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ABSTRACT. In the context of Riemannian spin geometry it requires skilful handling to

define a Lie derivative of (Riemannian) spinor fields.

A Lie derivative of symplectic spinor fields in the direction of Hamiltonian vector fields can

be defined in a very natural way. It is the aim of this note to present this construction.

Furthermore, an immediate interpretation of this Lie derivative in the language of natural

ordering quantization is given.

Introduction

In the context of Riemannian spin geometry, the general question of constructing a Lie

derivative for spinor fields has been studied by several authors. Yvette Kosmann, for in-

stance, gave a geometric construction of a so-called metric Lie derivative of spinor fields in

[12]. This approach was extended by Jean–Pierre Bourguignon and Paul Gauduchon in [2].

The problem with it is to compare spinor fields for different metrics, since a diffeomorphism

φ transforms the metric tensor g to φ∗g and the (Riemannian) spinor fields over (M, g) will

be transformed into spinor fields over (M,φ∗g). Other studies focussed on relations between

Killing vector fields and Killing spinors such as [14] by Andrei Moroianu and [1] Dmitri Alek-

seevsky et al. A further result in this direction was the finding of Katharina Habermann

that conformal vector fields act by a certain kind of conformal Lie derivative on the space of

solutions of the twistor equation. In [7] she discussed the relevant Z2-graded algebra.

Studing the problem in the symplectic setting, one deals with symplectic spinor fields over

(M,ω) and (M,φ∗ω), respectively. In the case of a Hamiltonian vector field all spinor fields

live over the same symplectic manifold and a definition of a Lie derivative for symplectic

spinor fields in the direction of a Hamiltonian vector field in the classical way of defining a

Lie derivative for geometrical objects is possible. It is the aim of this note to present this

construction.
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Furthermore, an immediate interpretation of this Lie derivative in the language of natural

ordering quantization is given. This interpretation was inspired by Theorem 1 in the book [6]

of Maurice de Gosson. The observation is that there is a one-parameter group of metaplectic

operators, which is associated to a quadratic Hamiltonian and gives solutions of a Schrödinger

equation. A similar Schrödinger equation but without any spinorial context was established

in the book [5] of Victor Guillemin and Shlomo Sternberg. Moreover, a detailed discussion

of this Schrödinger equation can be found in the mentioned book of Maurice de Gosson. In

this paper, we put the Schrödinger equation in the context of symplectic spin geometry and

give a new and completely self-contained proof. Finally, the Schrödinger equation gives the

Lie derivative of constant symplectic spinor fields on R
2n in the direction of the Hamiltonian

vector field associated to the quadratic Hamiltonian.

Altogether, our computations also illustrate a remark of Bertram Kostant in his paper

on symplectic spinors. There, symplectic spinor fields were introduced in order to give

the construction of the half-form bundle and the half-form pairings in the context of ge-

ometric quantization. These half–densities are related to a certain line subbundle of the

symplectic spinor bundle, which sometimes is also known as metaplectic correction. And

Bertram Kostant notices that Hamiltonian vector fields clearly operate as Lie differentiation

on smooth symplectic spinor fields ([13] 5.5).
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during the stay of the first author at the Blekinge Technical University in Karlskrona (Swe-
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and many useful discussions.

1 Preparations

1.1 Some Notations

We consider the standard space R
2n with the Euklidean product 〈 , 〉. Further, let J be

the 2n× 2n-matrix given by

J =

(

0 −1

1 0

)

,

where 1 denotes the n×n-matrix 1 = diag(1, . . . , 1). Then the standard symplectic structure

ω0 on R
2n is defined to be

ω0( , ) = 〈J , 〉 .
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We remark that for local coordinates (p, q) = (p1, . . . , pn, q1, . . . , qn) on R
2n the standard

symplectic structure ω0 writes as

ω0 =
n
∑

j=1

dpj ∧ dqj .

For the canonical standard basis {a1, . . . , an, b1, . . . , bn} of R
2n one computes readily

ω0(aj, ak) = 0 , ω0(bj, bk) = 0 , and ω0(aj, bk) = δjk for j, k = 1, . . . , n .

This says that {a1, . . . , an, b1, . . . , bn} is a symplectic basis of the symplectic vector space

(R2n, ω0).

The symplectic group Sp(2n,R) is the group of real 2n× 2n-matrices leaving the standard

symplectic structure ω0 on R
2n invariant, i.e. the group Sp(2n,R) consists of those real

2n× 2n-matrices A satisfying the relation

A⊤JA = J . (1.1)

Thus, the Lie algebra sp(2n,R) of the symplectic group is given by the space of all real

2n× 2n-matrices B with

B⊤J + JB = 0 . (1.2)

Moreover, let

Bjk =









0
... 0

. . . 1 . . .

0
... 0









← j-th row

↑ k-th column

be the n × n-matrix with a 1 as the only nonvanishing entry at the j-th row and the k-th

column for j, k = 1, . . . , n. Using these n× n-matrices, we introduce the following 2n× 2n-

matrices

Xjk =

(

Bjk 0

0 −Bkj

)

, Yjk =

(

0 Bjk +Bkj

0 0

)

, and Zjk =

(

0 0

Bjk +Bkj 0

)

for j, k = 1, . . . , n. Now, it is a well known fact that the set

{Yjk and Zjk for 1 ≤ j ≤ k ≤ n , Xjk for 1 ≤ j, k ≤ n}

of 2n× 2n-matrices is a basis of the symplectic Lie algebra sp(2n,R).
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1.2 The Metaplectic Representation and symplectic Clifford multiplication

This section recalls well known basics on the metaplectic group and its representation. See

also [10, 15].

