
Rostock. Math. Kolloq. 57, 93–98 (2003) Subject Classification (AMS)

39A13,15A57

Lothar Berg

On the Representation of Continuous Solutions of
Two-Scale Difference Equations at Dyadic Points

ABSTRACT. The paper gives some insight into the structure of continuous solutions of

two-scale difference equations at dyadic points. An example is given in which the solution

is estimated.
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Let ϕ be a continuous compactly supported solution of the two-scaled difference equation

(cf. [3])

ϕ

(

t

2

)

=
N
∑

n=0

cnϕ(t − n) (1)

(t ∈ R) with N ∈ N (in fact it must be N ≥ 2), cn ∈ C, c0cN 6= 0 and

N
∑

n=0

cn = 2M ,

(M ∈ N). In [2, Corollary 2.5] it was shown that the restriction of ϕ to [0, 1] possesses at

dyadic points the representation

ϕ

(

k

2l

)

= cl
0

N−1
∑

j=1

yN+k−jϕ(j) (2)

(k, l ∈ N0, 0 ≤ k ≤ 2l) where the coefficients are defined by the initial values

y1 = · · · = yN−1 = 0, yN = 1 (3)

and the recursions

c0yk =

⌊N+k

2 ⌋
∑

j=⌈ k

2⌉

cN+k−2jyj . (4)
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Here ⌊.⌋ denotes the floor, and ⌈.⌉ the ceiling function, cf. [4, p. 52]. It is suitable to use

the extensions yj = 0 for j < 0 and cn = 0 for both n < 0 and n > N , respectively, and to

introduce the infinite two-scale matrix

A = (c2j−k) (1 ≤ j, k) .

Then, for l ∈ N, the matrix Al possesses the entries

cl
0y2l+N−1, cl

0y2l+N−2, cl
0y2l+N−3, . . . (5)

in its first row, cf. [2, Theorem 2.4]. It can easily be seen that Al is a 2l-slanted matrix, i.e.

Al =
(

c
(l)

2lj−k

)

(1 ≤ j, k) (6)

where c
(1)
n = cn and

c
(l+m)

2l+mj−k
=

∞
∑

i=1

c
(l)

2lj−i
c
(m)
2mi−k ,

in particular c
(l)
0 = cl

0, c
(l)

(2l
−1)N

= cl
N , and c

(l)
n = 0 for both n < 0 and n > (2l − 1)N ,

respectively.

For our next considerations we need the following submatrices of A:

Al = (c2j−k) (1 ≤ j, k ≤ 2l + N − 1)

with l ∈ N0. If A0 is diagonalizable then there exist matrices Λ = diag(λ1, . . . , λN) and E

with

A0 = E−1ΛE , (7)

where the j-th row (ej1, . . . , ejN) of E is a left eigenvector of A0 to the eigenvalue λi(j ∈

{1, . . . , N}). This eigenvector can be continued to a left eigenvector (ej1, ej2, . . . ) of A to

the same eigenvalue. The matrix of these eigenvectors we denote by

E = (ejk) (1 ≤ j ≤ N, 1 ≤ k) ,

and we also need the finite submatrices

Gl = (ejk) (1 ≤ j ≤ N, 1 ≤ k ≤ 2l + N − 1) . (8)

Theorem Let A0 be diagonalizable. Then with the foregoing notations the first 2l +N−1

terms of (5) can be represented as

cl
0y2l+N−k =

N
∑

i=1

λl
if1ieik (k = 1, . . . , 2l + N − 1, l ∈ N0) (9)

where (f11, . . . , f1N) is the first row of E−1 = (fjk).
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Proof: The right-hand sides of (9) for k = 1, . . . , 2l + N − 1 are the entries of the first row

of the matrix E−1ΛGl. We have to show that they coincide with the first 2l + N − 1 entries

of the first row of Al. For l = 0 this is clear. For l ≥ 1 the matrices A and Al can be splitted

into the following block forms

A =

(

Al ∗

O ∗

)

, Al =

(

A0 ∗

O ∗

)

,

where the asterisks indicate suitable submatrices and O suitable zero matrices. Hence,

Al =

(

Al
l ∗

O ∗

)

, Al
l =

(

Al
0 ∗

O ∗

)

, (10)

where Al
l = (c

(l)

2lj−k
) (1 ≤ j, k ≤ 2l + N − 1) using the notation (6). Since c

(l)

2lj−k
= 0 for

2lj − k > (2l − 1)N , and therefore for both N + 1 ≤ j and 1 ≤ k ≤ 2l + N − 1, we have in

fact

Al
l =

(

Al
0 ∗

O O

)

. (11)

Comparison of the Jordan normal form

Al = E−1
l

(

Λ O

O J

)

El (12)

with (7) and (8) shows that the outer factors must have the block forms

E−1
l =

(

E−1 ∗

O ∗

)

, El =

(

E ∗

O ∗

)

=

(

Gl

∗

)

.

Comparison of (11) with (12) implies that J l = 0 and therefore

Al
l =

(

E−1 ∗

O ∗

)

(

ΛlGl

O

)

=

(

E−1ΛlGl

O

)

.

Now, the assertion follows from (10)

Remarks 1◦. Choosing in (2) k = 2l − m then by means of (9) with k = m + j we get

some insight into the structure of ϕ
(

1 − m
2l

)

, 0 ≤ m ≤ 2l. Though the result can be

used for explicit calculations of ϕ, this is not recommended.

