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On
√
n–Consistency and Asymptotic Normality of

Consistent Estimators in Models with Independent
Observations1

ABSTRACT. The paper presents relatively simple verifiable conditions for
√
n-consistency

and asymptotic normality of M-estimators of vector parameters in a wide class of statistical

models. The conditions are established for the M -estimators with absolutely continuous

ρ-function of locally bounded variation, and for the class of models including e.g. the linear

and the nonlinear regression, the generalized linear models and the proportional hazards

models as special cases. The conditions are verified on L1 and L2 estimators embedded into

a continuum of their alternative versions, as well as on one new class of M-estimators of

parameters of exponential families which are shown to be robust in the sense of bounded

gross-error sensitivity. Comparisons with known conditions for special models indicate that

the present general conditions are not too restrictive in special situations and that sometimes

they are even weaker than the previously published special conditions.

1 Introduction and basic concepts

We consider a general parametric statistical model with independent observations. In other

words, for every n ∈ N we consider a random sample Yn = (Y1, . . . , Yn)′ of independent real

valued observations,

Yn ∼ G(y1, . . . , yn) =
n∏

i=1

G(yi|i, θ0), (1.1)

where θ0 is a true value of a parameter θ = (θ1, . . . , θm)′ ∈ Θ for open Θ ⊂ R
m and

G1 = {G(y|1, θ) : θ ∈ Θ} , . . . ,Gn = {G(y|n, θ) : θ ∈ Θ} (1.2)

are given families of distribution functions (briefly distributions) possibly depending on the

sample size n. This means that we admit the triangular observation schemes (Y1, . . . , Yn) =

(Y
(n)
1 , . . . , Y

(n)
n ). Important particular versions of this model are discussed in Section 2.

1Supported by the grant A 1075101.



4 F. Liese, I. Vajda

We study a general M -estimator of the unknown true parameter θ0 in the above considered

model. This estimator is defined as a sequence of Θ-valued measurable functions θ̂n = θ̂n(Yn)

minimizing on Θ the random functions

Mn(θ) =
1

n

n∑

i=1

ρ(Yi − ϕi(θ)), (1.3)

where ρ : R 7→ R is a given function called criterion function and ϕ1 : Θ 7→ R, . . . , ϕn : Θ 7→ R

are given functions called locators. The locators may depend on the sample size n, i. e. we

admit triangular schemes of locators

(ϕ1, . . . , ϕn) = (ϕ
(n)
1 , . . . , ϕ(n)

n ). (1.4)

Since the M -estimator under consideration is defined by the criterion function and locators,

we use the symbols

θ̂n ∼ 〈ρ;ϕ1, . . . , ϕn〉 or briefly θ̂n ∼ 〈ρ;ϕi〉. (1.5)

We are interested in the asymptotic properties of M -estimators θ̂n ∼ 〈ρ;ϕi〉 when the sample

size n tends to infinity. Therefore, unless otherwise explicitly stated, all asymptotic relations,

formulas and properties are automatically considered for n→ ∞.

Our attention is restricted to the M -estimators θ̂n ∼ 〈ρ;ϕi〉 with criterion functions ρ ab-

solutely continuous on bounded intervals of R (briefly, absolutely continuous on R). This

means that there exists a measurable function ψ : R 7→ R satisfying the condition

ψ(y) =
dρ(y)

dy
a.e. (1.6)

with respect to the Lebesgue measure on R and absolutely integrable on bounded intervals.

We shall consider a right-continuous extension of ψ on R which is (up to a constant ρ(0)

playing no role in the definition ofM -estimator θ̂n (cf. (1.3)) one-one related to ρ and satisfies

for all a, b ∈ R the relation

ρ(b) − ρ(a) =

∫

(a,b]

ψ(y)dy (1.7)

(the so-called fundamental theorem of calculus for Lebesgue integrals, cf. Theorem 18.16 in

Hewitt and Stromberg [9]). Here, and in the sequel,

∫

(a,b]

= −
∫

(b,a]

if b < a. (1.8)

The right-continuous function ψ : R 7→ R characterizes a sensitivity of the M -estimator

θ̂n ∼ 〈ρ;ϕi〉 to small deviations of observations Y1, . . . , Yn (an appropriately normed version

of ψ is an influence function of the M -estimator, see Huber [12] or Hampel et al [8]). Due to
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the one-one relation between the criterion function ρ and the sensitivity function ψ mentioned

above, we can replace the representation of M -estimators (1.5) by

θ̂n ∼ 〈ψ;ϕ1, . . . , ϕn〉 or, briefly θ̂n ∼ 〈ψ;ϕi〉. (1.9)

Our theory is restricted to the estimators θ̂n ∼ 〈ψ;ϕi〉 with sensitivity ψ of a locally bounded

variation. This means that ψ is a difference of two nondecreasing functions ψ+ and ψ−

which are assumed to be continuous from the right. This theory presents conditions for√
n− consistency and asymptotic normality of θ̂n in terms of the sum ψ± = ψ+ + ψ−.

As is indicated by the title of the paper, our main results are restricted to the M -estimators

θ̂n ∼ 〈ψ;ϕi〉 which are consistent in the standard sense

θ̂n

P

−→ θ0 . (1.10)

We present conditions on the sensitivity function ψ, locators ϕi and the model (1.1) under

which θ̂n is
√
n−consistent in the sense

lim
y→∞

lim
n→∞

P

(√
n
∥∥∥θ̂n − θ0

∥∥∥ > y
)

= 0 (1.11)

and asymptotically normal in the sense

√
n(θ̂n − θ0)

L−→ N(0, V ) (1.12)

and under which the variance-covariance m×m matrix V can be explicitly evaluated.

These main results are presented in the next Section 2. The conditions on the sensitivity

function ψ, locators ϕi and the model (1.1) are formulated as regularity conditions (R1) –

(R4+). Important particular versions of the general model (1.1) and sufficient conditions for

(R1) – (R4+) are in Section 3.

The consistency (1.10) in reasonably general classes of M -estimators (1.9) and models

(1.1) is a difficult problem. Sufficient conditions have been established e. g. in Yohai

and Maronna [31], Zhao and Chen [32], Hjort and Pollard [10], Liese and Vajda [18]-[21],

Zhao [33], Arcones [1]-[2] and some other references therein. Presentation of such conditions

would increase the complexity and size of the paper above bearable bounds. Therefore we

refer in this respect to the mentioned literature and restrict ourselves to the verification of

consistency only in special cases illustrating applicability of the main result of Section 2.

In Sections 4 and 5 we illustrate the applicability of the general results of Sections 2 and 3

to special classes of M -estimators (1.9) and models (1.1). Particular attention is payed to

the class of M -estimators with the criterion functions

ρ(y) = ρβ(y) = β y I[0,∞)(y) − (1 − β) y I(−∞,0)(y), 0 < β < 1, (1.13)
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introduced by Koenker and Basset [16] and later used by many authors (e. g. Portnoy [24],

Koul and Saleh [17], Jurečková and Sen [14], Hallin and Jurečková [7]).

In Section 6 are proofs of main results of Section 2. The proofs employ some general results

and techniques of van der Vaart and Wellner [30], in particular their Theorems 3.2.2 and

3.2.5. The proofs use also the methods developed in [21].

The present paper differs from[21] in a considerably simpler formulations and proofs of

results, and in application of these results to different special models (1.1) and/or estimators

(1.9). It also differs from the classical literature studying the consistency (1.10) and the

asymptotic normality (1.12) of the estimators θ̂n defined as solutions of the equations
n∑

i=1

ψ(Yi − ϕi(θ))∇ϕi(θ) = 0 (1.14)

on Θ when the locators ϕi(θ) are differentiable on Θ with gradients ∇ϕi(θ) (see the mono-

graphs of Serfling [27], [12], Singer and Sen [28], [14], and references therein). Obviously,

our M -estimators θ̂n ∼ 〈ψ;ϕi〉 coincide with solutions of (1.14) only in special cases, e. g. if

the sensitivity ψ is monotone on R (i. e. the criterion function ρ is convex) and the locators

ϕi(θ) are linear in θ. This takes place e. g. if θ ∈ Θ = R is the location parameter, ϕi(θ) = θ

and

ρ(y) =

{
y2 for |y| ≤ k,

2k|y| − k2 for |y| > k,

which is the situation studied by Huber [11]. The results about asymptotic normality of

solutions θ̂n of (1.14), based on the ideas and techniques of [11, 12], are thus disjoint with our

results except the relatively rare situations when solutions of (1.14) minimize the function

Mn(θ) of (1.3). Such situations are trivial from the point of view of our theory which

primarily intends to bring results about M -estimators θ̂n ∼ 〈ρ;ϕi〉 where either ρ(y) is not

convex in y ∈ R or ϕi(θ) are not linear in θ ∈ Θ, i. e. about situations not covered by the

classical Huber-type theories.

2 Main results

In this section we consider an arbitrary model (1.1) and an arbitrary M -estimator θ̂n ∼
〈ψ;ϕi〉 (equivalently, θ̂n ∼ 〈ρ;ϕi〉, see (1.5) and (1.9)) with the variation of ψ locally bounded,

i. e. bounded on bounded intervals of R. This means that there exist nondecreasing functions

ψ+, ψ− : R 7→ R with the property

ψ = ψ+ − ψ−. (2.1)

We define on R the nondecreasing function

ψ± = ψ+ + ψ−. (2.2)
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Definition 2.1 We say that the locators ϕi are adapted to the model if

Eψ(Yi − ϕi(θ0)) = 0, i ∈ N. (2.3)

We say that the estimator θ̂n is adapted to the model if the locators are adapted in the sense

of (2.3) and the estimator is consistent in the sense of (1.10).

In the rest of paper we consider the following conditions of regularity of the estimator θ̂n in

the model (1.1).

(R1) The second moments (variances if (2.3) holds)

σ2
i = E [ψ(Yi − ϕi(θ0))]

2 (2.4)

are uniformly bounded in the mean, i. e.,

sup
n∈N

1

n

n∑

i=1

σ2
i <∞. (2.5)

(R2) The gradients

ϕ̇i(θ) =

(
∂

∂θ1

, . . . ,
∂

∂θm

)′

ϕi(θ), θ ∈ Θ, i ∈ N (2.6)

exist and are locally bounded and locally Lipschitz in the sense that one can find a

closed ball

B = Bδ(θ0) = {y ∈ R
m : ‖y − θ0‖ ≤ δ} (2.7)

and a constant λ > 0 possibly depending on B, such that B ⊂ Θ and

‖ϕ̇i(θ)‖ ≤ λ, θ ∈ B, i ∈ N (2.8)

‖ϕ̇i(θ) − ϕ̇i(θ̃)‖ ≤ λ‖θ − θ̃‖, θ, θ̃ ∈ B, i ∈ N. (2.9)

(R3) There exists τ0 > 0 such that the functions

Hi(t) = Eψ(Yi − ϕi(θ0) + t), i ∈ N (2.10)

are differentiable on the interval (−τ0, τ0) and the derivatives

hi(t) =
d

dt
Hi(t), i ∈ N (2.11)

satisfy the condition

lim
τ↓0

sup
n∈N

1

n

n∑

i=1

ω(hi, τ) = 0 (2.12)
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where ω(hi, τ) = sup|t|≤τ |hi(0) − hi(t)|, 0 < τ < τ0, is the modulus of continuity of

hi(t) in the neighborhood of t = 0. Further, the variances σ2
i from (R1), gradients ϕ̇i

from (R2) and functions hi from (R3) satisfy

Σn =
1

n

n∑

i=1

σ2
i ϕ̇i(θ0) ϕ̇i(θ0)

′ → Σ, (2.13)

Φn =
1

n

n∑

i=1

hi(0)ϕ̇i(θ0) ϕ̇i(θ0)
′ → Φ (2.14)

where the m×m matrices Σ and Φ are positive definite.

(R4) There exist constants τ0 > 0 and κ such that the function (2.2) satisfies for all 0 < τ <

τ0 the relation

sup
n∈N

1

n

n∑

i=1

E
[
ψ±(Xi + τ) − ψ±(Xi − τ)

]2
< κ (2.15)

where Xi = Yi − ϕ(θ0).

(R4+) There exist constants τ0 > 0 and q > 0 and κ such that the function (2.2) satisfies for

all 0 < τ < τ0 the relation

sup
n∈N

1

n

n∑

i=1

E
[
ψ±(Xi + τ) − ψ±(Xi − τ)

]2
< κτ q (2.16)

where Xi = Yi − ϕ(θ0).

Sufficient conditions for (R3), (R4) and (R4+) will be studied in the next section. Here

we formulate the main result of the paper. We remind that the asymptotic relations are

considered for n→ ∞ unless otherwise stated.

Theorem 2.2 If the estimator θ̂n ∼ 〈ψ;ϕi〉 is adapted to the model (1.1) in the sense

of Definition 2.1 and satisfies the regularity conditions (R1) – (R4) then it is
√
n−consistent

in the sense of (1.11).

Theorem 2.3 Let the estimator θ̂n ∼ 〈ψ;ϕi〉 be adapted to the model (1.1) in the sense

of Definition 2.1 and satisfy the regularity conditions (R1) – (R4) and (R4+). If

n−1/2

n∑

i=1

ψ(Yi − ϕi(θ0)) ϕ̇i(θ0)
L−→ N(0,Σ) (2.17)

then the estimator θ̂n is asymptotically normal in the sense of (1.12) with the variance-

covariance matrix

V = Φ−1 Σ Φ−1. (2.18)
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The proofs of Theorem 2.2 and 2.3 are deferred to Section 6. Here we present a sufficient

condition for the condition (2.17) of Theorem 2.3.