For the symplectic group, the subgroup Sp(2n,R) ∩ O(2n,R) ∼= U(n) is maximal compact.

This implies π1(Sp(2n,R)) ∼= Z for the fundamental group of Sp(2n,R). Consequently, the

symplectic group has a – up to isomorphism – uniquely determined covering group of order 2.

The metaplectic group Mp(2n,R) is defined to be this two-fold covering group of Sp(2n,R),

giving the exact sequence

ρ

1 → Z2 → Mp(2n,R) → Sp(2n,R) → 1

with double covering map ρ. For our computations, it is sufficient to know the differential

ρ∗ : mp(2n,R)→ sp(2n,R) of this double covering. Due to Crumeyrolle [3], the Lie algebra

of the metaplectic group is given by the set of all symmetric homogeneous polynomials of

degree 2 in the elements of R
2n. Thus, the set

{aj · ak and bj · bk for 1 ≤ j ≤ k ≤ n , aj · bk + bk · aj for 1 ≤ j, k ≤ n}

is a basis of the metaplectic Lie algebra mp(2n,R). This Lie algebra may be represented

as a Lie subalgebra of the symplectic Clifford algebra. So we write formally v · w for the

polynomial given by the two vectors v and w. Later, this notation will be consistent with

the Clifford multiplication of vectors and functions.

Then one proves (cf. [9] Proposition 1.2)

Lemma 1.1 The differential ρ∗ : mp(2n,R)→ sp(2n,R) is given by ρ∗(aj · ak) = −Yjk ,

ρ∗(bj · bk) = Zjk , and ρ∗(aj · bk + bk · aj) = 2Xjk for j, k = 1, . . . , n. �

The Schrödinger quantization prescription

1 ∈ R 7→ σ(1) := multiplication by i,

aj ∈ R
2n 7→ σ(aj) := multiplication by ixj , and

bj ∈ R
2n 7→ σ(bj) :=

∂

∂xj

for j = 1, . . . , n ,

where the operators σ(1), σ(aj), and σ(bj) for j = 1, . . . , n are continuous operators acting on

the Schwartz space S(Rn) of rapidly decreasing smooth functions on R
n, gives the symplectic



Lie derivative of symplectic spinor fields . . . 75

Clifford multiplication

µ : R
2n × S(Rn) → S(Rn)

(v, f) 7→ µ(v, f) = v · f := σ(v)f .

It is an elementary computation to prove the relation

v · w · f − w · v · f = −iω0(v, w)f

for vectors v, w ∈ R
2n and functions f ∈ S(Rn).

The metaplectic group has a natural representation acting on the Hilbert space L2(Rn). A

concrete realization of this representation is given by the following specification (cf. [10]).

Consider g(a) =

(

√

det(a),

(

a 0

0 (a⊤)−1

))

where a ∈ GL(n,R). Choosing a square root

of det(a), one has g(a) ∈Mp(2n,R) and

(L(g(a))f)(x) =
√

det(a)f(a⊤x) , x ∈ R
n . (1.3)

The set of all matrices τ(b) =

(

1 b

0 1

)

, where b⊤ = b and 1 denotes the n × n-matrix

1 = diag(1, . . . , 1) is simply connected. Thus, τ(b) can be understood as an element of

Mp(2n,R), such that t(0) is the unit element in Mp(2n,R). For τ(b) it is

(L(τ(b))f)(x) = e−
i
2
〈bx,x〉f(x) , x ∈ R

n . (1.4)

Choosing a square root i1/2, the element σ = (i1/2, J) can be considered as an element

σ ∈Mp(2n,R). Here, one obtains

(L(σ)f)(x) =

(

i

2π

)n
2

∫

Rn

ei〈x,y〉f(y)dy , x ∈ R
n . (1.5)

That gives L(σ) = i
n
2F−1, where F : L2(Rn)→ L2(Rn) denotes the usual Fourier transform.

Finally, we remark that the metaplectic group is generated by all these types of elements,

since the corresponding matrices in Sp(2n,R) already give the whole symplectic group.

With respect to this representation, the symplectic Clifford multiplication is Mp(2n,R)-

equivariant, i.e. we have the relation

µ(ρ(g)v, L(g)f) = L(g)µ(v, f)

for all g ∈Mp(2n,R), v ∈ R
2n, and f ∈ S(Rn).

The differential of the metaplectic representation is more interesting for our computations.

In order to be able to give precise calculations, we are going to deduce the differential detailly.
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Proposition 1.2 The differential L∗ : mp(2n,R)→ u(S(Rn)) of the metaplectic repre-

sentation L is given by

L∗(aj · ak)(f) = −iaj · ak · f

L∗(bj · bk)(f) = −ibj · bk · f

L∗(aj · bk + bk · aj)(f) = −i(aj · bk + bk · aj) · f

for j, k = 1, . . . , n.