2◦. The entries of the eigenvectors (ei1, ei2, . . . ) satisfy analogous recursions as in (4),

namely

λieik =

⌊N+k

2 ⌋
∑

j=⌈ k

2⌉

c2j−keij .
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3◦. In the case N = 2 formula (9) was already set up (with other notations) in [1, (3.1)].

4◦. The case that A0 is non-diagonalizable can be treated with some more effort, cf. [1,

(3.3)] in the case N = 2.

5◦. In [2, Proposition 2.7] it must be m0 = 0.

6◦. The first column of E−1 is a right eigenvector of A0 to the eigenvector 1. This implies

ϕ(j) = fj1 (up to a constant factor), cf. [2, (2.4)] with t = 1.

7◦. Formula (9) can be simplified if the entries f1k of the first row of E−1 are normlized

according to f1k = 1 so far as f1k 6= 0. But it is also possible that f1k = 0 for a fixed k

as in the folowing

Example Choosing c0 = 1
4
, c3 = 1, c4 = 3

4
and cn = 0 otherwise, so that N = 4, then

Λ = diag
(

1 1
2
− 1

2
3
4

)

and

E−1 =











0 1 1 1

0 2 −2 3

1 −3 1 −9

0 0 0 5











, E =











1 1 1 1
1
2

1
4

0 −1
4

1
2

−1
4

0 1
20

0 0 0 1
5











.

Hence, (9) yields in particular

y2l+3 = 2l−1(1 + (−1)l) , y2l+2 = (1 − (−1)l)2l−2 ,

y2l+1 = 0 , y2l =
1

5

(

3l − (5 − (−1)l)2l−2
)

(l ∈ N0). Formula (2) with ϕ(3) = 1 and ϕ(j) = 0 otherwise specializes to

ϕ

(

k

2l

)

=
1

4l
yk+1 (13)

for 0 ≤ k ≤ 2l. But (13) is even valid for 0 ≤ k ≤ 3 · 2l, since ϕ(t) = 0 for t ≤ 0 and (1)

imply ϕ( t
2
) = 1

4
ϕ(t) for 0 ≤ t ≤ 3. The recursions (4) specialize to

y2j = 3yj + yj+2, y2j−1 = 4yj (14)

for j ∈ N, and with the initial values (3) with N = 4 we obtain for the first values

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

yj 0 0 0 1 0 0 4 3 0 4 0 3 16 12 12 13 0 0 16 15 0 16 12 21 64 60

where it easily follows by induction that

y(22n+1)2m+1 = 0 (15)

for all m,n ∈ N0. The solution s = ϕ(t) is plotted in the following picture:
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Introducing the notations

xn = y3·2n+1, zn = y3·2n+3, un = y3·2n+2, vn = y3·2n , wn = y3·2n
−1

(n ∈ N0) and using (14) we find the recursions

xn = 4xn−1, zn = 12xn−2 + 4zn−2,

un = 3xn−1 + zn−1, vn = 3vn−1 + un−1, wn = 12vn−2 + 4un−2,

and by means of the initial values from the forgoing table their solutions

xn = 4n, zn = 4n + ((−1)n − 3)2n−1, un = 4n − ((−1)n + 3)2n−2,

vn = 4n + 3 · 2n−2 +
1

5
((−2)n−2 − 3n+2), wn = 4n + 3 · 2n−1 +

1

5
((−2)n−1 − 4 · 3n+1) .

Proposition The solutions yk of (14) with (3) for N = 4 satisfy the estimates

0 ≤ yk ≤

(

k − 1

3

)2

(16)

(k ∈ N) where both bounds are sharp for infinitely many k.

Proof: The first inequality of (16) follows from (14) and the initial values (3) with N = 4,

the sharpness from (15). For k = 3 · 2n + 1 (n ∈ N0) the second inequality is in fact an

equality in view of xn = 4n. For 1 ≤ k ≤ 3 it is trivial. For k 6= 3 · 2n + 1 and k ≥ 5 we shall

prove the better inequality

yk ≤
1

9
k(k − 2) . (17)

For k = 3 · 2n + 2 (n ∈ N0) we have

yk = un ≤ 4n − 2n−1 =
1

9
(k − 2)

(

k −
7

2

)

and (17) is valid. For k = 3 · 2n − 2 we have

yk = 3wn−1 + xn−1 ≤ 4n +
12

5
(2n − 3n)
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and (17) is valid when n ≥ 2 (n = 1 corresponds to y4 = 1).

In order to complete the proof we introduce the sets Mn = {3 · 2n +2, . . . , 3 · 2n+1} (n ∈ N0).

The inequality (17) is valid for k ∈ M0 = {5, 6}. If (17) is valid for k ∈ Mn then by means

of the recursions (14) it follows that (17) is valid for the odd k from Mn+1. Analogously, we

see that (17) is also valid for the even k from Mn+1 if we simultaneously take into account

the already treated two special cases. Hence by induction, (17) is valid for all k ∈
∞
⋃

n=0

Mn

In view of (13) and the continuity of ϕ we immediately get the

Corollary For 0 ≤ t ≤ 3 the solution of our example for (1) with ϕ(3) = 1 satisfies the

estimates

0 ≤ ϕ(t) ≤
1

9
t2

where both bound are sharp for infinitely many t.
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