Proposition 2.4 If the assumptions (2.3) and (2.13) hold and for some γ > 0,

sup
i∈N

E‖ψ(Yi − ϕi(θ0)) ϕ̇(θ0)‖2+γ <∞ (2.19)

then the asymptotic normality condition (2.17) holds.

Proof: Clear from the Lyapunov central limit theorem.

3 Results under restricted generality

In this section we restrict in different ways the generality of the model (1.1) and also the gen-

erality of the M -estimator θ̂n ∼ 〈ψ;ϕi〉 studied in the previous section. We study sufficient

conditions for the assumptions of Theorems 2.2 and 2.3 under this restricted generality.

Definition 3.1 The general statistical model with independent observations defined by

(1.1) is said to be

(i) regression model if there are given sets X ⊂ R
k, T ⊂ R, and a mapping φ : X×Θ 7→ T ,

and if for 1 ≤ i ≤ n are given realizations xi of x = (x1, . . . , xk)
′ ∈ X and families of

distributions Fi = {Fi(y|ϑ) : ϑ ∈ T}, both possibly depending on n, such that

G(y|i, θ) = Fi(y|φ(xi, θ)) for 1 ≤ i ≤ n and θ ∈ Θ; (3.1)

(ii) homogeneous regression model if it satisfies (i) and

Fi = F = {F (y|ϑ) : ϑ ∈ T} for 1 ≤ i ≤ n (3.2)

where the family of distributions F depends neither on i nor on n;

(iii) linear regression model if it satisfies (i), X belongs to the same Euclidean space R
m as

Θ and

φ(x, θ) = x′θ for x ∈X and θ ∈ Θ; (3.3)

(iv) regression model with additive errors if it satisfies (i) and Fi are location families not

depending on n, i. e. if T = R and

Fi = {Fi(y − ϑ) : ϑ ∈ R}, 1 ≤ i ≤ n, (3.4)

for a sequence of parent distributions F1(y), F2(y), . . . not depending on n.
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The combinations of properties (ii) – (iv) of regression models are admitted. In this manner

we obtain the following important special cases.

Example 3.2 Homogeneous regression with additive errors. This means the standard non-

linear regression where the observations are defined by formula

Yi = φ(xi, θ0) + Ei, 1 ≤ i ≤ n, (3.5)

and the additive errors Ei are i.i.d. by the parent F of the location family F = {F (y − ϑ) :

ϑ ∈ R} satisfying simultaneously the assumptions (3.2) and (3.4).

Example 3.3 Homogeneous linear regression with additive errors. This means the stan-

dard linear regression where X ⊂ R
m and

Yi = x′
iθ0 + Ei, 1 ≤ i ≤ n, (3.6)

where the additive errors Ei satisfy the conditions of Example 3.2.

Example 3.4 The general homogeneous regression leads to independent observations

Yi ∼ F (y|φ(xi, θ0)), 1 ≤ i ≤ n, (3.7)

specified by a k × n matrix

Xn = (x1, . . . ,xn) (3.8)

of regressors and a family of distributions F = {F (y|ϑ) : ϑ ∈ T}. If F is a location family

then we obtain the standard nonlinear regression of Example 3.2.

Example 3.5 The homogeneous linear regression in general differs from the standard linear

regression. It has been called pseudolinear regression in Liese and Vajda [20]. Here the

independent observations

Yi ∼ F (y|x′
iθ0), 1 ≤ i ≤ n, (3.9)

are specified by the matrix (3.8) and by a family of distributions F = {F (y|ϑ) : ϑ ∈ T}.
If T = R and F is a location family then the pseudolinear regression reduces to the stan-

dard linear regression of Example 3.3. If F is an exponential family then the pseudolinear

regression model reduces to the generalized linear model. As an example of the generalized

linear regression we can consider the Cox model where F consists of the exponential distri-

butions F (y|ϑ) = 1 − exp{ϑ ln(1 − F (y))}, ϑ ∈ R, for a given distribution F (y) = F (y|1)

differentiable on the support (0,∞) (then Λ(y) = − ln(1 − F (y)) is a cumulative hazard

function).

Next we study the adaptation condition (2.3) in the homogeneous regression models and

standard nonlinear regression models introduced above. This condition means in fact that
∫
ψ(y − ϕi(θ)) dG(y|i, θ) = 0 for all θ ∈ Θ and i ∈ N. (3.10)
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In the homogeneous regression models the adaptation (3.10) reduces to evaluation of solu-

tions a(ϑ) of the system of equations
∫
ψ(y − a) dF (y|ϑ) = 0, ϑ ∈ T, (3.11)

in the real variable a ∈ R. Indeed, by (3.1) and (3.2), (3.10) holds provided

ϕi(θ) = a(φ(xi, θ)) if

∫
ψ(y − a(ϑ)) dF (y|ϑ) = 0, ϑ ∈ T. (3.12)

In the standard nonlinear regression of Example 3.2 with an error distribution F (y), the

adaptation condition (3.12) further simplifies into

ϕi(θ) = φ(xi, θ) + b(F ) if b(F ) = a(0), i.e.

∫
ψ(y − b(F )) dF (y) = 0. (3.13)

An M -estimator θ̂n ∼ 〈ψ;φ(xi, θ) + c〉 with a fixed c ∈ R is in fact adapted to all nonlinear

regression models (3.5) with error distributions F restricted by the condition b(F ) = c.

However, this condition may not be easily verifiable for some functions ψ. In order to obtain

anM−estimator adapted to the standard nonlinear regression models (3.5) with an arbitrary

error distribution F , it suffices to extend the parameter space Θ into Θ∗ = Θ×R and replace

ϕi(θ) = φ(xi, θ) + c by

ϕ∗
i (θ

∗) = φ(xi, θ) + b for θ∗ = (θ, b) ∈ Θ∗,

i. e. to consider the M -estimator

θ̂∗n = (θ̂n, b̂n) ∼ 〈ψ;φ(xi, θ) + b〉 (3.14)

of the extended true parameter θ∗0 = (θ0, b0) where b0 = b(F ). The validity of (2.3) for θ̂∗n,

i. e. the validity of (2.3) with ϕi(θ0) replaced by ϕ∗
i (θ

∗
0) = φ(xi, θ0) + b0 is obvious.

Now we present simple conditions which imply the assumptions (R4) and (R4+) of Theorems

2.2 and 2.3 for particular versions of the M -estimators (1.9) and general model (1.1).

Proposition 3.6 If both components ψ+ and ψ− of the decomposition (2.1) are Lips-

chitz on R then the M-estimator θ̂n ∼ 〈ψ;ϕi〉 satisfies the regularity condition (R4+) in the

general model (1.1).

Proof: Under the assumptions of this proposition the function ψ± defined in (2.2) satisfies

the Lipschitz condition

|ψ±(y1) − ψ±(y2)| ≤ C|y1 − y2|

for some constant C and all y1, y2 ∈ R. Therefore the expression in the brackets of (2.15) is

bounded above by (2τ)2. This means that (2.16) with κ = 4C2, q = 2 and arbitrary τ > 0

holds for the model (1.1).
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The next result is an alternative to Proposition 3.6. In this result we assume that ψ is

absolutely continuous on R. Similarly as in (1.6), this means that there exists a measurable

and locally absolutely integrable function ψ̇ : R 7→ R satisfying the condition

ψ̇(y) =
dψ(y)

dy
a.e. (3.15)

with respect to the Lebesgue measure on R. Then, similarly as in (1.7), for every y ∈ R

ψ(y) = ψ(0) +

∫

(0,y]

ψ̇(s)ds (cf. (1.8))

and, moreover,

ψ+(y) = ψ+(0) +

∫

(0,y]

ψ̇(s) I(ψ̇(s) > 0) ds

and

ψ−(y) = ψ−(0) −
∫

(0,y]

ψ̇(s) I(ψ̇(s) < 0) ds

for the components of the decomposition (2.1). Therefore (2.2) implies that for every y ∈ R

ψ±(y) = ψ±(0) +

∫

(0,y]

|ψ̇(s)| ds (cf. (1.8)). (3.16)

Obviously, if ψ̇ is bounded a.e. on R then it follows from the formulas above that ψ+ and

ψ− are Lipschitz on R so that Proposition 3.6 is applicable. Therefore the next result is

interesting only in situations where ψ̇ is unbounded.

Proposition 3.7 Let ψ be absolutely continuous on R with an a. e. derivative ψ̇. The

M-estimator θ̂n ∼ 〈ψ;ϕi〉 satisfies the regularity condition (R4+) in the general model (1.1)

if one of the following conditions holds:

(i) ψ̇ is square integrable on R;

(ii) for Xi = Yi − ϕi(θ0) and some ε > 0

C := sup
n∈N

1

n

n∑

i=1

E sup
|s|≤ε

(ψ̇(Xi + s))2 <∞; (3.17)

(iii) ψ̇ = ψ̇1 + ψ̇2 where ψ̇1 satisfies (i) and ψ̇2 satisfies (ii).

Proof: By (3.16) and Schwarz’ inequality, for every y ∈ R and τ > 0

[ψ±(y + τ) − ψ±(y − τ)]2 ≤
(∫

(y−τ,y+τ ]

|ψ̇(s)|ds
)2

(3.18)

≤ 2τ

∫

(y−τ,y+τ ]

(ψ̇(s))2ds

≤ 2τ

∫

R

(ψ̇(s))2ds =: A1(ψ̇).
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Therefore, if ψ̇ is square integrable then (2.16) holds for q = 1, all τ > 0 and

κ = 2

∫

R

(ψ̇(s))2 ds.

Further, by (3.18),

[
ψ±(y + τ) − ψ±(y − τ)

]2 ≤ 4τ 2 sup
|s|≤τ

(ψ̇(y + s))2 =: A2(ψ̇).

Therefore, if (ii) holds then (2.16) holds for q = 2, κ = 4C2 and all 0 < τ ≤ ε. Finally, from

the above inequalities we see that
[∫ y+τ

y−τ

|ψ̇(t)|dt
]2

≤ min(A1(ψ̇), A2(ψ̇)).

From here and
[∫ y+τ

y−τ

|ψ̇1(t) + ψ̇2(t)|dt
]2

≤ 2

[∫ y+τ

y−τ

|ψ̇1(t)|dt
]2

+ 2

[∫ y+τ

y−τ

|ψ̇2(t)|dt
]2

we obtain the statement in (iii).

The following proposition presents similar conditions as Proposition 3.7 for the estimator

θ̂n ∼ 〈ψ, ϕi〉 for nonexplosive ψ±.

Definition 3.8 We say that a nondecreasing function ξ : R 7→ R is explosive if there

exists τ > 0 such that

sup
y∈R

[ξ(y + τ) − ξ(y − τ)] = ∞.

Thus ψ± is nonexplosive if for every τ > 0

C(τ) := sup
y∈R

[
ψ±(y + τ) − ψ±(y − τ)

]
<∞. (3.19)

Clearly, C(τ) is nondecreasing in the domain τ > 0 with C(0) ≥ 0. Nonexplosive ψ± satisfies

the inequalities

[
ψ±(y + τ) − ψ±(y − τ)

]2 ≤ C(τ)
[
ψ±(y + τ) − ψ±(y − τ)

]
(3.20)

and [
ψ±(y + τ) − ψ±(y − τ)

]2 ≤ (C(τ))2. (3.21)

Proposition 3.9 Every M−estimator θ̂n ∼ 〈ψ, ϕi〉 with nonexplosive ψ± satisfies the

regularity assumption (R4) in the model (1.1). If there exist constants τ0, q > 0 and κ such

that for Xi = Yi − ϕi(θ0) and all 0 < τ < τ0

sup
n∈N

1

n

n∑

i=1

E
[
ψ±(Xi + τ) − ψ±(Xi − τ)

]
< κτ q (3.22)

then it satisfies also (R4+).
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Proof: The first assertion is clear from (2.15) and (3.21). The second assertion follos from

(2.16), (3.20) and (3.22).

Proposition 3.10 Let ψ± of the estimator of Proposition 3.9 be piecewise constant

with finitely many jumps of sizes ∆k > 0 at points tk, and let for some fixed ε > 0 the

neighborhoods Nk(τ) = (tk−τ, tk+τ), 0 < τ < ε, be disjoint for different k. If the distribution

functions Fi(y) of Xi in (3.22) have densities in the union U(ε) = ∪kNk(τ) and

C := sup
y∈N

1

n

n∑

i=1

sup
y∈U(ε)

fi(y) <∞, (3.23)

then (3.22) holds for τ0 = ε/2, q = 1, and κ = 4C
∑

k ∆k.

Proof: If τ ≤ ε/2 then

ψ±(y + τ) − ψ±(y − τ) =

{
∆k if y ∈ Nk(τ)

0 otherwise

and ∫

Nk(τ)

dFi(y) ≤ F (tk + 2τ) − F (tk − 2τ) ≤ 4τ sup
y∈U(ε)

fi(y).

Therefore

E[ψ±(Xi + τ) − ψ±(Xi − τ)] ≤
∑

k

∆k

∫

Nk(τ)

dFi(y).

The desired result follows from here.