Proof: Generally, the differential L∗ : mp(2n,R)→ u(S(Rn)) may be computed via

L∗(X)f =
d

dt
(L(exp(tX))f|t=0 .

We will make use of this formula in the progress of this proof.

First, the relation ρ(exp(tX)) = exp(tρ∗(X)) gives

ρ(exp(t aj · ak)) = exp(tρ∗(aj · ak)) = exp(−tYjk)

= exp

(

0 −t(Bjk +Bkj)

0 0

)

=

(

1 −t(Bjk +Bkj)

0 1

)

,

ρ(exp(t bj · bk)) = exp(tρ∗(bj · bk)) = exp(tZjk)

= exp

(

0 0

t(Bjk +Bkj) 0

)

=

(

1 0

t(Bjk +Bkj) 1

)

= J

(

1 −t(Bjk +Bkj)

0 1

)

J−1 ,

and

ρ(exp(t(aj · bk + bk · aj))) = exp(tρ∗(aj · bk + bk · aj)) = exp(2tXjk)

= exp

(

2tBjk 0

0 −2tBkj

)

=

(

exp(2tBjk) 0

0 exp(−2tBjk)
⊤

)

.

Thus,

exp(t aj · ak) = τ(−t(bjk +Bkj)) ,

exp(t bj · bk) = σ τ(−t(Bjk +Bkj))σ
−1,

and

exp(t(aj · bk + bk · aj)) = g(exp(2tBjk)) .
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Finally, this gives

(L∗(aj · ak)f)(x) =
d

dt
(L(exp(t aj · ak))f)(x)|t=0

=
d

dt
e

i
2
t〈(Bjk+Bkj)x,x〉f(x)|t=0

=
i

2
〈(Bjk +Bkj)x, x〉f(x)

= ixjxk f(x) = −iaj · ak · f(x) ,

(L∗(bj · bk)f)(x) =
d

dt
(L(exp(t bj · bk))f)(x)|t=0

=
d

dt
(L(σ) ◦ L(τ(−t(Bjk +Bkj))) ◦ L(σ)−1(f))(x)|t=0

= iF−1(xjxkF(f))(x)

= −i
∂2f

∂xj∂xk

(x) = −ibj · bk · f(x) ,

and

(L∗(aj · bk + bk · aj)f)(x) =
d

dt
(L(exp(t(aj · bk + bk · aj)))f)(x)|t=0

=
d

dt

√

det(exp(2tBjk)) f(exp(2tBjk)
⊤x)|t=0

=
1

2

d

dt
det(exp(2tBjk))|t=0 f(x) +

d

dt
f(exp(2tBjk)

⊤x)|t=0

=
1

2
Tr

(

d

dt
exp(2tBjk)|t=0

)

f(x) + df

(

d

dt
exp(2tBjk)

⊤
|t=0x

)

=
1

2
Tr(2Bjk)f(x) + df(2Bkjx)

= δjkf(x) + 2xj
∂f

∂xk

(x)

= xj
∂f

∂xk

(x) +
∂

∂xk

xjf(x) = −i(aj · bk + bk · aj) · f(x) ,

which are the asserted relations. �

1.3 Symplectic Spinor Fields

Let (M,ω) be a 2n-dimensional symplectic manifold and R the Sp(2n,R)-principal fibre

bundle of all symplectic frames over M . A metaplectic structure on (M,ω) is a principal fibre

bundle P over M having Mp(2n,R) as structure group together with a bundle morphism f :

P → R which is equivariant with respect to the homomorphism ρ : Mp(2n,R)→ Sp(2n,R).
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That is, we have the following commutative diagram

P ×Mp(2n,R) → P

ց

↓ f × ρ ↓ f M

ր

R× Sp(2n,R) → R

such that a metaplectic structure can be understood as a lift of the symplectic frame bundle

R with respect to the double covering ρ.

Generally, one has a cohomological obstruction to lifting the structure group of a principal

fibre bundle. The topological condition to the existence of a metaplectic structure is given

by c1(M) ≡ 0 mod 2.

If (M,ω) is a 2n-dimensional symplectic manifold with fixed metaplectic structure P then

the symplectic spinor bundle is defined to be the associated Hilbert bundle

Q = P ×L L
2(Rn).

Furthermore, we need the subbundle

S = P ×L S(Rn).

Observing that the symplectic Clifford multiplication is Mp(2n,R)-equivariant, it lifts to the

bundle level to a symplectic Clifford multiplication

µ : TM ⊗ S → S

X ⊗ ϕ 7→ µ(X,ϕ) = X · ϕ

on the symplectic spinor bundle S. Obviously, we have the relation

X · Y · ϕ− Y ·X · ϕ = −iω(X,Y )ϕ

for vector fields X,Y and spinor fields ϕ.

Furthermore, the L2(Rn)-scalar product on the fibres gives a canonical Hermitian scalar

product 〈 , 〉 on Q. Γ(Q) = Γ(S) denotes the space of all smooth symplectic spinor fields.

