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ABSTRACT. In this paper we give a survey of the use of proximities in hyperspace topolo-

gies. A proximal hypertopology corresponding to a LO-proximity is a g eneralization of

the well known Vietoris topology. In case we start with an EF-proximity, the proximal hy-

pertopology equals the Hausdorff uniform topology corresponding to the totally bounded

uniformity and, being contained in both the Vietoris and Hausdorff uniform topologies,

serves as a bridge between the two. Wattenberg and Beer-Himmelberg-Prickry-Van Vleck

showed that the locally finite hypertopology induced by a metrizable space is the sup of the

Hausdorff metric topologies induced by all compatible metrics. Naimpally-Sharma showed

that this follows from the fact that a Tychonoff space is normal iff its fine uniformity induces

the locally finite hypertopology. Di Concilio-Naimpally-Sharma showed that in a Tychonoff

space the fine uniformity induces the proximal locally finite hypertopology.

We study DELTA topologies introduced by Poppe, and their proximal variations. We show

that a short proof can be given of the Beer-Tamaki result concerning the uniformizabil-

ity of (proximal) DELTA hypertopologies via the Attouch-Wets approach used by Beer in

dealing with the Fell topology. Finally we present a result concerning (Proximal) DELTA-

U-hypertopolgies. Several new hypertopologies are introduced.
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1 Introduction

Suppose (X, T) (respectively (X, V)) is a T1 topological space (respectively a uniform space).

Then it is well known that on CL(X), the hyperspace of all non-empty closed subsets of X,

one can define Vietoris topology τ(V) (respectively a Hausdorff uniformity VH) such that X
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is topologically (respectively, uniformly) embedded in CL(X). But it is not known how one

can define directly a proximity on the hyperspace of a given proximity space (X, δ). Nachman

([21]) tackled this problem in the case of an EF-proximity δ on X via Hausdorff uniformities

associated with compatible uniformities on X. An attempt was made to use proximity in

hyperspaces in [16] and a little later in [4]. Since the paper [16] remains unpublished and

the paper [4] dealt with proximities in the context of metric spaces, an impression continues

in the literature that proximal hypertopologies exist only in metric spaces. The aim of this

paper is to correct this impression and show that proximal topologies can be defined using

LO-proximities in any T1 space. Recently there has been some work done in the general

case. (See e. g. [9], [10]) See [1] for the latest results on compactness in function spaces via

hyperspaces and (uniform) convergence structures.

(X, T) denotes a T1-topological space and δ denotes any compatible LO-proximity on X.

The symbol δ0 denotes the fine LO-proximity and it is well known (Urysohn Theorem) that

it is EF iff X is normal. If (X, T) is Tychonoff, then we generally choose δ to be EF. CL(X)

denotes the family of all non-empty closed subsets of X and K(X) denotes the family of

all non-empty compact subsets. We use the symbol ∆ to denote a subfamily of CL(X) and

we assume, without any loss of generality, that it is a cover of X and is closed under finite

unions and contains all singletons.

For any set E ⊂ X and E ⊂ T we use the following notation:

E− = {A ∈ CL(X) : A ∩ E 6= ∅}

E
− = {A ∈ CL(X) : A ∩ E 6= ∅} for each E ∈ E}

E++ = {A ∈ CL(X) : A ≪ E w. r. t. δ i. e. A δ Ec}

E+ = {A ∈ CL(X) : A ⊂ E i. e. A ≪ E w. r. t. δ0}

The ∆-topology τ(∆) is generated by a basis of the form E+ ∨ E
−, where Ec ∈ ∆ and

E ⊂ T is finite. ([26], [27])

The proximal ∆-topology (w. r. t. δ) σ(δ∆) is generated by a basis of the form E++∨E
−,

where Ec ∈ ∆ and E ⊂ T is finite. We omit δ if it is obvious from the context.

If in the above, the family E is locally finite, then we have the locally finite ∆-topology

τ(LF∆) and the proximal locally finite ∆-topology (w. r. t. δ) σ(LFδ∆).

The ∆U-topology τ(∆U) is generated by a basis of the form E+ ∨ E
−, where Ec ∈ ∆ or

clE ∈ ∆ and E ⊂ T is finite.

The proximal ∆U-topology (w. r. t. δ) σ(δ∆U) is generated by a basis of the form

E++ ∨ E
−, where Ec ∈ ∆ or clE ∈ ∆ and E ⊂ T is finite.

