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Abstract

A recent approach for offline handwriting recognition is to use multidimensional recurrent neural
networks (MDRNN) with connectionist temporal classification which has shown to yield very good
results on several datasets. MDRNNs contain special units – multidimensional Long Short-Term
Memory (MDLSTM) cells. These cells suffer from instability especially for higher dimensionality.
We analyze the reasons for this effect and introduce several cells with better stability. We present
a method to design stable multidimensional cells using the theory of linear shift invariant systems.
The new cells are compared to MDLSTMs on the Arabic and French ICDAR datasets, where they
yield better results.
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1 notations

1.1 unit

Normal hidden units in a time discrete recurrent neural networks (RNN) update their new accumulation
a(t) and activation b(t) to time t ∈ Z according to equations

au(t) =

H∑
h=1

wh,ubh(t− 1) +

I∑
i=1

wini,ubi(t), (1)

bu(t) =f (au(t)) . (2)

To extend the RNN to a multidimensional RNN (MDRNN) let ppp ∈ ZD be a multidimensional date of
dimension D. Instead of a(t) in 1-dimensional case we write appp as accumulation in the multidimensional
case. The upper index ppp = (p1, p2, . . . , pD) with pi ∈ {1, 2, . . . , Dmax

i } will be used to define the position.
The upper index ppp−d denotes the position on step back in dimension d. So ppp−d = (p1, . . . , pd−1, pd −
1, pd+1, . . . , pD). In the same way ppp+d is defined. If there is at least one dimension d ∈ {1, . . . , D} with
pd /∈ {1, . . . , Dmax

d } we set the state and activation to 0. The connection from source unit to target unit
is denoted with w[target][source]. When the weight is from source unit in the past in dimension d to a
target unit, we denote the weight with wd[target][source]. We assume a hidden layer with H units, I units
in the layer below and K units in the Layer above. Similar to (1) we can calculated the accumulation
and activation in a multidimensional case.

1.1.1 Forward pass

apppu =

I∑
i=1

wu,ibi +

D∑
d=1

H∑
h=1

wdu,hb
ppp−d
h , (3)

bpppu = fu(a
ppp
u). (4)

1.1.2 Backward pass

Let

εpppu :=
∂E

∂bp
pp
u

(5)

be the error of the output of neuron u at time ppp and let

δpppu =
∂E

∂ap
pp
u

(6)

be the error after the accumulation. Let K be the set of errors from the upper layer yield from the units
where unit u is connected with. Then they can be calculated by

εpppu =

K∑
k=1

δp
pp
kwu,k +

D∑
d=1

H∑
h=1

wdh,uδ
ppp+d
h (7)

δpppu = f ′u(a
ppp
u)ε

ppp
u (8)

1.2 cell

A cell has input connections and a activation function like a unit, but furthermore, it has a set of “gates”.
The gates nearly work like units with the feature, they can have a connection to the internal state of the
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Figure 1: schematic diagram of a MDLSTM cell

cell, called peephole connections. The cell combines the internal state and the activations of the gate in
an (hopefully) intelligent way, so that they can solve more difficult tasks than a normal unit. c denotes
the internal state of a cell.

The LSTM cell has an input gate (IG), an output gate (OG) and D forget gates (FG). Let ι be the
IG, (φ, d) be the FG of dimension d and ω be the OG. All activation functions of gates are the logistic
function

fι(x) = fω(x) = fφ,d(x) =
1

1 + e−x
, (9)

the activation functions of the cell are the tanh-function

fc(x) = gc(x) =
ex − e−x

ex + e−x
(10)

1.2.1 forward pass

cell input:

apppc =

I∑
i=1

wc,ib
ppp
i +

D∑
d=1

H∑
h=1

wdc,hb
ppp−d
h (11)

upppc = fc(a
ppp
c) (12)

input gate:

apppι =

I∑
i=1

wι,ib
ppp
i +

D∑
d=1

(
wdι,cs

ppp−d
c +

H∑
h=1

wdι,hb
ppp−d
h

)
(13)

bpppι = fι(a
ppp
ι ) (14)

forget gates:

ap
pp
φ,d = w(φ,d),cs

ppp−d
c +

I∑
i=1

w(φ,d),ib
ppp
i +

D∑
d′=1

(
H∑
h=1

wd
′

(φ,d),hb
ppp−
d′
h

)
(15)

up
pp
φ,d = fφ,d(a

ppp
φ,d) (16)
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cell state:

spppc = bpppιu
ppp
c +

D∑
d=1

s
ppp−d
c bp

pp
φ,d (17)

output gate:

apppω =

I∑
i=1

wω,ib
ppp
i + wω,cs

ppp
c +

D∑
d=1

H∑
h=1

wdω,hb
ppp−d
h (18)

bpppω = fω(a
ppp
ω) (19)

cell output:

bpppc = bpppωgc(s
ppp
c) (20)

1.2.2 backward pass

cell output:

