × A‖2

2 +
1

2ε
‖∂tH‖2

2,

∣

∣

∣

∣

∫

Ω

Js · ∂tA dx

∣

∣

∣

∣

≤ 1

2
‖∂tA‖2

2 +
1

2

∥

∥

∥

∥

(

i

κ
∇ + A

)

ψ

∥

∥

∥

∥

2

2

.
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Thus

1

2
∂t

(

‖∇ × A‖2
2 + ω‖∇ · A‖2

2 − 2

∫

Ω

H · (∇× A) dx

)

≤ 1

2

∥

∥

∥

∥

(

i

κ
∇ + A

)

ψ

∥

∥

∥

∥

2

2

+
ε

2
‖∇ × A‖2

2 +
1

2ε
‖∂tH‖2

2. (5.7)

Multiplying (5.7) by ε, 0 < ε < 1 and adding estimate (5.4) yield

1

2
∂t

[

η‖ψ‖2
2 + ε(‖A‖2

2 + ‖∇ × A‖2
2 + ω‖∇ · A‖2

2) − 2ε

∫

Ω

H · (∇× A) dx

]

≤ −ελ0ω0‖A‖2
H1 +

3

2
ε2‖A‖2

H1 + ‖ψ‖2
2 +

1

2

(

‖H‖2
2 + ‖∂tH‖2

2

)

, (5.8)

so by putting

ϑ(t) = η‖ψ(t)‖2
2 + ε

(

‖A(t)‖2
2 + ‖∇ × A(t)‖2

2 + ω‖∇ · A(t)‖2
2

)

−2ε

∫

Ω

H(t) · (∇× A(t)) dx,

we deduce

∂tϑ(t) + εϑ(t) ≤ −2ελ0ω0‖A‖2
H1 + ε2(4 + ω1)‖A‖2

H1 + (2 + εη)‖ψ‖2
2

+2‖H‖2
2 + ‖∂tH‖2

2, (5.9)

with ω1 = max(1, ω), which with the assumption H ∈ W 1,∞ (0,∞;L2(Ω)) implies

∂tϑ(t) + εϑ(t) ≤ C for all t ≥ 0,

provided 0 < ε < 2λ0ω0

4+ω1

. Hence Gronwall’s inequality (2.10) shows

ϑ(t) ≤ e−εtϑ(0) +
C

ǫ
for all t ≥ 0.

Therefore

‖ψ(t)‖2
2 + ‖A(t)‖2

H1 ≤ C
[

e−εt(‖ψ0‖2
2 + ‖A0‖2

H1) + 1
]

for all t ≥ 0. (5.10)

On the other hand, to estimate the H1-norm of ψ, we make use of the energy type functional

Eω introduced in (4.7). Since ψ and A satisfy equations (2.3)-(2.4), the time derivative of

Eω is

∂tEω(t) = −2

∫

Ω

[

η|∂tψ − iκωψ(∇ · A)|2 + |∂tA|2 + ω2|∇(∇ · A)|2
]

dx

−2

∫

Ω

∂tH · (∇× A − H) dx.
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This implies

∂tEω(t) ≤ −2

∫

Ω

∂tH · (∇× A − H) dx. (5.11)

Now adding estimates (4.7) and (5.11), thanks to Hölder’s and Young’s inequalities, so it

follows

∂tEω(t) + Eω(t) ≤
∥

∥

∥

∥

(

i

κ
∇ + A

)

ψ

∥

∥

∥

∥

2

2

+ C
(

‖A‖2
H1 + ‖H‖2

2 + ‖∂tH‖2
2 + 1

)

, (5.12)

therefore by putting ξ(t) = Eω(t) + η‖ψ(t)‖2
2, we derive from (5.2) and (5.12)

∂tξ(t) + ξ(t) ≤ C(‖A‖2
H1 + 1) for all t ≥ 0.

Once more, Gronwall’s inequality (2.10) yields

ξ(t) ≤ e−t

[

ξ(0) + C

∫ t

0

es(‖A(s)‖2
H1 + 1) ds

]

for all t ≥ 0,

and by (5.10), we infer that

ξ(t) ≤ C
[

e−εt
(

‖ψ0‖2
H1 + ‖A0‖2

H1

)

+ 1
]

for all t ≥ 0.

Consequently by replacing Eω in (4.7) and taking in mind (5.10), we conclude

‖∇ψ(t)‖2
2 ≤ C

[

e−εt(‖ψ0‖2
H1 + ‖A0‖2

H1) + 1
]

,

which proves theorem 2.

Remark 3 Theorem 3 remains true also for the pair ũ = (ψ, Ã) of solutions of the reduced

homogeneous problem (3.3)- (3.4). On the other hand, we can use equation (3.15) to improve

the regularity of the dependence of ũ on the initial data ũ0; that is the set {U(t, 0)ũ0 : t ≥
0, ‖ũ0‖H1 ≤ R} (R > 0), is relatively compact in H

1(Ω).
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