Our last result is concerning estimators θ̂n ∼ 〈ψ, ϕi〉 with nonexplosive ψ in the general

regression models where G(y|i, θ) = Fi(y|φ(xi, θ)) and ϕi(θ) = a(φ(xi, θ)), see (3.1) and

(3.12). We use the notation

ϑi = φ(xi, θ) and ai = a(ϑi) (3.24)

In this notation the functions Hi(t) of (2.10) are given by the formula

Hi(t) =

∫
ψ(y − ai + t)dF (y|ϑi), t ∈ R, (3.25)

in the general regression model (3.1). In the simplified notation

Fi(y) = F (y + ai|ϑi), Fi,s(y) = F (y + ai − s|ϑi) (3.26)

it holds

Hi(t) =

∫
ψ(y)dFi(y − t), t ∈ R, (3.27)
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so that, for s 6= 0,
1

s
[Hi(t+ s) −Hi(t)] =

∫
ψ(y)dΦi,s,t(y) (3.28)

where

Φi,s,t(y) =
Fi,s(y − t) − Fi(y − t)

s
, y ∈ R.

Let us consider ψ± = ψ+ + ψ− and suppose that for some τ > 0

ψ+, ψ− ∈ L1(Fi,t) for all i ∈ N and all |t| ≤ τ. (3.29)

Here and in the sequel, L1(G) denotes the Banach space of functions absolutely integrable

with respect to the measure defined on R by a nondecreasing and right continuous function

G : R 7→ R. We assume nonexplosive ψ± defined by the condition (3.19).

Proposition 3.11 Let an M-estimator θ̂n ∼ 〈ψ, a(xi, θ)〉 with non-explosive ψ± be

adapted to the general regression model (3.1). Further, let ψ+, ψ− ∈ L1(Fi,t) for some τ > 0

and all |t| ≤ τ and i ∈ N, let all distributions Fi,s, i ∈ N, s ∈ R, be differentiable on R with

derivatives fi,s, and put fi = fi,0.

(I) If

sup
|s|≤τ

fi,s ∈ L1(ψ
±) (3.30)

then the convolutions Hi(t) are absolutely continuous on (−τ/2, τ/2), with a. e. deriva-

tives

hi(t) = −
∫
fi(y − t)dψ(y), i ∈ N. (3.31)

(II) If fi are locally Lipschitz in sense that for every y ∈ R

|fi(y − t) − fi(y)| ≤ λi(y) |t|, t ∈ (−τ, τ), (3.32)

and both fi and λi belong to L1(ψ
±) then the previous condition (3.30) is satisfied. If,

moreover,

lim sup
n→∞

1

n

n∑

i=1

λi ∈ L1(ψ
±) (3.33)

then θ̂n satisfies the regularity condition (R3) for τ0 = τ/2.

Proof: Let |s| ≤ τ/2, |t| ≤ τ/2 and i be arbitrary fixed. Then

∫
dΦi,s,t(y) = 0, (3.34)

Φi,s,t(∞) = lim
y→∞

Φi,s,t(y) = 0 (3.35)
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and, by (3.29), ∫
|ψ(y)|dΦi,s,t(y) <∞. (3.36)

Hence, by (3.27) and the Fubini theorem,

1

s
[Hi(t+ s) −Hi(t)] =

∫ ∫
I(0 < x ≤ y)dψ(x)dΦi,s,t(y)

=

∫ ∫
I(0 < x ≤ y)dΦi,s,t(y)dψ(x)

=

∫ ∫
I(x ≤ y <∞)dΦi,s,t(y)dψ(x)

=

∫
(Φi,s,t(∞) − Φi,s,t(x))dψ(x).

Therefore, by (3.34) – (3.36),

1

s
[Hi(t+ s) −Hi(t)] = −

∫
Φi,t,s(y)dψ(y). (3.37)

Since

lim
s→0

Φ(i, t, s)(y) = fi(y − t) a.e.

and since (3.30) justifies interchange of the integral and lims→0 in (3.37), assertion (I) is

proved. The first part of assertion (II) follows from the inequality

fi ≤ sup
|s|≤τ

fi,s ≤ fi + λiτ,

and the second part follows from the first part and from the fact that, under (3.31) and

(3.32),

1

n

n∑

i=1

sup
|t|≤τ

|hi(t) − hi(0)| ≤ τ

n

n∑

i=1

∫
λi(y)dψ(y).

Indeed, under (3.33) the limsupn of the right-hand side tends to zero as τ ↓ 0.

For bounded sensitivities ψ the assumptions of Proposition 3.9 simplify in sense that (3.29)

is automatically satisfied.

For the standard nonlinear regression model with an absolutely continuous error distribution

F and the same b(F ) as in (3.13), the condition (3.29) simplifies into

ψ+, ψ− ∈ L1(F (y − b(F ))) and lim
a→∞

ψ±(a) sup
|y|≥a

f(y) = 0, (3.38)

where f is the derivative of F . Further, (3.30) takes on the form

sup
|s|≤τ

f(y − b(F ) − s) ∈ L1(ψ
±), (3.39)
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the Lipschitz condition (3.32) is in this case

|f(y − b(F ) − t) − f(y − b(F ))| ≤ λ(y) |t|, (3.40)

and the remaining conditions of assertion (II) reduce to f, λ ∈ L1(ψ
±).

Applicability of the results of this section is illustrated in the next sections.

4 L1+α–estimators

Let us start with two examples.

Example 4.1 Perhaps the best known of all M -estimators is the L2-estimator

θ̂n ∼ 〈ψ(y) = y; ϕi〉. (4.1)

Here ρ(y) = y2/2 and the decomposition (2.1) and formula (2.2) are trivial in the sense

that ψ− ≡ 0 and ψ+(y) = ψ±(y) = ψ(y) = y. Since ρ(y) = y2/2, it follows from the

definition of θ̂n that, in any model (1.1), θ̂n minimizes the L2-distance between observations

Yn = (Y1, . . . , Yn)′ and locators ϕn(θ) = (ϕ1(θ), . . . , ϕn(θ))′,

θ̂n = arg min
Θ

‖Yn − ϕn(θ)‖2, (4.2)

where ‖·‖2 denotes the L2-norm. The rule (2.3) for adaptation of locators reduces to a mean

value rule ϕi(θ0) = EYi, i. e. the formula (3.10) for locators takes on the form

ϕi(θ) =

∫
ydG(y|i, θ), θ ∈ Θ, (4.3)

where G(y|i, θ) are the distributions of model (1.1). Similarly, the particular adaptation

rules (3.12) and (3.13) reduce to

ϕi(θ) = a(φ(xi, θ)) for a(ϑ) =

∫
ydF (y|ϑ)

and

ϕi(θ) = φ(xi, θ) +

∫
ydF (y),

respectively.

In the regression models with additive errors, (4.2) represents a least squared error criterion.

Due to the simplicity of both, the criterion function ‖Yn −ϕn(θ)‖2 and the universal adap-

tation rule (4.3), the L2-estimators play a fundamental role in the statistical practice as well

as in the theory. The linearity of ψ(y), placing these estimators into the center of interest of

the linear statistics, makes the asymptotic theory of these estimators relatively easy. This

theory has been developed into considerable details, see e. g. Rao [25].
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Example 4.2 Another well known M -estimator is the L1-estimator

θ̂n ∼ 〈ψ(y) = 1 − 2I(y < 0); ϕi〉. (4.4)

Here, as before, I(·) denotes the indicator of events. The ψ-function of the L1-estimator is

an example where the decompositions (2.1), (2.2) are trivial in the sense that ψ− ≡ 0 and

ψ(y) = ψ+(y) = ψ±(y) has a jump of size 2 at y = 0. Since ρ(y) =| y|, it follows from the

definition 3.1 that, in any model (1.1), θ̂n minimizes the L1-distance between observations

Yn = (Y1, . . . , Yn) and locators ϕn(θ) = (ϕ1(θ), . . . , ϕn(θ)),

θ̂n = arg min
Θ

‖Yn − ϕn(θ)‖1, (4.5)

where ‖ · ‖1 denotes the L1-norm. The general rule (2.3) for adaptation of locators reduces

to the median rule, ϕi(θ0) = medYi, i. e. (3.10) takes on the form

ϕi(θ) = medG(y|i, θ), θ ∈ Θ, (4.6)

where

medG(y|i, θ) = inf{y ∈ R : G(y|i, θ) ≥ 1/2}

denotes the median of G(y|i, θ). Similarly, the special adaptation rules (3.12) and (3.13)

reduce to

ϕi(θ) = a(φ(xi, θ)) for a(ϑ) = medF (y|ϑ)

and

ϕi(θ) = φ(xi, θ) + medF (y).

In the regression models with additive errors, (4.2) represents a least absolute error criterion.

Due to the relative simplicity of both, the criterion function ‖Yn−ϕn(θ)‖1 and the universal

adaptation rule (4.6), the L1-estimators play an important role in the statistical practice as

well as in the theory (see e. g. Serfling [27], Dodge [4], Farenbrother [6], Ronchetti [26],

Pollard [22], Knight [15] and references therein).

The L1-or L2-estimators θ̂n can be embedded into various families of estimators θ̂
(α)
n with

a parameter α ∈ R controlling finite-sample-size properties, such as rejection regions and

variances-covariances of deviations θ̂
(α)
n − θ0, or asymptotic properties like influence curves

and relative efficiencies.

In this section we study the family of quantile L1+α-estimators

θ̂(α)
n ∼ 〈ψ(y) = 1 + α− 2I(y < 0); ϕi〉, −1 < α < 1, (4.7)

where θ̂
(0)
n is the L1-estimator of Example 4.2. The ψ-functions of (4.7) differ from the ψ-

function of (4.4) by a constant shift α : if α > 0 then the sensitivity is suppressed in the
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domain y < 0 and enhanced in the domain y ≥ 0, while for α < 0 the opposite is true.

Note that for the extremal α = 1 or α = −1 we obtain in (4.7) sensitivities concentrated

only on y ≥ 0 or y < 0, respectively. The corresponding quantile L2- and L0-estimators

are legitimate particular cases of the M -estimators studied in this paper (one of them is

studied at the end of this section). Notice that the quantile L2-estimator differs from the

usual L2-estimator of Example 4.1.

Since ρ(y) = y ψ(y) = ρα(y) where

ρα(y) = (1 + α) y I(y > 0) − (1 − α) yI(y < 0),

the definition of M -estimator implies that

θ̂(α)
n = arg min

Θ

(
(1 + α) ‖Yn − ϕn(θ)‖+

1 + (1 − α) ‖Yn − ϕn(θ)‖−1
)
, (4.8)

where

‖Yn − ϕn(θ)‖+(−)
1 =

n∑

i=1

|Yi − ϕi(θ)|+(−)

and

|y|+ = |y| I(y > 0) and |y|− = |y| I(−y > 0).

Thus we see that the criterion (4.8) differs from (4.5) in that the criterion function takes the

values |Yi − ϕi(θ)| with different weights 1 + α or 1 − α, depending on whether Yi − ϕi(θ)

is positive or negative. Since the above defined ρα(y) is twice larger than ρβ(y) of (1.12)

for β = (1 + α)/2, the quantile L1−estimators θ̂
(α)
n ∼ 〈ρα;ϕi〉 coincide with the estimators

θ̂
(β)
n ∼ 〈ρβ;ϕi〉 where ρβ is given by (1.13) for β = (1 + α)/2. If these estimators are applied

in the regression models then they are called regression quantiles.

For the ψ-function defined in (4.7), and for arbitrary ϕ ∈ R and arbitrary distribution

function G(y), ∫
ψ(y − ϕ)dG(y) = 1 + α− 2G(ϕ).

Consequently, the general rule (3.10) for adaptation of locators reduces into the (1 + α)/2-

quantile rule

ϕi(θ) = G−1 ((1 + α)/2 | i, θ) , θ ∈ Θ, (4.9)

where

G−1(β) = inf {y ∈ R : G(y) ≥ β} , 0 < β < 1, (4.10)

is the quantile function of G(y). From (3.12) or (3.13) we obtain the special adaptation rules

ϕi(θ) = F−1 ((1 + α)/2 |φ(xi, θ)) or ϕi(θ) = φ(xi, θ) + F−1((1 + α)/2).
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The second of these rules is used in the standard nonlinear regression model (3.5). It cannot

be used if the error distribution F (y) is unknown. By (3.14), in this case one can consider an

extended L1+α-estimator (θ̂
(α)
n , b̂

(α)
n ) of the extended true parameter (θ0, b0 = F−1((1+α)/2))

adapted by the rule

ϕi(θ, b) = φ(xi, θ) + b, (θ, b) ∈ Θ̃, Θ̃ = Θ × R. (4.11)

But

Yi = φ(xi, θ0) + b0 + Ẽi, Ẽi ∼ F̃ (y) = F (y + b0),

where F̃−1((1 + α)/2) = 0, and φ(xi, θ) + b is a special case of a general function φ̃(xi, θ̃)

of (m+ 1)-dimensional parameter θ̃ ∈ Θ̃, Θ̃ ⊂ R
m+1 open. Therefore (θ̂

(α)
n , b̂

(α)
n ) is a special

case of a general L1+α-estimator
̂̃
θn of true θ̃0 ∈ Θ̃ in the model

Yi = φ̃(xi, θ̃0) + Ẽi, Ẽi ∼ F̃ (y), F̃−1((1 + α)/2) = 0. (4.12)

All conditions imposed in this model on F̃ (y) and φ̃(xi, θ̃) easily transform into conditions

on distribution F (y) = F̃ (y − F−1((1 − α)/2)) of the errors Ei in the model (3.5) and on

φ(xi, θ) + b. Similarly, all properties of the estimator ˆ̃θ
(α)
n straightforward transform into

properties of the particular version (θ̂
(α)
n , b̂

(α)
n ). Hence, in the standard nonlinear (and linear)

regression with an unknown error distribution, it suffices to investigate the estimators (4.7)

under the assumption

F−1((1 + α)/2) = 0, (4.13)

using the adaptation rule

ϕi(θ) = φ(xi, θ), θ ∈ Θ, (4.14)

for Θ ⊂ R
m open and m ≥ 2.