Moreover, any symplectic covariant derivative on the tangent bundle TM of (M,ω) induces

a covariant derivative on the symplectic spinor bundle Q, the spinor derivative

∇ : Γ(Q)→ Γ(T ∗M ⊗Q),

which in the following will also be denoted by ∇. If e1, . . . , en, f1, . . . , fn denotes any local

symplectic frame on (M,ω) then the spinor derivative writes as

∇Xϕ = X(ϕ) +
i

2

n
∑

j=1

{ej · ∇Xfj − fj · ∇Xej} · ϕ . (1.6)
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Here a covariant derivative ∇ : Γ(TM)→ Γ(T ∗M ⊗ TM) on a symplectic manifold (M,ω)

is called symplectic if and only if ∇ω = 0. The torsion of such a connection is defined to be

T∇(X,Y ) = ∇XY −∇YX − [X,Y ].

Then the connection is said to be torsionfree, if and only if T∇ ≡ 0.

Finally, for the Clifford multiplication, the spinor derivative, and the Hermitian scalar prod-

uct we have the following relations

(X · Y − Y ·X) · ϕ = −iω(X,Y )ϕ

〈X · ϕ, ψ〉 = −〈ϕ,X · ψ〉

∇X(Y · ϕ) = (∇XY ) · ϕ+ Y · ∇Xϕ

X〈ϕ, ψ〉 = 〈∇Xϕ, ψ〉+ 〈ϕ,∇Xψ〉

〈ϕ, ψ〉 = 〈ψ, ϕ〉.

1.4 Symplectic Spinor Fields and Diffeomorphisms

In order to define the Lie derivative of symplectic spinor fields we first illustrate how symplec-

tic spinor fields behave under diffeomorphisms. In Riemannian spin geometry, the problem

of transforming a spinor field under diffeomorphisms of the manifold is studied in detail in

the paper [4] of Dabrowski and Percacci. This method can be carried over to our situation

of symplectic spinor fields.

Let (M,ω) be a 2n-dimensional symplectic manifold and let φ be any orientation preserving

diffeomorphism of M . Then φ induces an isomorphism φ∗ of the Sp(2n,R)-principal frame

bundles Rφ and R according to the symplectic structures φ∗ω and ω

φ∗ : Rφ → R

(e1, . . . , en, f1, . . . , fn) 7→ (φ∗e1, . . . , φ∗en, φ∗f1, . . . , φ∗fn) .

This isomorphism maps symplectic frames with respect to φ∗ω to symplectic frames for the

symplectic structure ω.

Let (P, f) be a fixed metaplectic structure for (M,ω). Moreover, (P φ, fφ) denotes the meta-

plectic structure for (M,φ∗ω) such that φ∗ lifts to an isomorphism φ̃∗ : P φ → P , i.e. such

that the following diagramm commutes

φ̃∗

P φ → P

fφ ↓ ↓ f .

Rφ → R

φ∗
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Let Q = P ×L L
2(Rn) and Qφ = P φ ×L L

2(Rn) denote the corresponding symplectic spinor

bundles. A symplectic spinor field over (M,ω) is a section of the symplectic spinor bundle

Q, or, equivalently, an L-equivariant map ϕ : P → L2(Rn). Now, we define the transformed

symplectic spinor field (φ−1)∗ϕ by the equation

(φ−1)∗ϕ = ϕ ◦ φ̃∗ : P φ → L2(Rn) ,

where this spinor field also is regarded as an L-equivariant map. Then (φ−1)∗ϕ is a symplectic

spinor field over (M,φ∗ω) with respect to the metaplectic structure (P φ, fφ).

Obviously, φ is a symplectomorphism between the symplectic manifolds (M,ω) and (M,φ∗ω).

Thus, if ∇ is any symplectic covariant derivative on (M,ω) then ∇φ defined by

∇φ
(φ−1)∗X(φ−1)∗Y = (φ−1)∗(∇XY )

for vector fields X and Y gives a symplectic covariant derivative for (M,φ∗ω). This implies

that the induced spinor derivative in Qφ which we also denote by ∇φ satisfies

∇φ
(φ−1)∗X(φ−1)∗ϕ = (φ−1)∗(∇Xϕ).

Furthermore,

((φ−1)∗X) · ((φ−1)∗ϕ) = (φ−1)∗(X · ϕ)

holds true for the symplectic Clifford multiplication.

2 The Lie Derivative of Symplectic Spinor Fields

In this section, we will define the Lie derivative of symplectic spinor fields in the direction

of Hamiltonian vector fields. This can be done in a very natural way.

Let (M,ω) be a symplectic manifold. A vector field X over M is called Hamiltonian vector

field if there is a smooth function h : M → R such that

ω(X, ) = dh .

The Hamiltonian vector field given by a function h often is denoted also by Xh. Further, let

LX denote the Lie derivative in the direction of X. Then, the well known relation

LX = d ◦ iX + iX ◦ d

gives

LXω = d ◦ iXω + iX ◦ dω = d(ω(X, )) = ddh = 0.
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For the sake of simplicity, we assume M to be a closed manifold. For the Hamiltonian vector

fieldX, let {φt : M →M}t∈R be the one-parameter transformation group of diffeomorphisms

induced by X, i.e. we have

X(x) =
d

dt
φt(x)|t=0 for x ∈M .

Then, LXω = 0 gives

φ∗
tω = ω for t ∈ R.