εpppc =
∂E

∂bp
pp
c
=

K∑
k=1

wk,cδ
ppp
k +

D∑
d=1

H∑
h=1

(
wdh,cδ

ppp+d
h + wdι,cδ

ppp+d
ι + wdω,cδ

ppp+d
ω +

D∑
d′=1

wd(φ,d′),cδ
ppp+d
φ,d′

)
(21)

output gate:

εpppω =
∂E

∂bp
pp
ω
= εpppcg(s

ppp
c) (22)

δpppω =
∂E

∂ap
pp
ω
= f ′ω(a

ppp
ω)ε

ppp
ω (23)

cell state:

εppps =
∂E

∂sp
pp
c
= bpppωg

′
c(s

ppp
c)ε

ppp
c + δpppωwω,c +

D∑
d=1

ε
ppp+d
s b

ppp+d
φ,d + wdι,cδ

ppp+d
ι + w(φ,d),cδ

ppp+d
φ,d (24)

forget gates:

εp
pp
φ,d = s

ppp−d
c εppps (25)

δp
pp
φ,d = f ′φ,d(a

ppp
φ,d)ε

ppp
φ,d (26)

input gates:

εpppι = upppcε
ppp
s (27)

δpppι = f ′ι(a
ppp
ι )ε

ppp
ι (28)

cell input:

δpppc = f ′c(a
ppp
c)b

ppp
ι ε
ppp
s (29)
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2 LSTM-Problems

The original LSTM cell was created for the one-dimensional case. It just has an input gate and an output
gate. The new cell state is calculate by

spppc = sp
−

c + bpppι b
ppp
c . (30)

Assuming a constantly positive input apppc , the cell state increases to infinity. Obviously, if |sppp−c | � |bi|,
bi has only a small contribution to the current cell state spppc and therefore also to the cell output. To
avoid this excessively influence on the cell output the forget gate was introduced aiming to decrease the
contribution of the cell state if necessary. Therefore, the forget gate takes values from the interval (0, 1)
and is multiplied by the past cell state. Note that an upper bound is not guaranteed, especially, if the
forget gate is continuously close to 1.

The D-dimensional case, the cell state already might increase (in relation to the average of past cell
states) if the forget gate has an activation greater or equal to 1

D . In contrast to the one-dimensional case,
the cells can exhibit self-reinforcing tendencies due to the sum of different directions. To see this, we
provide a little toy example:

Example 1. Assume just one cell with recurrent connections in D dimensions. For great sppp
−
d
c and positive

w(φ,d),c, the cell state dominates the activation of the forget gate (note that we assume bi to an element
of a bounded subset of R) such that the input gate bι is close to 1. If

−bpppι bpppc <min
d
s
ppp−d
c bp

pp
φ,d ≈ min

d
s
ppp−d
c ,

then

spppc >max
d

s
ppp−d
c .

This means the cell state increases independent of the input. Typically, in such an situation sppp
′

c increases
continuously for ppp′ with ppp′d > pppd until all units of the cell are dominated by the cell state. Then the cell

output converges to a constant value (∈ {0,±1}). For very small sppp
−
d
c and negative w(φ,d),c the cell state

might decrease uncontrolled independent of the input.

This self-reinforcing effect is not just a theoretic one but for D = 2 it happens in the practical implemen-
tations to about a quarter of all cells according to our experience. A cause for this lies in the following
theorem.

Theorem 2. Assume that sgn(wφ,d) = sgn(wφ,d′) 6= 0 for any d, d′ ∈ {1, . . . , D} and that there exists
a M > 0 all |bpppi | < M for any i ∈ {1, . . . , I}. Then there exists an spppc ∈ R such that the cell state is
increasing.

Proof. W.l.o.g. w(φ,d) > 0. We show that for any ppp sppp
−
d
c is bounded below by some constant Cd. We use

this constant to show that spppc < s
((ppp)+1 )+2
c .

The function ϕ(x) := x
1+exp(−ax−b) is continuous in x and negative for x < 0. Since limx→−∞ ϕ(x) = 0 =

ϕ(0), there exists a constant C such that ϕ(x) > −C. Because bpppi and bpppc are bounded, this shows that

there are Cd such that b(φ,d)s
p−d
c > −Cd. The lower bound of bpppι f(ap

pp
c) is denoted by −Ci.

Again because of the boundedness of bpppi and bpppc , for any ε > 0 there exist a constant M > 0 such that if

spppc > M , bppp
+
1

φ,1 ≥ 1− ε and bppp
+
2

φ,1 ≥ 1− ε. Let M ε
qqq be the lower bound for spppc such that bqqqφ,1 ≥ 1− ε for qqq > ppp.