The estimators (θ̂
(α)
n , b̂

(α)
n ), α ∈ (−1, 1), with the adaptation rule (4.11), have been intro-

duced into the literature by Koenker and Basset [16]. As said above, these estimators,

called regression quantiles, coincide with (θ
(β)
n , b̂

(β)
n ) defined by the criterion functions (1.13)

for β = (1 + α)/2 ∈ (0, 1). Koenker and Basset established the asymptotic normality of

these estimators in the standard linear regression (3.6) with an unknown distribution F (y).

Jurečková and Procházka [13] extended their result to the standard nonlinear regression (3.5)

with an unknown F (y). In this section we study the estimators (4.7) under the restrictions

(4.13), (4.14). As argued above, our study covers as particular cases the estimators (θ̂
(α)
n , b̂

(α)
n )

of (m− 1)-dimensional parameter θ0 and b0 = F−1((1− α)/2) in the model (3.5) free of the

restriction (4.13).

We shall obtain asymptotic normality of the estimators θ̂
(α)
n , α ∈ (−1, 1), defined by (4.7)

and (4.13), from Theorem 2.1 under the assumption (4.13). To this end we assume the

following.
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(a) θ̂
(α)
n is consistent in the sense of (1.10).

(b) One can find a closed ball B ⊂ Θ of a radius δ > 0 centered at θ0 on which there exist

the gradients

φ̇(xi, θ) =

(
∂

∂θ1

, . . .
∂

∂θm

)′

φ(xi, θ), i ∈ N,

and a constant λ possibly depending on B, such that

‖φ̇(xi, θ)‖ ≤ λ and ‖φ̇(xi, θ) − φ̇(xi, θ̃)‖ ≤ λ‖θ − θ̃‖

for all θ, θ̃ ∈ B, i ∈ N, i.e. the regularity condition (R2) holds.

(c) It holds

Ψn =
1

n

n∑

i=1

φ̇(xi, θ) φ̇(xi, θ)
′ → Ψ,

where the m×m matrix Ψ is positive definite.

(d) The error distribution function F (y) is differentiable on an interval (−τ, τ) and the

derivative f(y) of F (y) is continuous at y = 0 with f(0) > 0.

Theorem 4.3 If the conditions (a) – (d) hold and the error distribution satisfies (4.13)

then the estimators θ̂
(α)
n defined by (4.7) and (4.14) are asymptotically normal in the sense

√
n
(
θ̂(α)

n − θ0

)
L→ N

(
0,

1 − α2

4f 2(0)
Ψ−1

)
, (4.15)

where f(0) > 0 is defined by (d) and the positive definite matrix Ψ is defined by (c).

Proof: Let α ∈ (−1, 1) and F (y) satisfying (4.13) fulfil assumptions (a) – (d). We shall

verify that θ̂
(α)
n satisfies all assumptions of Theorem 2.3. By Propositions 3.9, 3.10, and (d),

θ̂
(α)
n satisfies the regularity condition (R4+). By (2.10), (4.13) and (4.14), if t ∈ R then

Hi(t) =

∫
ψ(y + t)dF (y) = 1 + α− 2F (−t), i ∈ N.

Consequently, by (d), the estimators θ̂
(α)
n satisfy the regularity condition (R3) of Theorem

2.3 for hi(t) = 2f(−t) and τ0 = τ . As to the remaining conditions, (2.3) was clarified above,

the consistency was assumed in (a), (R2) was assumed in (b) and (R1) holds because

σ2
i =

∫
ψ2(y)dF (y) = (1 + α)2

∫ ∞

0

dF (y) + (1 − α)2

∫ 0

−∞

dF (y)

= (1 + α)2(1 − (1 + α)/2) + (1 − α)2(1 + α)/2

= 1 − α2 for all i ∈ N.
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Conditions (2.13), (2.14) of condition (R3) follow from (c) for

Σ = (1 − α2) Ψ and Φ = 2f(0) Ψ.

Since the functions ψ(t) as well as the gradients ϕ̇i are bounded (see (b)), the remaining

condition (2.17) of Theorem 2.3 holds by Proposition 2.4. The desired relation (4.15) thus

follows from Theorem 2.3.

By what has been said above, the following assertion about an arbitrary error distribution

F (y) follows from Theorem 4.3. In this assertion, and in the rest of section, we put

β =
1 + α

2
, β ∈ (0, 1). (4.16)

Corollary 4.4 Let α ∈ (−1, 1) be arbitrary, and let β be given by (4.16). If conditions

(a) – (d) hold with F (y) replaced by F̃ (y) = F (y − F−1(β)) then the above specified L1+α-

estimator (θ̂
(α)
n , b̂

(α)
n ) is asymptotically normal in the sense

√
n
[
(θ̂(α)

n , b̂(α)
n ) − (θ0, F

−1(β))
]

L→ N

(
0,

β(1 − β)

f 2(F−1(β))
Ψ̃−1

)
as n→ ∞ (4.17)

for f(y) = dF (y)/dy and the matrix

Ψ̃ =

(
Ψ , 0

0 , 1

)
,

where Ψ is given by (c).

The asymptotic laws (4.15), (4.17) have been established for the L1-estimator, where β = 1/2,

as well as for the general L1+α-estimator under various conditions, see e. g. Pollard [22],

Jurečková and Procházka [13] and other cited there. Let us compare the present conditions

for these laws with the conditions assumed in the two cited papers.

Pollard [22] assumed (6.7) so that his conditions can be compared with those of Theorem 4.3.

He studied the L1-estimator θ̂
(0)
n in the standard linear regression, where (b) is automatically

fulfilled and the matrices considered in (c) are

Ψn =
1

n

n∑

i=1

xi x
′
i.

For these matrices, (c) is a classical condition of regression analysis. As shown on p. 189 of

Pollard [22], this condition is somewhat stronger than what is assumed in his Theorem 1.

On the other hand, our condition (d) is slightly weaker than the assumption that F (y) is
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continuously differentiable in an interval (−τ, τ) with the derivative f(y) positive on (−τ, τ),
which appears in the mentioned Theorem 1. The consistency of θ̂

(0)
n assumed in (a) takes

place under (c) and (d). This can be proved by applying the Convexity Lemma on p. 187 of

Pollard [22].

Thus, as to the L1-estimators in linear models, the conditions obtained from Theorem 2.3 are

comparable with previously published ones, obtained by methods tailor-designed for these

estimators and models. In this sense the comparison with [22] demonstrates that Theorem

2.3 is not trivial.

Jurečková and Procházka [13] studied the same estimator and model as Corollary 4.4. The

conditions (b), (c) of this corollary are the same as (b), (c) in Theorem 4.3. The condition

(d) is changed in the sense that F (y) is differentiable in an interval (F−1(β)− τ, F−1(β)+ τ)

with the derivative f(y) continuous at y = F−1(β) and f(F−1(β)) > 0. The consistency

of (θ̂
(α)
n , b̂

(α)
n ) required in (a) follows under (b), (c), (d) by the same method as used above

for the consistency of θ̂
(0)
n . Jurečková and Procházka assumed, in addition to (b), (c), (d),

that φ(x, θ) is strictly monotone in each component of θ, twice differentiable in each of these

components, with the first and second derivatives uniformly bounded on X × Θ, and that

the above mentioned f(y) is symmetric about y = 0, bounded on R and differentiable on

(F−1(β) − τ, F−1(β) + τ). Moreover, they assumed that X ⊂ R
k and Θ ⊂ R

m are compact,

and that the regression functions φ(xi, θ) and gradients φ̇(xi, θ) satisfy some additional

conditions.

Obviously, here one can deduce a stronger conclusion in favour of Theorem 2.3 than formu-

lated in the context of the simpler L1-estimator above. On the other hand, it is clear that

the results obtained from Theorem 2.3 cannot always be as strong as the results achievable

for special M -estimators and models. This can be illustrated by a reference to [15], where

the L1-estimator is studied in a standard linear regression with error distribution F (y). The

author proved an asymptotic law similar to (4.15) even in situations where the derivative

f(y) of F (y) is discontinuous at the median of F (y). To this end, by exploiting special

features of the ψ-function defined in (4.4), and special properties of linear models, he for-

mulated asymptotic normality conditions different from (c), (d) in Proposition 4.1, and also

from the conditions considered in the previous literature. Example 4.6 below illustrates that

a similar non-applicability of our theory may take place also for other M -estimators.

Remark 4.5 By (4.17), the asymptotic relative efficiency in the class of quantile L1+α-

estimators depends on the function Γ(β) = β(1− β)/f 2(F−1(β)); if β0 = arg minβ∈(0,1) Γ(β)

then the estimator with α = 2β0−1 is relatively most efficient (cf. (4.16)). By the l’Hospital

rule, if f has differentiable tails with a derivative ḟ then, for β → 0 and β → 1,

lim Γ(β) = lim
1 − 2β

2ḟ(F−1(β))
= ∞
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provided ḟ(y) ↑ 0 for y → ∞ and ḟ(y) ↓ 0 for y → −∞. In this typical case the indices α of

all relatively most efficient estimators are bounded away from −1 and 1. If ḟ is continuous

on R then at least one such relatively most efficient L1+α-estimator exists.

Example 4.6 Let the error distribution be exponential, F (y) = (1 − e−y) I(y > 0). Then

f(F−1(β)) = 1 − β. In this case Γ(β) = β/(1 − β) is increasing on (0, 1), so that one

can expect that the extremal quantile L0-estimator θ̂
(−1)
n maximizes the asymptotic relative

efficiency in the class of estimators θ̂
(α)
n , α ∈ [−1, 1]. According to (4.7), the adapted version

of this estimator is defined by

θ̂(−1)
n = arg min

θ∈ Θ

n∑

i=1

|Yi − φ(xi, θ)| I(Yi < φ(xi, θ)).

Here

H(t) = 2(et − 1) I(t < 0),

and

h(t) = 2et I(t < 0).

We see that the regularity condition (R4) does not hold. Consequently, Theorem 2.3 is not

applicable to θ̂
(−1)
n , i. e. (4.17) is not guaranteed for α = −1 (β = 0). In fact, since Γ(0) = 0,

one can expect in this case a higher rate of consistency than
√
n obtained in (4.17). The

higher rate of consistency can be easily verified if Θ = R and φ(x, θ) = θ, i. e. if Yi = θ0 + Ei

where Ei are exponentially distributed errors. Then

θ̂(−1)
n = min{Y1, . . . , Yn}

so that

P

(
n(θ̂(−1)

n − θ0) > t
)

= e−t, t ∈ R,

i. e. θ̂
(−1)
n is consistent of the order n.

5 L2+α–estimators

In the statistical literature, the classical L2-estimator (4.1) has been embedded to many

families of M -estimators. These can usually be interpreted as families of L2+α-estimators

〈ψα; ϕi〉, α ∈ R, (5.1)

with ψα(y) continuous at α = 0 and ψ0 coinciding with ψ(y) of (4.1), i. e. satisfying for all

y ∈ R the relations

lim
α→0

ψα(y) = ψ0(y) and ψ0(y) = y. (5.2)

In other words, the family of estimators can be rearranged so that α = 0 leads to the

L2-estimator.



On
√
n–Consistency and Asymptotic Normality of . . . 25

Example 5.1 The Huber estimators (see e. g. [12]) form a family of the type (5.1) with

ψα(y) =

∫

0

yI(−|α|−1 < s < |α|−1)ds for α 6= 0, (5.3)

extended to α = 0 in accordance with (5.2). Here the decomposition (2.1) and formula (2.2)

are trivial in the sense that ψ−
α ≡ 0 and ψ+

α = ψ±
α = ψα. The skipped mean is defined by

ψα(y) = y I(−|α|−1 < y < |α|−1) for α 6= 0

and extended by (5.2). If α 6= 0 then ψ+
α (y) coincide with Huber’s (5.3), ψ−

α (y) = I(y ≥
|α|−1) − I(y < −|α|−1) and

ρα(y) = α−2 − (α−2 − y2) I(−|α|−1 < y < α).

For more details about this and the next example we refer to [8]. The Tukey biweight is

defined by

ψα(y) = y(α−2 − y2)2 I(−|α|−1 < y < |α|−1) for α 6= 0,

where, for α 6= 0,

ψ+
α =

∫ y

0

I

(
−
(√

3|α|
)−1

< s <
(√

3|α|
)−1
)
ds,

ψ−
α (y) =

∫ y

0

I

(
s >

(√
3|α|

)−1
)
dψ(s) −

∫ y

0

I

(
s < −

(√
3|α|

)−1
)
dψ(s),

and

ρα(y) =
1

6|α|6 − (α−2 − y2)

6
I
(
−|α|−1 < y < |α|−1

)
.

Portnoy [23] and independently Vajda [29] studied the family of L2+α estimators defined by

ψα(y) = y e−(αy)2 for α 6= 0 (5.4)

with

ρα(y) =
1

2α2

(
1 − e−(αy)2

)
for α 6= 0.