Let Q and S denote the symplectic spinor bundles with respect to a fixed metaplectic

structure P over (M,ω).

In section 1.4 we gave a description how a diffeomorphism φ : M →M for a given symplectic

spinor field ϕ ∈ Γ(Q) over (M,ω) induces a symplectic spinor field (φ−1)∗ϕ over (M,φ∗ω).

Since φ∗
tω = ω, in our situation each (φt

−1)∗ϕ is a symplectic spinor field over (M,ω), i.e.

lies in Γ(Q). This allows the following definition.

Definition 2.1 The Lie derivative of the symplectic spinor field ϕ ∈ Γ(Q) in the direc-

tion of the Hamiltonian vector field X is defined to be

LXϕ =
d

dt
(φ−1

t )∗ϕ|t=0,

where {φt}t∈R denotes the one-parameter transformation group induced by X.

Recalling the construction of (φ−1)∗ : Γ(Q) → Γ(Qφ) in section 1.4, one sees that (φ−1)∗ is

determined only up to sign. For this reason we additionally require (φ−1
0 )∗ = idΓ(Q) for the

smooth family of mappings (φ−1
t )∗ : Γ(Q)→ Γ(Q).

Proposition 2.2 Let ∇ be any torsionfree symplectic connection on (M,ω) and let X

be any fixed Hamiltonian vector field. Then the Lie derivative of symplectic spinor fields in

the direction of X can be expressed in the following form

LXϕ = ∇Xϕ+
i

2

n
∑

j=1

{∇ej
X · fj −∇fj

X · ej} · ϕ for ϕ ∈ Γ(Q),

where e1, . . . , en, f1, . . . , fn denotes any local symplectic frame on (M,ω).

Proof: First, one has the relation

(LXω)(Y, Z) = X(ω(Y, Z))− ω([X,Y ], Z)− ω(Y, [X,Z])
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for vector fields X, Y , Z. Let e1, . . . , en, f1, . . . , fn be a local symplectic frame on (M,ω)

and ϕ ∈ Γ(Q) a symplectic spinor field. Then one obtains for the torsionfree symplectic

connection ∇

n
∑

j=1

{ω(∇ej
X, fj) + ω(ej,∇fj

X)} =
n
∑

j=1

{ω(∇Xej, fj)− ω([X, ej], fj)

+ω(ej,∇Xfj)− ω(ej, [X, fj])}

=
n
∑

j=1

{X(ω(ej, fj))− ω([X, ej], fj)− ω(ej, [X, fj])}

=
n
∑

j=1

(LXω)(ej, fj)

= 0, (2.7)

by LXω = 0.

Let s : U → P be a lift of the local symplectic frame s = (e1, . . . , en, f1, . . . , fn) : U → R

into the metaplectic structure. We consider the sections

st = ((φ−1
t )∗e1, . . . , (φ

−1
t )∗en, (φ

−1
t )∗f1, . . . , (φ

−1
t )∗fn) : φ−1

t (U)→ R for t ∈ R

and lifts st : φ−1
t (U)→ P of st, such that st gives a smooth family satisfying s0 = s. If ϕ is

locally given by ϕ|U = [s, u] then

(φ−1
t )∗ϕ|φ−1

t (U) = [st, u ◦ φt].

Furthermore, we have mappings gt : U ∩ φ−1
t (U)→Mp(2n,R) given by

st = sgt .

With

((φ−1
t )∗e1, . . . , (φ

−1
t )∗en, (φ

−1
t )∗f1, . . . , (φ

−1
t )∗fn) =

= (e1, . . . , en, f1, . . . , fn)

(

ω((φ−1
t )∗el, fk) ω((φ−1

t )∗fl, fk)

ω(ek, (φ
−1
t )∗el) ω(ek, (φ

−1
t )∗fl)

)

k,l=1,...,n

one derives

ρ(gt) =

(

ω((φ−1
t )∗el, fk) ω((φ−1

t )∗fl, fk)

ω(ek, (φ
−1
t )∗el) ω(ek, (φ

−1
t )∗fl)

)

k,l=1,...,n

,

where ρ : Mp(2n,R)→ Sp(2n,R) denotes the double covering. With

LXY =
d

dt
(φ−1

t )∗Y = [X,Y ]
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for all vector fields Y on M , one sees

d

dt
ρ(gt)|t=0 =

(

ω(LXel, fk) ω(LXfl, fk)

ω(ek,LXel) ω(ek,LXfl)

)

k,l=1,...,n

=

(

ω([X, el], fk) 0

0 ω(ek, [X, fl])

)

k,l=1,...,n

+

(

0 ω([X, fl], fk)

0 0

)

k,l=1,...,n

+

(

0 0

ω(ek, [X, el]) 0

)

k,l=1,...,n

.

Having LXω = 0, we conclude

ω(ek, [X, fl]) = X(ω(ek, fl))− ω([X, ek], fl) = −ω([X, ek], fl)

as well as

ω([X, fl], fk) = ω([X, fk], fl) and ω([X, ek], el) = ω([X, el], ek) .