If in the above, the family E is locally finite, then we have the locally finite ∆U-topology

τ(LF∆U) and the proximal locally finite ∆U-topology (w. r. t. δ) σ (LFδ∆U).
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Well known special cases are:

(a) when ∆ = CL(X), τ(∆) = τ(V) the Vietoris or finite topology ([20])

σ(δ∆) =σ(δ) the proximal topology ([16])

τ(LF∆) = τ(LF) the locally finite topology ([19])

σ(LFδ∆) =σ(LFδ) the proximal locally finite topology ([16])

To make the notation simpler, we’ll omit δ from all proximal topologies

whenever it is understood from the context: thus we’ll use σ for σ(δ), σ(LF) for

σ(LFδ) etc.

(b) When ∆ = K(X), τ(∆) = τ(F) the Fell topology ([17])

and we define three new ones

σ(δ∆) =σ(δF) the proximal Fell topology

τ(LF∆) = τ(LFF) the locally finite Fell topology

σ(LFδ∆) =σ(LFδF) the proximal locally finite Fell topology

τ(∆U) = τ(U) the U-topology ([8])

and we define three new ones

σ(δ∆U) =σ(δU) the proximal U-topology

τ(LF∆U) = τ(LFU) the locally finite U-topology

σ(LFδ∆U) =σ(LFδU) the proximal locally finite U-topology

Of course, if the proximity δ is EF or R (and so X is Tychonoff or regular respectively)

then τ(F) = σ(F), τ(LFF) = σ(LFF), τ(U) = σ(U) and τ(LFU) = σ(LFU).

Many interesting properties of the Fell topology stem from the fact that

it is also a proximal topology!. In generalizing results from the Fell topology to

∆-topologies, we find that some hold for τ(∆) and others for σ(∆)!!

(c) If (X, d) is a metric space, δ is the metric proximity induced by d and ∆ denotes the

ring generated by closed balls of non-negative radii, then

τ(∆) = τ(B) the Ball topology ([2])

σ(∆) =σ(B) the proximal Ball topology ([14])

and we introduce two new ones

τ(LF∆) = τ(LFB) the locally finite Ball topology,

σ(LF∆) =σ(LFB) the proximal locally finite Ball topology

In addition we have the well known Hausdorff metric dH and the Hausdorff metric

topology τ(dH).

If (X, V) is a uniform space, then we have the Hausdorff uniformity VH and the

Hausdorff uniform topology τ(VH).



102 S. Naimpally

[2] is a standard reference on hyperspace topologies and we give below other relevant

bibliography for the interested reader.

2 VIETORIS, PROXIMAL AND (PROXIMAL) LOCALLY FI-

NITE TOPOLOGIES

Suppose (X, T) is a T1 topological space, δ any compatible LO-proximity on X and δ0 the

fine LO-proximity. If (X, T) is Tychonoff, the fine EF-proximity is denoted by δ# (the

functionally indistinguishable EF-proximity), the fine uniformity is denoted by V
#, and the

finest totally bounded uniformity is denoted by V
∗. If δ is a compatible EF-proximity on

X, then Π(δ) is the family of all uniformities which induce δ and Vω denotes the coarsest

totally bounded member of Π(δ) ([25]). We note that since, in general, there are many

proximities compatible with (X, T), proximal hypertopologies provide us with a large number

of hypertopologies. For further details see [16].

Theorem 2.1 ([16]) (a) τ(V) = σ(δ0)

(b) τ(LF) = σ(LFδ0)

(c) σ ⊂ σ(LF) and τ(V) ⊂ τ(LF).

In each case ⊂ is replaced by = if and only if X is feebly compact (i. e. every locally

finite family of open sets in X is finite).

(d) In general τ(V) and σ are independent.

(e) If δ < δ′ and δ is EF, then σ(δ) ⊂ σ(δ′) and σ(LFδ) ⊂ σ.(LFδ′).

Consequently, σ ⊂ τ(V).

(f) If δ is EF and δ 6= δ0, then σ 6= τ(V) and σ(LF) 6= τ(LF).

Corollary 2.2 ([16]) If δ is EF, then (a), (b) and (c) are mutually equivalent and

each implies (d):

(a) τ(V) = σ

(b) τ(LF) = σ(LF)

(c) δ = δ0

(d) (X, T) is normal.
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Corollary 2.3 ([4]) If (X, d) is a metric space and δ is the metric proximity, then the

following are equivalent:

(a) (X, d) is Atsuji or UC

(i. e. every real valued continuous function on X is uniformly continuous.)

(b) τ(V) ⊂ τ(dH)

(c) δ = δ0

(d) τ(V) = σ

Theorem 2.4 ([16]) Suppose (X, δ) is an EF-proximity space and V and Vω are in

Π(δ). Then

(a) σ = τ(VωH) ⊂ τ(VH) ⊂ σ(LFδ#) ⊂ τ(LF) and σ = τ(VH) implies V = Vω.