As is shown in the second reference, the estimators defined by (5.4) can be obtained from a

minimum distance rule applied to α2-divergences of theoretical and empirical distributions.

For the L2+α-estimators with α 6= 0 studied in this example, there is no universal adaptation

rule similar to the (1+α)/2-quantile rule (4.9) of previous section, or to the mean value rule

(4.3) applicable when α = 0. One general adaptation rule applicable to these estimators is

given in the next proposition.



26 F. Liese, I. Vajda

Proposition 5.2 Consider an M-estimator θ̂n ∼ 〈ψ;ϕi〉 with a monotone ψ(y), skew-

symmetric about y = 0, in the standard nonlinear regression model (3.5) with an error

distribution F (y) satisfying the condition ψ ∈ L1(F ). If F (y) − F (0) is skew-symmetric

about y = 0 (i. e. if the errors are symmetrically distributed about zero) then the locators are

adapted by the rule

ϕi(θ) = φ(xi, θ), i ∈ R. (5.5)

This adaptation is unique unless there exists a constant b ∈ R such that

ψ(y − b) = ψ(y) F − a.s. (5.6)

Proof: The skew-symmetries of ψ and F imply that
∫
ψ(y)dF (y) = 0.

By (3.13), this means that (5.5) is an adaptation rule. If b 6= 0 then the monotonicity of ψ

implies that ψ(y − b) − ψ(y) does not change sign on R. Therefore
∫
ψ(y − b)dF (y) 6=

∫
ψ(y)dF (y) = 0

unless (5.6) holds. By (3.13), this implies the uniqueness of the rule (5.5).

The skew-symmetry of the above considered sensitivity functions ψ about 0 means that the

sensitivity of the corresponding estimators to errors in data is symmetrically distributed

about 0. In the rest of this section we study one class of L2+α-estimators with sensitivity

functions ψα skew-asymmetric about 0. Such estimators are convenient when errors in

data are asymmetrically distributed. As an example we may consider the situation when

nonnegative data Xi are transformed into Yi = lnXi for fitting a symmetric location model

on R. Then an error ε in data Xi leads to an error ε e−Yi in data Yi, which is exponentially

decreasing with increasing values of Yi. This partially motivates the following steps.

Let us study the family of exponential L2+α-estimators

θ̂(α)
n ∼ 〈ψ(y) = y eαy; ϕi〉 , α ∈ R, (5.7)

where θ̂
(0)
n is the L2-estimator of Example 4.1. Here

ρ(y) =





eαy(αy − 1) + 1

α2
if α 6= 0

y2 if α = 0.

(5.8)

A strong additional motivation for the estimators (5.7) is a relatively simple adaptation,

in the sense of (3.13), to the generalized regression models (3.5) with exponential parent
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families F , in particular to the generalized linear models mentioned in Example 3.5. The

only estimator with this property studied so far in the literature seems to be the classical

MLE. Thus the class (5.7) deserves to be investigated in detail.

By (3.13), the adaptation of θ̂
(α)
n to the regression model (3.1) with a parent family F =

{F (y|ϑ) : ϑ ∈ y} reduces to solution of equations (3.12), which are now of the form
∫

(y − a) eα(y−a)dF (y|ϑ) = 0, ϑ ∈ T. (5.9)

We restrict ourselves to the homogeneous regression model (3.2) with exponential families

F in the natural form (cf. Brown [3]), i.e. with densities

f(y|ϑ) = eϑy−c(ϑ) ∼ F (y|ϑ), ϑ ∈ T, (5.10)

with respect to a σ-finite measure ν on R, where

T =

{
ϑ ∈ R : 0 <

∫
eϑydν(y) <∞

}
and c(ϑ) = ln

∫
eϑydν(y). (5.11)

Here T is convex, and c(ϑ) is a cumulant generating function convex on T .

For families F in a natural form, the distributions figuring in (1.1) are given by

G(y|i, θ) ∼ g(y|i, θ) = f(y)|φ(xi, θ) = eφ(xi,θ) y−c(φ(xi,θ)) (5.12)

for all y from the support of ν, and all i ∈ N and θ ∈ Θ. If φ(x, θ) = x′θ then we obtain

generalized linear models with natural link functions (see e. g. Fahrmeir and Kaufmann [5])

where

G(y|i, θ) ∼ g(y|i, θ) = f(y|x′
iθ) = ex

′

iθy−c(x′

iθ) (5.13)

for all y from the support of ν and all i ∈ N and θ ∈ Θ. The exponential families are assumed

to be nontrivial in the sense that ν is not concentrated in one point, that T has a nonempty

interior, and that all values x′
iθ or φ(x′

i, θ) are in this interior.

In a nontrivial exponential family F , the cumulant generating function c(ϑ) is strictly convex

and infinitely differentiable on the interiorT 0 of T , with derivatives

ċ(ϑ) =
dc(ϑ)

dϑ
and c̈(ϑ) =

d2c(ϑ)

dϑ2
(5.14)

satisfying for all ϑ ∈ T 0 the equalities
∫

(y − ċ(ϑ)) eϑy−c(ϑ)dν(y) = 0 (5.15)

and ∫
(y − ċ(ϑ))2 eϑy−c(ϑ)dν(y) = c̈(ϑ). (5.16)
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The derivative ċ(ϑ) of the strictly convex function c(ϑ) is increasing on the interior T 0, and

the second derivative c̈(ϑ) is positive on T 0. By (5.15) and (5.16), ċ(ϑ) is the mean in F ,

µ(ϑ) =

∫
yf(y|ϑ)dν(y), (5.17)

and c̈(ϑ) is the variance or, equivalently, the Fisher information of F , i. e.

µ(ϑ) = ċ(ϑ) and I(ϑ) = c̈(ϑ), ϑ ∈ T 0. (5.18)

Moreover, for each ϑ ∈ T 0, a = ċ(ϑ) is the unique solution of the equations
∫

(y − a) eϑy−c(ϑ)dν(y) = 0 (5.19)

and ∫
(y − a)2 eϑy−c(ϑ)dν(y) = c̈(ϑ). (5.20)

For simplicity, we study the important particular case where T = R. Then in the homoge-

neous regression models (3.1) under consideration, equations in (5.9) reduce to
∫

(a− y) eα(y−a)+ϑy−c(ϑ)dν(y) = 0, ϑ ∈ R, (5.21)

which can be obtained from equations (5.19) with ϑ replaced by ϑ+α. Therefore, given any

α ∈ R,

a(ϑ) = ċ(ϑ+ α), ϑ ∈ R, (5.22)

are the unique solutions of equations (5.21). According to (3.12), this means that the

pseudoadditive rule

ϕi(θ) = ċ (φ(xi, θ) + α) , θ ∈ Θ, (5.23)

leads to the adaptation of exponential L2+α-estimators to the exponential homogeneous

regression models under consideration in the sense of (3.12), i. e. the adapted versions of the

estimators (5.7) are

θ̂(α)
n ∼ 〈y eαy; ċ(φ(xi, θ) + α)〉 , α ∈ R. (5.24)

Replacing φ(xi, θ) by the scalar product x′
iθ we obtain from (5.23), (5.24) corresponding for-

mulas for the exponential L2+α-estimators adapted to generalized linear models with natural

link functions.

Let us look at the restrictions which Theorem 2.3 imposes on the estimators (5.24) and the

respective exponential regression models. We start with sufficient conditions for (R3) and

(R4+). The decomposition of the ψ-function figuring in (5.24) is as follows

ψ+(y) =





y eαy I(αy + 1 ≥ 0) +
1

2
I(αy + 1 ≥ 0) if α 6= 0,

y if α = 0

(5.25)
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and

ψ−(y) =





−y eαy I(αy + 1 < 0) +
1

2
I(αy + 1 ≥ 0) if α 6= 0,

0 if α = 0.

(5.26)

The part ψ−(y) is non-explosive, Lipschitz and bounded and square integrable on R. The

other part ψ+(y) is not so nice – it is explosive, non-Lipschitz, unbounded and square non-

integrable on R. To satisfy (R4+) we shall need Proposition 3.7.

Proposition 5.3 The estimator θ̂n defined by ( 5.7) fulfils in the model under consid-

eration for all α ∈ R the condition 2.12 in the regularity condition (R3). If the expectations

µ(ϑ) and Fisher informations I(ϑ) defined in (5.18) satisfy, for

φi = φ(xi, θ0), i ∈ N, (5.27)

and some α ∈ R, the inequalities

sup
i∈N

[µ(φi + 2α) − µ(φi + α)]2 <∞ (5.28)

and

sup
n∈N

1

n

n∑

i=1

sup
|t|≤2|α|

I(φi + t) <∞, (5.29)

then the corresponding estimator θ̂
(α)
n defined by (5.7) fulfills also the regularity conditions

(R1) and (R4+).

Proof: (I) For every α ∈ R, the derivative

ψ̇+(y) = (αy + 1) eαy I(αy + 1 ≥ 0) (5.30)

of ψ+(y) is nondecreasing on R if α ≥ 0, and nonincreasing if α < 0. Consequently,

Ψτ (y) := sup
|s|≤τ

∣∣∣ψ̇+(y + s)
∣∣∣ = ψ̇+(y + τ sgnα), y ∈ R, τ > 0, (5.31)

where

sgnα =

{
1 if α ≥ 0,

−1 if α < 0.

By using the relation

|ψ̇+(y) − ψ̇(y)| ≤ sup
t∈R

|ψ̇−(t)| ≤ 1/e2, y ∈ R,

we find that (3.17) is equivalent to the condition

sup
n∈N

1

n

n∑

i=1

E

[
ψ̇(Yi − ċ(φi + α) + τ sgnα)

]2
<∞ for some τ > 0, (5.32)



30 F. Liese, I. Vajda

where ψ̇(y) = (αy + 1) eαy. By the Taylor Theorem the difference in the brackets of (5.28)

equals αc̈(φi + αi) for some αi ∈ R. Using (5.19), (5.20), we obtain that the expectation of

(5.31) is equal to

e2|α|τ+bi(α)
[
α2c̈(φi + 2α) + (α2c̈(φi + αi) + |α| τ + 1)2

]

≤ e2|α|τ
[
α2c̈(φi + 2α) + (α2c̈(φi + αi) + |α| τ + 1)2

]
,

where

0 ≤ bi(α) = c(φi + 2α) − c(φi) − 2αċ(φi + 2α) (5.33)

≤ 2|α| sup
|t|≤2|α|

I(φi + t)

because c(ϑ) is convex and c̈(ϑ) = I(ϑ) > 0. Therefore, if (5.28) and (5.29) hold then (5.32)

holds too, and Proposition 3.7 implies that (R4+) holds.

(II) Using (5.33) and the notation of part (I), we get from the definition of σ2
i in (2.4) and

from (5.23),

σ2
i = E [ψ(Yi − ċ(φi + α))]2

= ebi(τ)
[
c̈(φi + 2α) + (ċ(φi + 2α) − ċ(φi + α))2

]
. (5.34)

By (5.33), the assumptions (5.28) and (5.29) imply the inequality (2.5) required in (R1).

(III) Using (5.33), we get from the formula for Hi(t) in (2.10) and from (5.23),

Hi(t) = Eψ(Yi − ċ(φi + α) + t)

= t eαt+b̃i(α), t ∈ R,

where (cf. (5.33))

b̃i(α) = c(φi + α) + c(φi) − αċ(φi + α) ≤ 0 (5.35)

due to the convexity of c(ϑ). This function is differentiable on R with the derivative

hi(t) = (αt+ 1) eαt+b̃i(α), t ∈ R. (5.36)

Since b̃i(α) ≤ 0, it holds for all i ∈ N

|hi(t) − hi(0)| ≤
∣∣(αt+ 1) eαt − 1

∣∣ eb̃i(α) ≤ |(αt+ 1) eαt − 1|
=

∣∣αt+ (αt+ 1) (eαt − 1)
∣∣ .

Therefore the condition 2.12 is satisfied on the infinite interval (−τ0, τ0) = R even if the

conditions (5.28) and/or (5.29) fail to hold.
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Combining Proposition 5.3 and Theorem 2.3, we obtain the following assertion, in which we

use for α ∈ R and i ∈ N the constants bi(α), b̃i(α) defined by (5.33), (5.35) and

σ2
i (α) = ebi(α)

[
I(φi + 2α) + (µ(φi + 2α) − µ(φi + α))2

]
(5.37)

for φi and µ(ϑ), I(ϑ) defined by (5.27) and (5.18). We also use the formulas

ϕ̇i(θ0) = I(φi + α) φ̇i, for φ̇i = φ̇(xi, θ0) (5.38)

for the gradients ϕ̇i(θ0) considered in conditions (2.8), (2.9) of (R2), provided the derivatives

φ̇(xi, θ) =

(
∂

∂θ1

, . . . ,
∂

∂θm

)′

φ(xi, θ), i ∈ N, (5.39)

exist in an open ball B ⊂ Θ centered at θ0. We restrict ourselves to the exponential models

(3.7) which satisfy (R2), i.e. for which the last condition holds and the gradients (5.39)

satisfy (2.8) and (2.9).