We obtain

d

dt
ρ(gt)|t=0 =

n
∑

k,l=1

{

ω([X, el], fk)

(

Bkl 0

0 −Blk

)

+
1

2
ω([X, fl], fk)

(

0 Bkl +Blk

0 0

)

+
1

2
ω(ek, [X, el])

(

0 0

Bkl +Blk 0

)}

=
n
∑

k,l=1

{

ω([X, el], fk)Xkl +
1

2
ω([X, fl], fk)Ykl +

1

2
ω(ek, [X, el])Zkl

}

=
1

2

n
∑

k,l=1

ρ∗
(

ω([X, el], fk)(ak · bl + bl · ak) + ω(fk, [X, fl])ak · al

+ω(ek, [X, el])bk · bl
)

.

With
d

dt
ρ(gt)|t=0 = ρ∗

(

d

dt
gt|t=0

)

,

the definition of the Clifford multiplication, Proposition 1.2, equation (2.7), and relation
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(1.6), we compute on U

LXϕ =
d

dt
[st, u ◦ φt]|t=0

=
d

dt
[sgt, u ◦ φt]|t=0

=
d

dt
[s, L(gt)(u ◦ φt)]|t=0

= [s, L∗(
d

dt
gt|t=0)u+

d

dt
u ◦ φt|t=0]

= X(ϕ)−
i

2

n
∑

k,l=1

{ω([X, el], fk)(ek · fl + fl · ek)

+ω(fk, [X, fl])ek · el + ω(ek, [X, el])fk · fl} · ϕ

= X(ϕ)−
i

4

n
∑

k=1

{[X, ek] · fk + fk · [X, ek]− [X, fk] · ek − ek · [X, fk]} · ϕ

= X(ϕ)−
i

4

n
∑

k=1

{∇Xek · fk −∇ek
X · fk + fk · ∇Xek − fk · ∇ek

X

−∇Xfk · ek +∇fk
X · ek − ek · ∇Xfk + ek · ∇fk

X} · ϕ

= X(ϕ) +
i

2

n
∑

k=1

{ek · ∇Xfk − fk · ∇Xek} · ϕ

+
i

4

n
∑

k=1

{iω(ek,∇Xfk)− iω(fk,∇Xek)}ϕ

+
i

2

n
∑

k=1

{∇ek
X · fk −∇fk

X · ek} · ϕ

+
i

4

n
∑

k=1

{iω(∇ek
X, fk)− iω(∇fk

X, ek)}ϕ

= ∇Xϕ−
1

4

n
∑

k=1

X(ω(ek, fk))ϕ

+
i

2

n
∑

k=1

{∇ek
X · fk −∇fk

X · ek} · ϕ

= ∇Xϕ+
i

2

n
∑

k=1

{∇ek
X · fk −∇fk

X · ek} · ϕ ,

which proves the proposition. �

As it is well known, the commutator of two Hamiltonian vector fields is a Hamiltonian vector

field, too. Ideed, if X = Xh is given by the function h and Y = Xg by a function g then the
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commutator is the Hamiltonian vector field defined by the Poisson bracket of g and h, i.e.

[Xh, Xg] = −X{h,g} . (2.8)

For the Lie derivative in the direction of the commutator one has the following relation.

Corollary 2.3 Let ϕ ∈ Γ(Q) a symplectic spinor field and let X,Y are Hamiltonian

vector fields on (M,ω), then

L[X,Y ]ϕ = [LX ,LY ]ϕ.

Proof: Using (2.8) and Proposition 2.2, this proof is immediate. �

In case that M is not closed, all considerations hold true locally.

3 The Lie Derivative as Schrödinger Equation

This section illustrates how the Schrödinger equation for a quadratic Hamiltonian function

relates to the Lie derivative of a constant symplectic spinor field over R
2n.

3.1 The Schrödinger equation for quadratic Hamiltonians

We consider quadratic Hamiltonians H of the form H(z) = z⊤Qz for z ∈ R
2n, where Q is

any real 2n×2n-matrix. In general, one could add an additional absolut real term. But, this

is completely inessential, because it does not play any role for the dynamics of the system.

Or, physically speaking, the choice of the zero-energy-level is arbitrary.

Lemma 3.1 Let H : R
2n → R be a quadratic Hamiltonian on R

2n, which is given

by H(z) = z⊤Qz, where Q is any 2n × 2n-matrix. Then, there exists a 2n × 2n-matrix

A ∈ sp(2n,R) such that the Hamiltonian vector field XH of H is given by XH(z) = Az for

z ∈ R
2n.

Proof: Let γ(t) be a curve in R
2n with γ(0) = z and γ̇(0) = w. Then

dH(w)z =
d

dt
H(γ(t))|t=0 =

d

dt
(γ(t))⊤Q(γ(t))|t=0 = w⊤Qz + z⊤Qw = w⊤(Q+Q⊤)z .

On the other hand, the Hamiltonian vector field XH of H is given by

dH(w) = ω0(XH , w) = −〈Jw,XH〉 = −(Jw)⊤XH = −w⊤J⊤XH = w⊤JXH .