It follows that if (X, T) is normal, then τ(V) = τ(V∗

H) ⊂ τ(LF).

(b) σ = τ(VωH) ⊂ τ(V) ⊂ τ(LF)

(c) σ(LFδ#) = τ(V∗

H)

(d) σ(δ#) = τ(V∗

H)

Corollary 2.5 ([24]) The following are equivalent:

(a) (X, T) is normal.

(b) δ0 is EF.

(c) τ(V#
H) = τ(LF).

(d) σ(δ#) = τ(LF).

The following Hesse diagram shows the various relationships:

τ(LF) = σ(LFδ0) .
/ ∖

σ(LFδ#) = τ(V#
H) τ(V) = σ(δ0)

∖ /

σ(δ#) = τ(V∗

H)
∣

∣

∣

σ = τ(VωH)
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Remark 2.6 In [5] it was shown that if X is a metrizable space, the locally finite topology

τ(LF) on CL(X) is the sup of the Hausdorff metric topologies {τ(dH)} corresponding to

equivalent compatible metrics {d} on X. This result was generalized in ([24]) to : a Tychonoff

space X is normal if and only if the locally finite topology τ(LF) equals τ(V#
H), the topology

induced by the Hausdorff uniformity corresponding to the fine uniformity V
#
H . The question

then arises: in a non-normal Tychonoff space what is τ(V#
H)? The answer was provided in

([16]) that it is precisely the proximal locally finite topology σ(LFδ#) induced by the fine

proximity δ# on X. This shows the importance of proximal topologies in this problem.

3 (PROXIMAL) DELTA TOPOLOGIES

Poppe ([26], [27]) first studied ∆-topologies as generalizations of the Fell topology. On the

other hand, many workers in this area have used, in the context of metric spaces, bounded

sets to study new hyperspace topologies e.g. the bounded Vietoris (proximal) topology ([12]),

Attouch-Wets topology ([3]) etc. It is not widely known that boundedness can also be defined

in general topological spaces in an abstract way ([18]) and this provides a technique to give

simple proofs and generalizations of several results in this area. In this section we give a

glimpse of this approach and refer the interested readers to ([15]) for further information.

A boundedness H in a T1-space (X, T) is a non-empty family of subsets of X which contains

finite unions and subsets of its members. Well known examples of H include

(a) metrically bounded subsets of a metric space

(b) the family of subsets of compact sets in a topological space

(c) the family of all totally bounded subsets of a uniform space etc.

In what follows we’ll usually take ∆H ∩ CL(X). Then τ(∆) is a generalization of the

bounded Vietoris topology. We note here that the upper ∆-topology τ+(∆) is gener-

ated by {E+ : Ec ∈ ∆} and we have similar definitions of other “upper“ topologies.

Theorem 3.1 (cf. [12]) Suppose (X, T) is a T1-topological space and ∆, ∆′ are two

subrings of CL(X).

Then the following are equivalent on CL(X):

(a) τ(∆) ⊂ τ(∆′)

(b) τ+(∆) ⊂ τ+(∆′)
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(c) For each B ∈ ∆ − {X}, B ⊂ U ∈ T implies the existence of B′ ∈ ∆′ such that

B ⊂ B′ ⊂ U .

Corollary 3.2 Suppose H is a boundedness in a is a T1-topological space (X, T) such

that K(X) ⊂ H and ∆H ∩ CL(X). Then the following are equivalent:

(a) τ(F) = τ(∆) on CL(X),

(b) ∆ − {X} ⊂ K(X),

(c) X is boundedly compact.

We have the well known results:

Corollary 3.3 (a) If (X, d) is a metric space, then on CL(X) the Fell topology equals

the bounded Vietoris topology if and only if X is boundedly compact.

Replacing the metric d by the equivalent bounded metric d′ = min{d, 1}, we get the

result:

(b) τ(F) = τ(V) on CL(X) if and only if X is compact.

There are analogous results using abstract boundedness in proximity and uniform spaces

and we refer to ([15]).

We now prove some simple results that will generalize relations between τ(F), τ(V) as

well as between τ(F), τ(VH). Proofs in the following are similar to those in (3.1).

Theorem 3.4 Suppose (X, T) is a T1-space and suppose ∆ ⊂ CL(X) is a ring contain-

ing K(X). Then the following are equivalent:

(a) τ(∆) = τ(∆U)

(b) τ+(∆) = τ+(∆U)

(c) X ∈ ∆.

(d) τ(∆) = τ(V).