Theorem 5.4 Let for some α ∈ R the estimator θ̂n ∼ 〈ψ, ϕi〉 defined by (5.7) and

(5.23) satisfy (R2) and the conditions (5.27) and (5.28) in a homogeneous regression model

with exponential parent family (3.2). Further, let

Σn :=
1

n

n∑

i=1

σ2
i (α) (I(φi + α))2 φiφ̇

′
i → Σ (5.40)

and

Φn :=
1

n

n∑

i=1

eb̃i(α)(I(φi + α))2φi φ̇
′
i → Φ, (5.41)

where the matrices Σ and Φ are positive definite. Finally, let

1√
n

n∑

i=1

ψ(Yi − µ(φi + α)) I(φi + α) φ̇i
L→ N(0,Σ). (5.42)

If θ̂
(α)
n is consistent then it is asymptotically normal in the sense

√
n(θ̂(α)

n − θ0)
L→ N(0, Φ−1Σ Φ−1). (5.43)

Proof: Since θ̂
(α)
n is consistent and satisfies (5.23), it is adapted to the model under

consideration. By Proposition 5.3, (5.40) and (5.41), it satisfies the regularity conditions

(R1), (R3) and (R4+). The remaining regularity condition (R2) is assumed. Since (5.42)

means in the present situation the same as (2.17) all assumptions of Theorem 2.3 are satisfied.

Therefore (5.43) follows from Theorem 2.3.
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Let us look at the special case

X ⊂ R
m, φ(x, θ) = x′θ and α = 0, (5.44)

i. e. the L2-estimator θ̂
(0)
n of a true parameter θ0 ∈ Θ = R in a generalized linear model with

natural link function. Then (3.1) reduces to

G(y|i, θ) ∼ g(y|i, θ) = ex
′

iθ−c(x′

iθ), θ ∈ R
m, i ∈ N, (5.45)

further φi = x′
iθ0 in (5.27), the gradients of (5.39) are given by formula

φ̇i = φ̇(xi, θ0) = xi, θ0 ∈ R
m, i ∈ N, (5.46)

and the ψ-function is linear, ψ(y) = y. The conditions (5.28), (5.29) and (R2) take place if

sup
i∈N

‖xi‖ <∞. (5.47)

Further, (5.37) implies that

eb̃i(0) = 1 and σ2
i (0) = I(x′

iθn), i ∈ N,

in the conditions (5.40), (5.41) of Theorem 5.4 so that they reduce to

Σn =
1

n

n∑

i=1

(I(x′
iθ0))

3xix
′
i → Σ (5.48)

and

Φn =
1

n

n∑

i=1

(I(x′
iθ0))

2xix
′
i → Φ (5.49)

for some positive definite matrices Σ and Φ. The remaining condition of Theorem 5.4 takes

on the form
1√
n

n∑

i=1

(Yi − µ(x′
iθ0)) I(x′

iθ0)xi
L→ N(0,Σ) (5.50)

for Σ figuring in (5.48). We shall show that (5.50) follows from (5.47) and (5.48). Indeed,

then ϑi = x′
iθ0 and Ii = I(ϑi) are uniformly bounded for i ∈ N. Hence if t → 0 then,

uniformly for i ∈ N,

c(ϑi + t Ii) = c(ϑi) + µ(ϑi) t Ii + I2
i

t2

2
+ o(t2).

Further, for every ξ ∈ R,

E exp{(Yi − µ(ϑi)) Ii ξ/
√
n} = c(ϑi + ξ Ii/

√
n) − c(ϑi) ξ Ii/

√
n.
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It follows from here that the moment generating functions Mn(τ) = E exp{Z ′
nτ}, τ =

(τ1, . . . , τm) ∈ R
m, of the random variables

Zn =
1√
n

n∑

i=1

(Yi − µ(ϕi)) Ii xi, n ∈ N,

converge under (5.47) and (5.48) pointwise to

M(τ) = exp

{
1

2
τ Σ τ ′

}
,

which suffices for (5.50). Therefore the following statement holds.

Corollary 5.5 Let a generalized linear model (5.45) satisfy (5.47) – (5.49). If the L2-

estimator θ̂
(0)
n of a true parameter θ0 ∈ R

m is consistent, then it is asymptotically normal in

sense of (5.43), where Σ and Φ are the matrices appearing in (5.48) and (5.49).

Note that under the weak convergence of probability measures

1

n

n∑

i=1

δxi
⇒ µ

of Dirac’s probability measures δxi
on the regressor space X , the conditions (5.48), (5.49)

hold for

Σ =

∫

X

I(x′θ0)
2xx′µ(dx), Φ =

∫

X

I(x′θ0)xx′µ(dx).

Similarly, the conditions (5.40), (5.41) hold but the formulas for the limit matrices are more

complicated. Let us also note that in the generalized linear models of Corollary 5.5, none of

the estimators θ̂
(α)
n , α ∈ R, is in general the MLE. Below is studied a special where θ̂

(0)
n is

the MLE.

A similar asymptotic normality result as presented by Corollary 5.5 has been proved for the

MLE in generalized linear models with natural link functions in Theorem 3 of Fahrmeir and

Kaufmann [5]. The conditions of that theorem are weaker but less easily verifiable than the

conditions (5.47) – (5.49) of Corollary 5.5, and the theorem does not provide the asymptotic

variance-covariance matrix. Therefore the two results are not directly comparable.

The power of Theorem 2.3 has been verified in Section 4 by an application to the linear

and nonlinear regression models. Another verification of this power can be obtained by an

application to the model with observations Yi with distributions from a natural exponential

family. In this special case the L2+α-estimators

ϑ̂(α)
n ∼ 〈t eαt; ċ(ϑ+ α)〉, α ∈ R, (5.51)
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estimate a true value ϑ0 ∈ R of the parameter of these distributions and ϑ̂
(0)
n is the MLE. The

estimators (5.51) are special cases of estimators (5.24) obtained for Θ = R and φ(x, θ) = θ,

so that φi = ϑ0 and φ̇i = 1 in the formulas above. Consequently, in (5.33) and (5.35).

bi(α) = c(ϑ0 + 2α) − c(ϑ0) − 2αċ(ϑ0 + α) =: b(α),

b̃i(α) = c(ϑ0 + α) − c(ϑ0) − αċ(ϑ0 + α) =: b̃(α),

and in (5.37)

σ2
i (α) = eb(α)

[
I(ϑ0 + 2α) + (µ(ϑ0 + 2α) − µ(ϑ0 + α))2

]
=: σ2(α).

Therefore (5.48) and (5.49) hold for

Σn = Σ = σ2(α) (I(ϑ0 + α))2

and

Φn = Φ = eb̃(α)(I(ϑ0 + α))2,

so that in (5.43) we have

Φ−1Σ Φ−1 =
ec(ϑ0+2α)−c(ϑ0)[I(ϑ0 + 2α) + (µ(ϑ0 + 2α) − µ(ϑ0 + α))2]

[ec(ϑ0+α)−c(ϑ0)I(ϑ0 + α)]2
= s2(α). (5.52)

The assumptions of Theorem 5.4 hold except the consistency which is clarified in the next

proposition where we assume T = R for simplicity.

Proposition 5.6 For every exponential family under consideration, the estimators ϑ̂
(α)
n

defined by (5.51) are consistent, with values uniquely given by the formula

µ(ϑ̃(α)
n + α) =

∑n
i=1 Yi e

αYi

∑n
i=1 e

αYi
, n ∈ N, (5.53)

for µ(t) = ċ(t) strictly increasing on R.

Proof: Let α ∈ R and n ∈ N be arbitrary fixed. By definition, ϑ̂
(α)
n minimizes

Mn(ϑ) =
n∑

i=1

ρ(Yi − µ(ϑ)), (5.54)

where ρ(t) is given by (5.8). If α = 0 then the assertion is obvious. Suppose that α 6= 0.

Since µ(t) is infinitely differentiable on R, we can consider the derivatives

Ṁn(ϑ) =
d

dϑ
Mn(ϑ) = µ̇(ϑ)

n∑

i=1

ψ(Yi − µ(ϑ))

= µ̇(ϑ) e−αµ(ϑ)

n∑

i=1

(Yi − µ(ϑ)) e−αYi
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and

M̈n(ϑ) =
d2

dϑ2
Mn(ϑ) = µ̈(ϑ)

n∑

i=1

ψ(Yi − µ(ϑ)) + (µ̇(ϑ))2Zn(ϑ),

where

Zn(ϑ) =
n∑

i=1

ψ̇(Yi − µ(ϑ))

= α

n∑

i=1

ψ(Yi − µ(ϑ)) +
n∑

i=1

eα(Yi−µ(ϑ)).

By (5.18), µ̇(ϑ) is the Fisher information I(ϑ) > 0 for all ϑ ∈ R. Therefore ϑ̂
(α)
n given by

(5.53) is the only solution of the equation Ṁn(ϑ) = 0. Further,

M̈n(ϑ̂(α)
n ) = (I(ϑ̂(α)

n ))2Zn(ϑ̂α
n)

= (I(ϑ̂(α)
n ))2

n∑

i=1

eα(Yi−µ(ϑ̂
(α)
n )) > 0,

so that ϑ̂
(α)
n is a unique local minimum of Mn(ϑ) on R. We shall prove the relation

Mn(ϑ) ≥Mn(ϑ̂(α)
n ), ϑ ∈ Θ, (5.55)

which implies that ϑ̂
(α)
n is a unique global minimum of Mn(ϑ) on R, i. e. that the second half

of Proposition 5.6 is valid. By (5.54) and (5.8), for every ϑ ∈ R,

Mn(ϑ) =
1

α2

(
1 − Γn(ϑ)

n∑

i=1

eαYi

)

where

Γn(ϑ) =
(
1 + α

[
µ(ϑ+ α) − µ(ϑ̂(α)

n + α)
])
e−αµ(ϑ+α).

Therefore (5.55) holds if

Γn(ϑ) ≤ Γn(ϑ̂(α)
n ) = e−αµ(ϑ̂

(α)
n +α), θ ∈ Θ,

i. e. if ∆n(ϑ) = µ(ϑ+ α) − µ(ϑ̂
(α)
n + α) satisfies the relation

1 + α∆n(ϑ) ≤ eα∆n(ϑ), ϑ ∈ Θ.

This completes the proof of the second half of Proposition 5.6. The first part (consistency

of ϑ̂
(α)
n ) follows, via the strict monotonicity and continuity of µ(t), from the fact that, by

(5.53) and the law of large numbers,

µ(ϑ̂(α)
n + α)

P→ µ(ϑ+ α) as n→ ∞.
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By combining Proposition (5.6) with what has been said before, we obtain the following

result.

Proposition 5.7 Assume T = R for the exponential family (5.10). The estimators

(5.51) of a true parameter ϑ0 ∈ R are explicitly given by formula (5.53). They are consistent

and asymptotically normal in the sense that, for all α ∈ R,

√
n(ϑ̂(α)

n − ϑ0)
L→ N(0, s2(α)) as n→ ∞, (5.56)

where s2(α) is given by (5.52).

The asymptotic normality result (5.56) was obtained from the theory of Section 2 under the

same generality as it can be obtained by a direct analysis of the concrete class of estimators

ϑ̂(α)
n = µ−1

(∑n
i=1 Yie

αYi

∑n
i=1 e

αYi

)
− α, α ∈ R. (5.57)

None of the assumptions of this theory imposed a superfluous restriction on the model or

α. Again, this verifies in some sense that the general theory is strong enough to deal with

concrete situations.

In the rest of section we study the exponential L2+α-estimators of parameters of two well

known exponential families.

Example 5.8 Let the family (3.2) be standard normal with a location parameter ϑ ∈ R.

Then

c(ϑ) =
ϑ2

2
, µ(ϑ) = ϑ, I(ϑ) = 1, ϑ ∈ R, (5.58)

and the dominating measure ν is the standard normal probability measure. By (5.57), the

exponential L2+α-estimates are given by the formula

ϑ̂(α)
n =

∑n
i=1 Yi e

αYi

∑n
i=1 e

αYi
− α, α ∈ R, (5.59)

and, by (5.52) and (5.58), s2(α) = 1 + α2. By Proposition 5.7, the estimators (5.59) are

asymptotically normal with asymptotic mean 0 and asymptotic variances 1 + α2. If instead

of the standard normal law f(y|ϑ0) under consideration, the observations are governed by

(1 − ε) f(y|ϑ0) + ε f(y|ϑ0, σ), 0 < ε < 1, (5.60)

where f(y|ϑ0, σ) is a normal density with location ϑ0 and scale σ > 0, then

b(ϑ0|α, ε) =
ε ϑ0σ(σ − 1) exp

{
1
2
[(ϑ0σ + α)2 − ϑ2

0]
}

(1 − ε) exp{2ϑ0α} + εσ exp
{

1
2

[
(ϑ0σ + α)2−ϑ2

0

]}

is the asymptotic bias of ϑ̂
(α)
n . By a suitable choice of α 6= 0, this bias can be held at a

considerably lower levels over an a priori expected domain of ϑ0 than is the level due to the

MLE ϑ̂
(0)
n .
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Example 5.9 Let the family (3.2) be Poisson with a parameter ϑ = lnλ ∈ R. Then

c(ϑ) = µ(ϑ) = I(ϑ) = eϑ, ϑ ∈ R, (5.61)

and the dominating measure ν on R is finite and discrete,

ν =
∞∑

k=0

δk
k!
,

where δk is the Dirac measure concentrating the mass 1 at the point k ∈ R. In this case, by

(5.57), the exponential L2+α-estimates are given by the formula

ϑ̂(α)
n = ln

∑n
i=1 Yi e

αYi

∑n
i=1 e

αYi
− α (5.62)

and, by (5.52) and (5.58),

s2(α) = exp
{
eϑ0+α(eα − 1) − ϑ0

} [
1 + eϑ0(eα − 1)2

]
. (5.63)

Therefore, by Proposition 5.7, the estimators defined by (5.62) are asymptotically normal

with asymptotic mean 0 and asymptotic variances (5.63). This means that

√
n
(
eϑ̂

(α)
n − eϑ0

)
= eϑ0

√
n
(
eϑ̂n−ϑ0 − 1

)

tends in law to

N
(
0, exp

{
eϑ0+α(eα+1) + ϑ0

} [
1 + eϑ0(eα − 1)2

])
,

i. e., that the exponential L2+α-estimators λ̂
(α)
n of λ0 = eϑ0 are asymptotically normal in the

sense √
n
(
λ̂(α)

n − λ0

)
L→ N

(
0, λ0 exp {λ0e

α(eα − 1)}
[
1 + λ0(e

α − 1)2
])
.

