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LoTHAR BERG

On the Representation of Continuous Solutions of
Two-Scale Difference Equations at Dyadic Points

ABSTRACT. The paper gives some insight into the structure of continuous solutions of
two-scale difference equations at dyadic points. An example is given in which the solution
is estimated.
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Let ¢ be a continuous compactly supported solution of the two-scaled difference equation

(f. [3)
o(3)- écnw ) 0

(t € R) with N € N (in fact it must be N > 2), ¢, € C, ¢ocy # 0 and

(M € N). In [2, Corollary 2.5] it was shown that the restriction of ¢ to [0, 1] possesses at

dyadic points the representation

1 N-1
¢ (5) =4 X st )
j=1
(k,1 € Ny, 0 < k < 2) where the coefficients are defined by the initial values

pr=--=yn-1=0, yn=1 (3)

and the recursions
| 25 |
CoYk = Z CN+k—25Yj - (4)
i=[5]
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Here |.| denotes the floor, and [.] the ceiling function, cf. [4, p. 52]. It is suitable to use
the extensions y; = 0 for j < 0 and ¢, = 0 for both n < 0 and n > N, respectively, and to

introduce the infinite two-scale matrix
A = (coj-1) (1<j,k).
Then, for [ € N, the matrix A’ possesses the entries

! ! !
CoY2ieN—-15 ColY2i4N—-2, CoY2l4N-3; --- (5)

in its first row, cf. [2, Theorem 2.4]. It can easily be seen that Al is a 2'-slanted matrix, i.e.

! .
Al — (c;)jfk) (1< 4,k) (6)
where 07(11) = ¢, and
I+m 1 m
CAINE A
i=1

in particular ¢ = ¢, @ = and ¢ = 0 for both n < 0 and n > (2! — 1)N,
0 00 “(2l-1)N N

respectively.

For our next considerations we need the following submatrices of A:
A= (o) (1<jk<2'+N-1)

with [ € Ny. If A is diagonalizable then there exist matrices A = diag(A1,...,Ax) and E
with

Ay = ETIAE, (7)
where the j-th row (ej1,...,ejn) of E is a left eigenvector of Ay to the eigenvalue \;(j €
{1,...,N}). This eigenvector can be continued to a left eigenvector (e;1,ej2,...) of A to

the same eigenvalue. The matrix of these eigenvectors we denote by
E=(cu) (L<j<N 1<h),
and we also need the finite submatrices
Gi=(ej) (1<j<N 1<k<24+N-1). (8)

Theorem Let Ay be diagonalizable. Then with the foregoing notations the first 2!+ N —1

terms of (5) can be represented as
N
chypenok =Y Mfuew  (k=1,....2'+ N—11€N) (9)
i=1

where (fi1, ..., fin) is the first row of E=1 = (fj1).
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Proof: The right-hand sides of (9) for k= 1,...,2' + N — 1 are the entries of the first row
of the matrix £~'AG,;. We have to show that they coincide with the first 2! + N — 1 entries
of the first row of A!. For [ = 0 this is clear. For [ > 1 the matrices A and A; can be splitted

into the following block forms

A:(Al *)7 Al:(AO *)7
O x O =

where the asterisks indicate suitable submatrices and O suitable zero matrices. Hence,

! !
Al:(Al ) A;:(Ao ) (10
O * O x

where A} = (C;ll)ﬁk) (1 < j,k <2+ N — 1) using the notation (6). Since Céll)j—k = 0 for

2lj —k > (2! — 1)N, and therefore for both N +1 < j and 1 <k <2/ + N — 1, we have in

fact
AL %
Al =770 . 11
(5) .

Comparison of the Jordan normal form

A =E" <g ?) E, (12)

with (7) and (8) shows that the outer factors must have the block forms

1
El—l _ (EO >|<> B (E *) _ (Gl> '
* O * *

Comparison of (11) with (12) implies that J! = 0 and therefore

Al— B~ x AlGl o EilAlGl
Yl o o« o ) O ‘

Now, the assertion follows from (10) [
Remarks  1°. Choosing in (2) k = 2! —m then by means of (9) with k = m + j we get
some insight into the structure of ¢ (1 — %), 0 < m < 2. Though the result can be

used for explicit calculations of ¢, this is not recommended.

2°. The entries of the eigenvectors (e;,e;0,...) satisfy analogous recursions as in (4),

namely gt
Ntk
2
i€k = Z Coj—kCij -
i=[5]
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3°. In the case N = 2 formula (9) was already set up (with other notations) in [1, (3.1)].