Thus, at any point z ∈ R
2n we have JXH(z) = (Q+Q⊤)z, and consequently

XH(z) = −J(Q+Q⊤)z = J⊤(Q+Q⊤)z = ((Q+Q⊤)J)⊤z .
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Taking A = −J(Q+Q⊤), we have XH(z) = Az for z ∈ R
2n. Furthermore, this A satisfies

A⊤J = −(Q+Q⊤)J⊤J = −(Q⊤ +Q)

as well as

−JA = −(Q+Q⊤) ,

which gives A⊤J + JA = 0, or equivalently, A ∈ sp(2n,R). �

Each quadratic Hamiltonian on R
2n can be written as a linear combination, i.e. as a sum of

multiples of the functions on R
2n given by the expressions

H1
jk(p, q) = pjpk ,

H2
jk(p, q) = qjqk , and

H3
jk(p, q) = pjqk =

1

2
(pjqk + qkpj) for j, k = 1, . . . , n .

We call these functions generating quadratic Hamiltonians.

Lemma 3.2 For the generating quadratic Hamiltonians the corresponding elements in

sp(2n,R) due to Lemma 3.1 are given in the following way.

(1) If H = H1
jk, then A = −Zjk = −Y ⊤

jk .

(2) If H = H2
jk, then A = Yjk = Z⊤

jk.

(3) If H = H3
jk, then A = X⊤

jk.

Proof:

(1) H = H1
jk is given by Q =

(

Bjk 0

0 0

)

. Thus

A = −

(

0 −1

1 0

)(

Bjk +Bkj 0

0 0

)

=

(

0 0

−Bjk −Bkj0

)

= −Zjk = −Y ⊤
jk .

(2) H = H2
jk is given by Q =

(

0 0

0 Bjk

)

, which implies

A = −

(

0 −1

1 0

)(

0 0

0 Bjk +Bkj

)

=

(

0 Bjk +Bkj

0 0

)

= Yjk = Z⊤
jk .
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(3) Finally, H = H3
jk is given by Q =

1

2

(

0 Bjk

Bkj 0

)

. This yields

A =

(

0 −1

1 0

)(

0 Bjk

Bkj 0

)

=

(

Bkj 0

0 −Bjk

)

= X⊤
jk .

�

Let H denote the Hamilton operator which is given by H via normal ordering quantization,

i.e. one obtains H by replacing in H formally the variable pj by the multiplication operator

ixj and qk by the operator
∂

∂xk

. Thereby “normal ordering” means that the expression

pjqk =
1

2
(pjqk + qkpj) is replaced be the operator

i

2

(

xj
∂

∂xk

+
∂

∂xk

xj

)

.

Corollary 3.3 For the quadratic Hamiltonian H let A be given by Lemma 3.1 and let H

be the Hamilton operator given via normal ordering quantization. Then, one has the relation

L∗ ◦ ρ
−1
∗ (A⊤) = −iH .

Proof: Since L∗ and ρ−1
∗ are linear and H is a linear combination of the generating quadratic

Hamiltonians, it suffices to prove the assertion for the generating quadratic Hamiltonians.

Then, by Lemma 1.1, Lemma 3.2, and Proposition 1.2 one has

L∗ ◦ ρ
−1
∗ (−Yjk) = ixjxk = −i(ixj)(ixk) = −iH for H = H1

jk,

L∗ ◦ ρ
−1
∗ (Zjk) = −i

∂2

∂xj∂xk

= −iH for H = H2
jk, and

L∗ ◦ ρ
−1
∗ (Xjk) = −

i

2

(

ixj
∂

∂xk

+
∂

∂xk

ixj

)

= −iH for H = H3
jk .

�

We consider a quadratic Hamiltonian H on R
2n with A ∈ sp(2n,R) given according to

Lemma 3.1. Then, we consider the family St ∈ Sp(2n,R) of symplectic matrices defined by

St = exp(tA⊤) for t ∈ R. We lift this family of symplectic matrices into the double covering

of Sp(2n,R). That is, we consider the family Mt ∈ Mp(2n,R) given by ρ(Mt) = St such

that M0 is the unit element in Mp(2n,R).

Definition 3.4 For fixed ψ0 ∈ S(Rn) we define ψ(t, x) := L(Mt)(ψ0)(x), where t ∈ R

and x ∈ R
n.

Furthermore let ψ(t) be the curve in S(Rn) given by ψ(t)(x) := ψ(t, x) for x ∈ R
n, i.e.

ψ(t) = L(Mt)ψ0.
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Proposition 3.5 ψ(t) satisfies the Schrödinger equation

d

dt
ψ(t)|t=0 = −iH(ψ0) .

Proof: We have

d

dt
ψ(t)|t=0 =

d

dt
L(Mt)(ψ0)|t=0 = L∗

(

d

dt
Mt|t=0

)

(ψ0) .

The definition of Mt gives

ρ∗

(

d

dt
Mt|t=0

)

=
d

dt
ρ(Mt)|t=0 =

d

dt
St|t=0 =

d

dt
exp(tA⊤)|t=0 = A⊤ .

Hence
d

dt
Mt|t=0 = ρ−1

∗ (A⊤)

and finally
d

dt
ψ(t)|t=0 = L∗ ◦ ρ

−1
∗ (A⊤)(ψ0) = −iH(ψ0)

by the previous Lemma. �

Let us now give the announced interpretation of the Lie derivative.

3.2 Interpretation as Lie derivative

In fact, the Schrödinger equation above gives the Lie derivative of a constant symplectic

spinor field ϕ0 on R
2n in the direction of the Hamiltonian vector field X.