If instead of the Poisson distribution F (y|ϑ) under consideration the observations are dis-

tributed by

(1 − ε)F (y|ϑ) + εG(y), 0 < ε < 1, (5.64)

where

G(y) = ζ(2)−1

∞∑

k=1

1

k2
I(y > k)

and ζ(s), s > 1, is the Riemann function, then the asymptotic bias of the MLE ϑ̂
(0)
n is infinite

for arbitrarily small ε. Indeed, if Ỹi are observations i.i.d. by (5.64) then

E Ỹi = (1 − ε) eϑ0 + εζ(2)−1

∞∑

k=1

k

k2
= ∞.

On the other hand, the asymptotic bias b(ϑ0|α, ε) of every estimator ϑ̂
(α)
n with α < 0 satisfies

the relation

lim
ε↓0

b(ϑ0|α, ε) = 0 for every ϑ0 ∈ R.
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The results in the last two examples demonstrate that in the class of L2+α-estimators one can

find more robust alternatives to the L2-estimator (MLE). The price payed for the robustness

is a larger asymptotic variance when the observations are not contaminated.

6 Proof of Theorems 2.2 and 2.3

Unless otherwise explicitly stated, we consider in this section arbitrary model (1.1) and

M -estimator θ̂n ∼ 〈ψ;ϕi〉 where ψ can be decomposed as the difference (2.1) of two non-

decreasing functions ψ+ and ψ−. We suppose for simplicity that both these functions are

right-continuous. Then also their sum ψ± introduced in (2.2) and ψ itself are right con-

tinuous. We shall formulate a series of auxiliary statements leading to the proofs of the

Theorems 2.2 and 2.3. All statements refer to the concepts and conditions introduced in

Sections 1 and 2. Most of these statements are technical but some of them are interesting

also from the statistical point of view.

If ξ : R 7→ R is nondecreasing and right continuous then there exists unique measure µξ on

the Borel subsets of R associated with ξ and satisfying relation µ(a, b]) = ξ(b) − ξ(a) for

all real numbers a < b. If φ : R 7→ R is measurable then the Lebesgue-Stieltjes integral is

defined as the Lebesgue integral for the associated measure, e. g.
∫

(a,b]

φ(s) dξ(s) =

∫

(a,b]

φ(s)µξ(ds).

If η is another monotone right continuous function then the bivariate Lebesgue–Stieltjes

integral ∫

(a,b]2
φ(s, t) dξ(s) dη(t) (6.1)

can be defined by means of the associated measure µξ⊗µη on the Borel subsets of R
2 = R × R.

For locally bounded functions φ(s) (e. g. for linear combinations of monotone functions), and

for differences ξ(s) = ξ+(s)−ξ−(s) of two nondecreasing right-continuous functions, one can

define the Lebesgue–Stieltjes integral
∫

(a,b]

φ(s) dξ(s) =

∫

(a,b]

φ(s) dξ+(s) −
∫

(a,b]

φ(s) dξ−(s).

If η = η+ − η− is a similar difference then one can similarly extend the bivariate Lebesgue–

Stieltjes integrals (6.1). Using the bounded measurable function

φ(s, t) = I(a < t ≤ b) I(a < s ≤ t) = I(a < s ≤ b)I(s ≤ t ≤ b)

defined by means of the indicator function I(·), and employing equalities of the type
∫
I(a < s ≤ t) dξ(s) = ξ(t) − ξ(a),
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one obtains from the Fubini theorem the per partes rule
∫

(a,b]

η(s) dξ(s) +

∫

(a,b]

ξ(s−) dη(s) = ξ(b) η(b) − ξ(a) η(a) (6.2)

for Lebesgue–Stieltjes integrals. In this rule, ξ(s−) denotes the left continuous version of

ξ(s).

Our first statement is concerning the criterion function ρ satisfying according to (1.7) for all

y ∈ R the relation

ρ(y) = ρ(0) +

∫

(0,y]

ψ(s)ds. (6.3)

Proposition 6.1 For all y, t ∈ R holds the generalized Taylor formula

ρ(y + t) = ρ(y) + ψ(y) t+R(y, t) (6.4)

where the remainder is

R(y, t) =

∫ y+t

y

(y + t− s) dψ(s). (6.5)

Proof: By (1.7) and the per partes rule (6.2),

ρ(y + t) − ρ(y) =

∫

(y,y+t]

ψ(s) ds

= ψ(y) t+

∫

(y,y+t]

(y + t− s) dψ(s).

By applying the generalized Taylor formula (6.4) in (1.3) we obtain

Mn(θ) −Mn(θn) =
1

n

n∑

i=1

[ρ(Yi − ϕi(θ)) − ρ(Yi − ϕi(θ0))]

=
1

n

n∑

i=1

ψ(Xi) ti +
1

n

n∑

i=1

R(Xi, tk) (6.6)

where Xi = Yi − ϕi(θ0) and ti = ϕi(θ) − ϕi(θ0). The first sum in the last row is linear in

ti. Therefore we are interested in the behavior of the expected remainders ER(Xi, t) in a

neighborhood of t = 0.

Proposition 6.2 Let the regularity condition (R3) hold and let Xi = Yi−ϕi(θ0). Then

the expectations ER(Xi, t) are locally quadratic in the sense that, for the functions hi :

(−τ0, τ0) 7→ R introduced in (R3) and all 0 < τ < τ0

sup
|t|≤τ

∣∣∣∣ER(Xi, t) − hi(0)
t2

2

∣∣∣∣ ≤
t2

2
ω(hi, τ). (6.7)
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Proof: Consider t ∈ (−τ0, τ0). If (R3) holds then, by the Fubini theorem and (6.4),

ER(Xi, t) =

∫ t

0

Eψ(Xi + s) ds− tEψ(Xi)

=

∫ t

0

[Hi(s) −Hi(0)]ds

=

∫ t

0

∫ s

0

hi(u)duds =

∫ t

0

(t− u)hi(u)du

=

∫ t

0

(t− u)hi(0)du+

∫ t

0

(t− u)[hi(u) − hi(0)]du.

The rest is clear from here and from the definition of ω(hi, τ).

The next result estimates fluctuations of the remainders R(Xi, t) around ER(Xi, t).

Proposition 6.3 If the regularity condition (R4+) holds then for τ0, q and κ considered

in (R4+), and for Xi = Yi − ϕi(θ0) and all 0 < τ < τ0,

sup
n∈N

1

n

n∑

i=1

E sup
|t|≤τ

(R(Xi, t))
2 < κ τ 2+q. (6.8)

Proof: Let y ∈ R be arbitrary fixed. By substitution y + t 7→ t and the convention (1.8),

it follows from (6.5)

R(y, t) =

∫

(0,t]

(t− s) dψ(s+ y) =

∫

(t−,t+]

|t− s| dψ(s+ y)

where t− = min{0, t} and t+ = max{0, t}. Hence for every t ∈ R

|R(y, t)| =

∣∣∣∣
∫

(t−,t+]

|t− s| dψ+(s) −
∫

(t−,t+]

|t− s| dψ−(s)

∣∣∣∣

≤
∣∣∣∣
∫

(t−,t+]

|t− s| dψ±(y + s)

∣∣∣∣ (cf. 2.2)

≤ |t|
[
ψ±(y + t+) − ψ±(y − t−)

]

≤ |t|
[
ψ±(y + |t|) − ψ±(y − |t|)

]
.

Consequently,

sup
|t|≤τ

(R(y, t))2 ≤ t2
[
ψ±(y + τ) − ψ±(y − τ)

]2

and (6.8) follows from (R4+).

Next follows an important technical result which is sharper than a similar result in [21]

and which is proved by a different method. Consider closed balls Bγ ⊂ R
m of diameters
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0 < γ ≤ δ, δ ≤ ∞, centered at 0 ∈ R
m, and a sequence S1(u), S2(u), . . . of continuous

independent zero-mean random processes (Si(u) : u ∈ Bδ) with S1(0) = S2(0) = · · · = 0.

For given 0 < γ ≤ δ and n ∈ N, we shall estimate the expected modulus of continuity

Ωn(γ) = E sup
u∈Bγ

∣∣∣∣∣
1√
n

n∑

i=1

Si(u)

∣∣∣∣∣ (6.9)

of the normalized sum at u = 0. A useful estimate will be obtained by means of the theory

of empirical processes, in particular by the results in Chapter 2 of [30]. We suppose that for

some δ > 0

|Si(u) − Si(ũ)| ≤ Λi‖u − ũ‖ for all u, ũ ∈ Bδ, i ∈ N, (6.10)

and

sup
n∈N

E
1

n

n∑

i=1

L2
n <∞ for Ln =

(
1

n

n∑

i=1

Λ2
i

)1/2

(6.11)

Set

Γn(γ) = sup
u∈Bγ

[
1

n

n∑

i=1

S2
i (u)

]1/2

.

Proposition 6.4 Suppose that S1(u), S2(u), ... are continuous , independent zero-mean

stochastic processes continuous on Bδ with Si(0) = 0. If the condition (6.10) and (6.11) hold

then there exists a universal constants K and κ(d) such that for γ ≤ δ

E sup
‖u‖≤γ

∣∣∣∣∣
1√
n

n∑

i=1

Si(u)

∣∣∣∣∣ ≤ γE

[
LnΓ

(
d,

2Γn(γ)

δLn

)]
(6.12)

and

E sup
‖u‖≤δ

∣∣∣∣∣
1√
n

n∑

i=1

Si(u)

∣∣∣∣∣ ≤ δΓ (d, 2) ELn (6.13)

where

Γ(d, s) = 2K

∫ s

0

√
|ln(κ(d)td)|dt.

For every 0 < α < 1 there exists a constant C(α, d) such that

E sup
‖u‖≤γ

∣∣∣∣∣
1√
n

n∑

i=1

Si(u)

∣∣∣∣∣ ≤ C(α, d)γαΓα(d, γ)EL1−α
n . (6.14)

Proof: Suppose ε1, ..., εn are independent binary random variables taking on the values 1

and −1 with equal probability 1/2. Assume that for n = 1, 2, ... the set An ⊂ R
n is bounded

with respect to the Euclidean distance ‖·‖n on R
n. Denote by N(ε, An) the minimal number
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of balls of radius ε > 0 covering An. Then by Corollary 2.2.8 in [30] there is a universal

constant K such that

E sup
(a1,...,an)∈An

∣∣∣∣∣

n∑

i=1

aiεi

∣∣∣∣∣ ≤ K

∫ ∞

0

√
lnN

(ε
2
, An

)
dε. (6.15)

The symmetrization Lemma 2.3.6 of [30] yields

E sup
‖u‖≤γ

∣∣∣∣∣
1√
n

n∑

i=1

Si(u)

∣∣∣∣∣ ≤ E

(
Eε sup

‖u‖≤γ

∣∣∣∣∣
1√
n

n∑

i=1

Si(u)εi

∣∣∣∣∣

)
(6.16)

where the ε1, ..., εn are independent Bernoulli variables which are independent of the pro-

cesses S1(u), ..., Sn(u) and take on the values 1 and −1 with probability 1/2. The symbol

Eε denotes the expectation w.r.t. ε1, ..., εn. To estimate the right hand term we suppose

that the processes S1(u), ..., Sn(u) and random variables ε1, ..., εn are defined on a product

space, say (Ω1 ×Ω2,F1 ⊗F2,P1 ×P2) where the processes depend on ω1 ∈ Ω1 and the binary

variables depend on ω2 ∈ Ω2. Fix ω1 ∈ Ω1 and introduce

An,γ(ω1) =

{
1√
n
S1(u, ω1), ...,

1√
n
Sn(u, ω1),u ∈ Bγ

}
⊆ R

n.

For fixed ω1 we estimate the entropy number appearing in (6.15). The Lipschitz condition

(6.10) implies that for every ε-net for Bγ there is an Lnε−net for An,γ(ω1). For γ ≤ δ the

entropy number of Bγ does not exceed κ(d)(γ
ε
)d where κ(d) is a constant depending on d

only. As the diameter of An,γ does not exceed, 2Γn(γ) we have

N
(ε

2
, An,γ

)
≤
{
κ(d)

[
γ
ε

]d
(2Ln)d for ε ≤ 4Γn(γ)

1 for ε > 4Γn(γ)
(6.17)

and

E sup
(a1,...,an)∈An,δ

∣∣∣∣∣

n∑

i=1

aiεi

∣∣∣∣∣ ≤ K

∫ 4Γn(γ)

0

√√√√
∣∣∣∣∣ln
[
κ(d)

(
2Lnγ

ε

)d
]∣∣∣∣∣dε

= K2δLn

∫ 2Γn(γ)/(δLn)

0

√
|ln(κ(d)td)|dt.