Theorem 3.5 Suppose (X, V) is a Hausdorff uniform space with a compatible EF-

proximity δ. Suppose ∆ ⊂ CL(X) is a ring containing K(X). Then the following are

equivalent:

(a) σ(∆) = σ(∆U)

(b) σ+(∆) = σ+(∆U)
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(c) X ∈ ∆.

(d) σ(∆) = τ(VH)

Remark 3.6 As we noted above, τ(F) = σ(F) and so the two above results generalize the

well known result that the following are equivalent:

(a) τ(F) = τ(V)

(b) τ(F) = τ(VH)

(c) X is compact.

4 UNIFORMIZATION OF (PROXIMAL) DELTA TOPOLOGIES

Beer and Tamaki ([6], [7]) investigated necessary and sufficient conditions for the unformiz-

ability of (proximal) ∆-topologies. Their proof involves construction of special Urysohn

functions. In ([22]) we study these and (proximal) ∆U-topologies and provide an alternate

approach.

Suppose (X, T) is a Tychonoff space with a compatible EF-proximity δ and suppose ∆ ⊂

CL(X) is a ring.

(a) ∆ is called proximally Urysohn iff whenever D ∈ ∆ and A ∈ CL(X) are far w. r. t.

δ then there exists an S ∈ ∆ such that D ≪ S ⊂ Ac.

It is easy to see that the above definition is equivalent to one where the last relation

is replaced by D ≪ S ≪ Ac.

∆ is called Urysohn if ∆ is proximally Urysohn w. r. t. the LO-proximity δ0.

(b) ∆ is called a local family iff for each x ∈ X and V ∈ T with x ∈ V , implies the

existence of a D ∈ ∆ such that x ∈ Do ⊂ D ⊂ V .

(c) For each K ∈ ∆ and W ∈ V, we set

[K,W ] = {(A,B) ∈ CL(X) × CL(X) : A ∩ K ⊂ W (B) and B ∩ K ⊂ W (A)} .

The family {[K,W ] : K ∈ ∆ and W ∈ V} is a base for a uniformity on CL(X) called

the Attouch-Wets uniformity V∆.

The proof of the following result due to Beer and Tamaki uses the Attouch-Wets technique

developed by Beer in ([7]) for studying the Fell topology.
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Theorem 4.1 Suppose (X, T) is a Tychonoff space with a compatible EF-proximity δ,

Vω the unique totally bounded uniformity compatible with δ. Suppose ∆ is a local proximally

Urysohn family. Then the proximal ∆-topology σ(∆) on CL(X) is the topology τ(Vω∆)

induced by the ∆-Attouch-Wets uniformity Vω∆ and hence is Tychonoff.

Conversely, if σ(∆) is Tychonoff then ∆ is a local proximally Urysohn family.

Corollary 4.2 Suppose (X, T) is a Tychonoff space. Then ∆ is a local Urysohn family

if and only if (CL(X), τ(∆)) is Tychonoff.

We conclude with a characterization of completely regular proximal ∆U-topology σ(∆U).

Theorem 4.3 Suppose (X, T) is a Tychonoff space with a compatible LO-proximity δ

and ∆ is a proximally Urysohn family. Then δ′ defined by

Aδ′B iff cl A ∈ ∆ or cl B ∈ ∆ and AδB (∗)

is a compatible EF-proximity on X. Further δ′ ≤ δ and σ(∆U) = σ(δ′).

Corollary 4.4 Suppose (X, T) is a Tychonoff space and ∆ is a Urysohn family. Then

δ′ defined by

Aδ′B iff cl A ∈ ∆ or cl B ∈ ∆ and Aδ0B (∗∗)

is a compatible EF-proximity on X . Further δ′ ≤ δ0 and τ(∆U) = σ(δ′).

Thus τ(∆U) is completely regular.

Corollary 4.5 Suppose (X, T) is a locally compact Hausdorff space. Then the U-

topology τ(U) is the proximal topology corresponding to the EF-proximity δ1 induced by the

one-point-compactification of X viz:

Aδ1B iff cl A or cl B is compact and Aδ0B . (∗ ∗ ∗)

Remark 4.6 (a) It is interesting to note that in (4.5) if (X, T) is not normal, then δ0 is

not EF but the proximity δ1 induced by ∆ = K(X) is indeed EF!

(b) If (X, T) is not locally compact, then the proximity δ1 as defined by (∗ ∗ ∗) is not EF

but is a compatible LO-proximity on X. In this case for any compatible EF-proximity

δ on X, δ1 < δ but σ(δ1) 6⊂ σ(δ). (Cf. (2.1)(e)).
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