First observe that the symplectic standard basis {a1, . . . , an, b1, . . . , bn} gives a global section

s of the symplectic frame bundle R of R
2n. Then s denotes a lift of s into the canonical

metaplectic structure P of R
2n.

Now, if ψ0 is any fixed function in S(Rn) the symplectic spinor field ϕ0 over R
2n is defined

to be

ϕ0 = [s, ψ0] .

Further, we consider the family {φt : R
2n → R

2n}t∈R given by

φt(z) := exp(tA)z for z ∈ R
2n ,

where A denotes the matrix according to Lemma 3.1. Then,

d

dt
φt(z)|t=0 = Az = X(z) ,
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which says that {φt}t∈R is exactly the one-parametergroup of diffeomorphisms induced by

the Hamiltonian vector field X. Recalling the computations in the proof of Proposition 2.2,

one has

(φ−1
t )∗ϕ0 = [st, ψ0]

with st = s exp(−tA) and st its lift to P . Since P is an Mp(2n,R)-principal fibre bundle,

we obtain a family of elements Nt ∈Mp(2n,R) such that

st = sNt with ρ(Nt) = exp(−tA) .

Hence,

(φ−1
t )∗ϕ0 = [st, ψ0] = [sNt, ψ0] = [s, L(Nt)ψ0] .

For a fixed element J̃ ∈ ρ−1(J) the metaplectic representation was given by L(J̃) = i
n
2F−1

(cf. equation (1.5)). Thus, i−
n
2L(J̃) ◦ F = id. Using relation (1.1) we obtain

ρ(Nt)ρ(J̃) = exp(−tA)J = (exp(tA))−1J = J(exp(tA))⊤ = J exp(tA⊤) = ρ(J̃)ρ(Mt) ,

where Mt is given above. Consequently,

L(Nt) ◦ L(J̃) = L(J̃) ◦ L(Mt) .

Altogether, we arrive at

(φ−1
t )∗ϕ0 = i−

n
2 [s, L(Nt) ◦ L(J̃) ◦ Fψ0] = i−

n
2 [s, L(J̃) ◦ L(Mt) ◦ Fψ0] .

Finally, we compute the Lie derivative of ϕ0 in the direction of X and obtain, by Definition

2.1,

LXϕ0 = i−
n
2

[

s, L(J̃)

(

d

dt
L(Mt)(Fψ0)|t=0

)]

= −i[s,F−1 ◦ H ◦ F(ψ0)] .

Here, the Fourier transform F means the transition between position and momentum rep-

resentations.

Concluding Remarks

Fixing a compatible almost complex structure for (M,ω), Andreas Klein introduced a glob-

ally defined Fourier transform acting on symplectic spinor fields. See [11]. If one would

define a Hamilton operator Ĥ acting on symplectic spinor fields in the way that

Ĥ[s, ψ] := [s,Hψ] ,

however, this does not work in general. The reason is that Ĥ is not well defined by this

relation.
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But, setting formally

q(h)ϕ := iLXh
ϕ , (3.9)

equation (2.3) gives

q({h, g})ϕ = iLX{h,g}
ϕ = −iL[Xh,Xg ]ϕ = −iLXh

◦ LXg
ϕ+ iLXh

◦ LXh
ϕ

= iq(h) ◦ q(g)ϕ− iq(g) ◦ q(h)ϕ = i[q(h), q(g)]ϕ ,

which is in fact the “magic” Heisenberg relation

[q(h), q(g)]ϕ = −iq({h, g})ϕ .

We do not claim that (3.9) gives a quantization procedure for arbitrary Hamiltonians over

any symplectic manifold, although this expression makes sense in the general situation. We

deduced the Heisenberg relation purely formal.
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ations de Métriques. Commun. Math. Phys. 144, 581-599 (1992)

[3] Crumeyrolle, A. : Orthogonal and Symplectic Clifford Algebras. Kluwer Academic

Publishers 1990

[4] Dabrowski, L., and Percacci, R. : Spinors and diffeomorphisms. Commun. Math.

Phys. 106, 691-704 (1986)

[5] Guillemin, V. , and Sternberg, S. : Symplectic techniques in physics. Cambridge

University Press 1990

[6] de Gosson, M. : Maslov classes, metaplectic representation and Lagrangian quantiza-

tion. Akademie Verlag Berlin 1997

[7] Habermann, K. : The graded algebra and the derivative L of spinor fields related to

the twistor equation. Journal of Geometry and Physics 18, 131-146 (1996)

[8] Habermann, K. : The Dirac Operator on Symplectic Spinors. Annals of Global

Analysis and Geometry 13, 155-168 (1995)



Lie derivative of symplectic spinor fields . . . 91

[9] Habermann, K. : Basic Properties of Symplectic Dirac Operators. Commun. Math.

Phys. 184, 629-652 (1997)

[10] Kashiwara, M. , and Vergne, M. : On the Segal-Shale-Weil Representations and

Harmonic Polynomials. Inventiones math. 44, 1-47 (1978)

[11] Klein, A. : Eine Fourietransformation für symplektische Spinoren und Anwendungen

in der Quantisierung. diploma thesis, Technical University Berlin 2000
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