4°. The case that Ag is non-diagonalizable can be treated with some more effort, cf. [1,
(3.3)] in the case N = 2.

5°. In [2, Proposition 2.7] it must be mg = 0.

6°. The first column of E~! is a right eigenvector of Ay to the eigenvector 1. This implies
©(7) = fj1 (up to a constant factor), cf. [2, (2.4)] with ¢t = 1.

7°. Formula (9) can be simplified if the entries fy;, of the first row of E~! are normlized
according to fip = 1 so far as fix # 0. But it is also possible that fi, = 0 for a fixed k

as in the folowing

Example Choosing ¢y = i, c3 =1, ¢4 = % and ¢, = 0 otherwise, so that N = 4, then
A = diag (1 1 —% §) and

2 24
0o 1 1 1 1 11 1
g0 2 -2 3 P : ;0 -1
’ 1 1 1
1 -3 1 -9 : -1 0 =
0 0 0 5 0 00 1

Hence, (9) yields in particular

Yolys = 2l_1(1 + (_1)1) y o Yoy = (1 - (_1)l)2l_2 )
1 _
Yorpr1 =0, yu = g (3l - (5 - (_1)l)21 2)

(I € Np). Formula (2) with ¢(3) =1 and ¢(j) = 0 otherwise specializes to

k 1
2 (5) = Eyk+1 (13)

for 0 < k < 2L But (13) is even valid for 0 < k < 3- 2! since ¢(t) = 0 for ¢t < 0 and (1)
imply (%) = 1(t) for 0 <t < 3. The recursions (4) specialize to

Y25 = 3Yj + Yjr2, Y21 = 4y; (14)

for j € N, and with the initial values (3) with N = 4 we obtain for the first values

j‘1234567891011121314151617181920212223242526
yj‘0001004304 0 3 16 12 12 13 0 0 16 15 0 16 12 21 64 60

where it easily follows by induction that

y(22n+1)2m+1 = 0 (15)

for all m,n € Ny. The solution s = ¢(¢) is plotted in the following picture:
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Introducing the notations
Tp = Y32n41, Zn = Y3.2n43, Un = Y3.2n42, Un = Y3.2n, Wp = Y3.2n1
(n € Ny) and using (14) we find the recursions

Ty =4y, 2, = 120, 5 + 42,9,

Uy = 3Tp—1 + Zn—1, Up = 3vp_1 + Up—-1, Wy = 120, 9 + 4un—27
and by means of the initial values from the forgoing table their solutions
Ty =4" 2, = 4" + ((=1)" = 3)2" ) w, = 4" — ((—1)" +3)2" 2,

1 1
Uy = 4n + 3 X 2n—2 + g((_Q)n—Q - 3n+2)’ w, = 4n _|_ 3 A 2n—1 + g((_2)71—1 . 4 . 3n+l) )

Proposition The solutions y, of (14) with (3) for N = 4 satisfy the estimates

k—1

2
0<wyr< (T) (16)
(k € N) where both bounds are sharp for infinitely many k.

Proof: The first inequality of (16) follows from (14) and the initial values (3) with N = 4,
the sharpness from (15). For k& = 32" + 1 (n € Ny) the second inequality is in fact an
equality in view of x,, = 4". For 1 < k < 3 it is trivial. For & # 3-2" + 1 and k& > 5 we shall
prove the better inequality

e < —k(k—2). (17)
For k =3-2"+2 (n € Ny) we have

7

1

and (17) is valid. For k =3 -2" — 2 we have

12
Yo = 3wy Ty S AT+ (20 -3
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and (17) is valid when n > 2 (n = 1 corresponds to ys = 1).

In order to complete the proof we introduce the sets M, = {3-2"+2,...,3-2""} (n € Ny).
The inequality (17) is valid for k € My = {5,6}. If (17) is valid for k¥ € M,, then by means
of the recursions (14) it follows that (17) is valid for the odd k from M, ;. Analogously, we

see that (17) is also valid for the even k from M, if we simultaneously take into account
the already treated two special cases. Hence by induction, (17) is valid for all k£ € Ej M,
0 n=0

In view of (13) and the continuity of ¢ we immediately get the

Corollary For 0 <t <3 the solution of our example for (1) with p(3) = 1 satisfies the

estimates ]
0<¢p(t) < §t2

where both bound are sharp for infinitely many t.
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