To complete the proof we set

Γ(d, s) = 2K

∫ s

0

√
|ln(κ(d)td)|dt,

and obtain (6.12). To prove (6.13) it suffices to observe that the assumption (6.10) yields

Γn(γ)/(δLn) ≤ 1. Using the inequality

ln x ≤ x1−α

1 − α
for x ≥ 1 and 0 < α < 1
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we find a constant C(d, α) such that

2K

∫ s

0

√
|ln(κ(d)td)|dt ≤ C(d, α)s1−α,

which proves the statement (6.14).

In the next proposition we assume that the adaptation condition (2.3) and the regularity

conditions (R1), (R2) and (R4) hold. We introduce the local parameter

u = θ − θ0 ∈ Bδ = {u ∈ R
m : ‖u‖ ≤ δ}

where δ > 0 is the same as in the definition (2.7) of the ball B in (R2). In the proposition

we study the zero-mean version Dn(u) − EDn(u) of the random process (Dn(u) : u ∈ Bδ)

defined by

Dn(u) =
√
n (Mn(θ0 + u) −Mn(θ0)) . (6.18)

To simplify formulas we use the notations

ϕi = ϕi(θ0), ξi(u) = ϕi(θ0 + u) − ϕi, Xi = Yi − ϕi, ϕ̇i = ϕ̇i(θ0). (6.19)

By (1.3) and (6.4),

Dn(u) =
1√
n

(
n∑

i=1

[ρ(Xi − ξi(u)) − ρ(Xi)]

)

=
1√
n

n∑

i=1

ψ(Xi) ξi(u) +
1√
n

n∑

i=1

Ri(u)

where we put for simplicity

Ri(u) = R(Xi, ξi(u)), u ∈ Bδ.

It follows that

Dn(u) = Ln(u) + Dn(u) + Rn(u), u ∈ Bδ,

where the linear term Ln, deviation Dn and remainder Rn are given by

Ln(u) =
1√
n

n∑

i=1

ψ(Xi) (ϕ̇′
iu), (6.20)

Dn(u) =
1√
n

n∑

i=1

ψ(Xi)[ξi(u) − ϕ̇′
iu],

Rn(u) =
1√
n

n∑

i=1

Ri(u).
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Since θ̂n is adapted, (2.3) implies ELn(u) = EDn(u) = 0, so that

Dn(u) − EDn(u) = Ln(u) + Dn(u) + Sn(u), (6.21)

where

Sn(u) =
1√
n

n∑

i=1

Si(u) for Si(u) = Ri(u) − ERi(u). (6.22)

Proposition 6.5 Let Bγ be a zero centered ball of radius γ and let the adaption condi-

tion (2.3) and the regularity conditions (R1), (R2) and (R4) hold. Then for every 0 < α < 1

and the above considered processes Ln(u), Dn(u), Sn(u) defined on Bδ there exist constants

c0, c1, c2 such that, for all n ∈ N,

E sup
u∈Bγ

|Ln(u)| ≤ c0γ if 0 < γ ≤ δ, (6.23)

E sup
u∈Bγ

|Dn(u)| ≤ c1γ
2 if 0 < γ ≤ δ, (6.24)

E sup
u∈Bγ

|Sn(u)| ≤ c2γ if 0 < γ ≤ δ. (6.25)

If in addition (R4+) holds then for every 0 < α < 1 there exist a constants c3 and q > 0

such that, for all n ∈ N,

E sup
u∈Bγ

|Sn(u)| ≤ c3γ
1+αq/2 if 0 < γ ≤ δ.

Proof: The regularity condition (2.8) implies

|ϕi(θ0 + u) − ϕi(θ0)| ≤ λ ‖u‖ ≤ λγ for γ ≤ δ (6.26)

and

ϕi(θ0 + u) − ϕi(θ0) − ϕ̇′
iu =

∫ 1

0

[ϕ̇′
i(θ0 + su) − ϕ̇′

i(θ0)]uds. (6.27)

Hence by the Lipschitz continuity of ϕ̇i required in (2.9)

|ϕi(θ0 + u) − ϕi − ϕ̇′
iu| ≤ ‖u‖

∫ 1

0

λ ‖u‖ sds

=
λ

2
‖u‖2 . (6.28)

By the definition of Ln(u), for every γ ≤ δ

E sup
u∈Bγ

|Ln(u)| ≤ γE

∥∥∥∥∥
1√
n

n∑

i=1

ψ(Xi) ϕ̇i

∥∥∥∥∥ .
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By assumption (2.3) we have Eψ(Xi) = 0. Hence it follows from the independence of Xi that

(
E

∥∥∥∥∥
1√
n

n∑

i=1

ψ(Xi) ϕ̇i

∥∥∥∥∥

)2

≤ 1

n

n∑

i=1

‖ϕ̇i‖2
Eψ2(Xi).

We see from (3.10) and (2.5) that (6.23) holds for c0 =
√
λC, where λ is the constant figuring

in (3.10) and C is the supremum in (2.5). Similarly, by the definition of Dn(u) and (6.28),

(
E sup

u∈Bγ

|Dn(u)|
)2

≤ λγ2

2n

n∑

i=1

E(ψ(Xi))
2.

To prove (6.25) we shall apply Proposition 6.4. The independent zero-mean processes (Si(u) :

u ∈ Bγ), i ∈ N, satisfy all assumptions of Proposition 6.4. Indeed, since ξi(u) = ϕi(θ0 +

u) − ϕi, it holds Si(0) = 0. Using similar arguments as in the proof of Proposition 6.3 we

get that the modulus of the function

|t− s|I(t− < s ≤ t+) − |t̃− s|I(t̃− < s ≤ t̃+)

is for every t, t̃ ∈ R bounded above by |t − t̃|. Therefore using similar arguments as in the

mentioned proof, we obtain that for all t, t̃ ∈ (−τ, τ)
∣∣R(y, t) −R(y, t̃)

∣∣ ≤ |t− t̃|
[
ψ±(y + τ) − ψ±(y − τ)

]
.

It follows from here that the processes (Ri(u) : u ∈ Bγ) satisfy for all u, ũ ∈ Bγ the

inequalities

|Ri(u) −Ri(ũ)| ≤
[
ψ±(Xi − ϕi + τi) − ψ±(Xi − ϕi − τi)

]
|ξi(u) − ξi(ũ)|

where

τi = τi(u, ũ) = max {|ξi(u)|, |ξi(ũ)|} .

We get from (6.26) τi(u, ũ) ≤ λδ, so that the monotonicity of ψ± implies

|Ri(u) −Ri(ũ)| ≤ Zi|ξi(u) − ξi(ũ)|

= Zi

∣∣∣∣
∫ 1

0

[ϕ̇i(θ0 + ũ + s(u − ũ))]′[u − ũ]ds

∣∣∣∣

where

Zi = ψ±(Xi − ϕi + λδ0) − ψ±(Xi − ϕi − λδ0).

Hence by (6.10)

|Ri(u) −Ri(ũ)| ≤ λZi ‖u − ũ‖ .

Thus the zero-mean versions Si(u) = Ri(u) − ERi(u) satisfy the inequalities

|Si(u) − Si(ũ)| ≤ Z̃i ‖u − ũ‖ where Z̃i = λZi + λEZi.
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Note that

E(Z̃i)
2 ≤ 4λ2

E(Zi)
2. (6.29)

The statement (6.25) now follows from (6.13) with

ELn = sup
n

E

(
1

n

n∑

i=1

(Z̃i)
2

)1/2

≤ 2λ2

(
1

n

n∑

i=1

EZi
2

)1/2

because (R4) guarantees that the right-hand terms are bouded by a constant.

In the following result we use the above considered ball Bδ, and also similar balls Bγ centered

at 0 ∈ R
m with arbitrary γ > 0.

Proposition 6.6 (van der Vaart and Wellner). Let θ̂n be consistent. If there exist

constants 0 < δ0 ≤ δ and κ1, κ2 > 0 such that

lim inf
n→∞

inf
u∈Bδ0

(
1√
n

EDn(u) − κ1‖u‖2

)
≥ 0 (6.30)

and

lim sup
n→∞

E sup
u∈Bγ

|Dn(u) − EDn(u)| ≤ κ2γ for all 0 < γ ≤ δ0 (6.31)

then the estimator θ̂n under consideration is
√
n-consistent in the sense of (1.11).

Proof: See Theorem 3.2.5 of [30].

Proposition 6.7 Let the estimator satisfy the adaption condition 2.3, the regularity

conditions (R2)-(R4) and the condition (2.14) of Theorem (2.3). Then for every u ∈ Bδ and

the matrix Φn defined in (2.14),

sup
u∈Bδ

∣∣∣∣
1√
n

EDn(u) − 1

2
u′Φnu

∣∣∣∣ ≤
(λδ)2

2n

n∑

i=1

ω(hi, λδ), (6.32)

where λ is the constant from the regularity condition (2.9). Furthermore, (6.30) holds for

some δ0 and some κ1 > 0.

Proof: By (6.21),

1√
n

EDn(u) − 1

2

n∑

i=1

hi(0) ξ2
i (u) =

1

n

n∑

i=1

[
ER(Yi − ϕi, ξi(u)) − 1

2
hi(0)ξ2

i (u)

]
,

where ‖ξi(u)‖ ≤ λδ. Relation (6.32) follows from here and from Proposition 6.2. To complete

the proof we note that by (6.28) and (a− b)2 ≤ 2a2 + 2b2 it holds

ξ2
i (u) ≥ (ϕ̇i(u))2 − 1

2

(
λ

2
‖u‖2

)2

.



On
√
n–Consistency and Asymptotic Normality of . . . 47

Proof of Theorem 2.2 Clear from Propositions 6.5-6.7. �

Introduce

D̃n(v) =
√
nDn(v/

√
n), L̃n(v) =

√
nLn(v/

√
n)

and, similarly, also D̃n(v), R̃n(v) and S̃n(v) = R̃n(v)−ER̃n(v), for v ∈ Br and all sufficiently

large n.

Proposition 6.8 If all assumptions of Proposition 6.5 hold then for every closed ball

Br,

lim
n→∞

E sup
v∈Br

|D̃n(v)| = lim
n→∞

E sup
v∈Br

|S̃n(v)| = 0. (6.33)

Consequently,

sup
v∈Br

∣∣∣D̃n(v) − E D̃n(v) − L̃n(v)
∣∣∣ P→ 0 as n→ ∞. (6.34)

Proof: By Proposition 6.5, for all r > 0

E sup
v∈Br

|D̃n(v)| ≤
√
n c1

(
r√
n

)2

and E sup
v∈Br

|S̃n(v)| ≤
√
n c2

(
r√
n

)1+αq/2

.

(6.33) is clear from here.

In the following lemma we consider

Z = (Z1, . . . , Zm)′ ∼ N(0,Σ), (6.35)

where Σ is the matrix defined by (2.13).

Proposition 6.9 If the assumptions of Theorem 2.3 hold then for every r > 0, the

distribution of the process (L̃n(v) : v ∈ Br) tends weakly to the distribution of (v′Z : v ∈ Br).

Proof: For a fixed v ∈ Br, v′Σnv is the variance of the vector L̃n(v), where Σn is defined

in (2.13). By (2.17),

L̃n(v)
L→ N(0,v′Σv) as n→ ∞.

The stated convergence follows from the fact that L̃n(v) is linear in v.

In the next lemma and its proof, we consider the matrices Φ and Φn defined in (2.14) and

the random vector Z defined by (6.35).

Proposition 6.10 If the assumptions of Proposition 6.7 hold then for every closed ball

Br,

lim
n→∞

sup
v∈Br

∣∣∣∣E D̃n(v) − 1

2
v′Φv

∣∣∣∣ = 0 (6.36)
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and the process

D̃(v) =
1

2
v′Φv − v′Z , v ∈ R

m, (6.37)

is minimized at the unique Φ−1Z, i.e.

Φ−1Z = arg minv∈R
m D̃(v). (6.38)

Proof: By Proposition 6.7, for every Br under consideration

sup
v∈Br

∣∣∣∣E D̃n(v) − 1

2
v′Φnv

∣∣∣∣ ≤
(λr)2

2n

n∑

i=1

ω(hi, r/
√
n)

and, by (2.12), the right hand side tends to zero as n→ ∞. The relation (6.37) follows from

the easily verifiable formula

D̃(v) =
1

2

∥∥Φ1/2v − Φ−1/2Z
∥∥− Z ′ΦZ,

where Φ1/2 is the symmetric root of the matrix Φ.

Proof of Theorem 2.3. Define a random sequence

v̂n =
√
n(θ̂n − θ0), n ∈ N.

By definition of D̃n(v), for each n ∈ N,

ṽn = arg min
v∈R

m

D̃n(v). (6.39)

By Propsition 6.7, θ̂n is
√
n-consistent, so that the sequence of distributions of ṽn is tight. By

(6.34) and (6.36), for every closed ball Br, the distribution of the process (D̃n(v) : v ∈ Br)

converges weakly to the distribution of (D̃(v) : v ∈ Br) defined by (6.37) and satisfying

(6.38). By the argmax continuous mapping Theorem 3.2.2 of [30], this implies

v̂n
L→ Φ−1Z = N(0,Φ−1ΣΦ) as n→ ∞,

which proves (1.12) and (2.18). �
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