Now, choose ε > 0 such that 2(1− ε)2 > 1 and

spppc > max

{
M ε
ppp+1
,M ε

ppp+2
,M ε

(ppp+1 )+2
,M ε

(ppp+2 )+1
,
(Ci +

∑D
δ=1 Cδ)(2(1− ε) + 1)

2(1− ε)2 −$

}
,
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for 2(1− ε)2 > $ > 1. Then for d ∈ {1, 2}

s
ppp+d
c > (1− ε)spppc − Ci −

D∑
δ=1
δ 6=d

Cδ

and

s(ppp
+
1 )+2 >(1− ε)

(1− ε)spppc − Ci − D∑
δ=1
δ 6=1

Cδ

+ (1− ε)

(1− ε)spppc − Ci − D∑
δ=1
δ 6=2

Cδ

− Ci − D∑
δ=3

Cδ

>2(1− ε)2spppc −

(
Ci +

D∑
δ=1

Cδ

)
(2(1− ε) + 1)

>$spppc

This means spppc increases by the factor $.
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3 Stabilisierung der Zellen

3.1 stability-discussion

In this section we want to discuss the infuences of gates and of the last internal stat on the internal state.
According to (17) we calculate the new state with

spppc = bpppιu
ppp
c +

D∑
d=1

s
ppp−d
c bp

pp
φ,d. (31)

We discuss two different criteria which we would like to fulfill in regarding the equation above. When
there is an error on the internal state, we want to have an update-equation, that this error is reduced in
every timestep. More exactly, let spppc = spppc + errpppc be a noiced state with the error errpppc := spppc − spppc . For
any time the error at time ppp must be smaller than the error at time ppp−d for all d = 1, . . . , D, more exactly
we want to find a criterion for the forgetgates such that

∀ppp ∈ ZD : |errpppc | ≤ max
d=1,...,D

∣∣∣errppp−dc ∣∣∣ (32)

holds. Using equation (31) we can make the following estimate.

|errpppc | =

∣∣∣∣∣
D∑
d=1

s
ppp−d
c bp

pp
φ,d −

D∑
d=1

s
ppp−d
c bp

pp
φ,d

∣∣∣∣∣ (33)

=

∣∣∣∣∣
D∑
d=1

(
s
ppp−d
c − s

ppp−d
c

)
bp
pp
φ,d

∣∣∣∣∣ (34)

≤
D∑
d=1

∣∣∣sppp−dc − sppp−dc ∣∣∣ bpppφ,d (35)

≤ max
d=1,...,D

∣∣∣errppp−dc ∣∣∣ D∑
d=1

bp
pp
φ,d (36)

To hold (32) the activation of the forgetgates have to fulfill

D∑
d=1

bp
pp
φ,d ≤ 1 (37)

3.2 LSTM Stable cell

Dividing all activation by the dimension, you fulfill (37). But it is not possible any more to memorize a
state in one dimension for a long time. Instead of having a criterion for the forget gates, we can have a
criterion for the states.

A better idea is to reduce all states sppp
−
i
c to one state sppp

−

c and take the 1-dimensional format of the LSTM
cell. Then an error from a state cannot grow over time ppp.
So we need a function

sppp
−

c = f(s
ppp−1
c , . . . , s

ppp−D
c , ap

pp
(λ,1), . . . , a

ppp
(λ,D)) (38)

with

ap
pp
(λ,d) = w(λ,d),cs

ppp−d
c +

I∑
i=1

w(λ,d),ib
ppp
i +

D∑
d′=1

(
H∑
h=1

wd
′

(λ,d),hb
ppp−
d′
h

)
(39)

(40)
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like in (15) with trainable weights w. We want to chose f(.) that the following two benefits of the
1-dimensional LSTM-Cell remain:

1. ∀appp(λ,1), . . . , a
ppp
(λ,D) ∈ R :

∣∣∣sppp−c ∣∣∣ ≤ max
d=1,...,D

∣∣∣sppp−dc ∣∣∣ → stability

2. ∀d = 1, . . . , D ∃appp(λ,1), . . . , a
ppp
(λ,D) ∈ R : sppp

−

c ≈ s
ppp−d
c → memory in dimension d

A convex combination

s−c =

D∑
d=1

αp
pp
ds
ppp−i
c ,∀d = 1, . . . , D : αp

pp
d ≥ 0,

D∑
d=1

αp
pp
d = 1 (41)

of all states with trainable coefficients αpppd satisfy these both points. To hold (41) we define

αp
pp
d :=

fm

(
ap
pp
(λ,d)

)
d∑

d′=1

fm

(
ap
pp
(λ,d′)

) (42)

with a strictly increasing and differentiable function fm : R → (0,∞), lim
t→−∞

fm(t) = 0. The value of

fm

(
ap
pp
(λ,d)

)
shows how important the last state of dimension d is for the new state. Now we can create

a multidimensional Cell, which holds (32).

3.2.1 forward pass

cell input:

apppc =

I∑
i=1

wc,ib
ppp
i +

D∑
d=1

H∑
h=1

wdc,hb
ppp−d
h (43)

upppc = fc(a
ppp
c) (44)

input gate:

apppι =

I∑
i=1

wι,ib
ppp
i +

D∑
d=1

(
wdι,cs

ppp−d
c +

H∑
h=1

wdι,hb
ppp−d
h

)
(45)

bpppι = fι(a
ppp
ι ) (46)

lambda gates:

ap
pp
λ,d = w(λ,d),cs

ppp−d
c +

I∑
i=1

w(λ,d),ib
ppp
i +

D∑
d′=1

(
H∑
h=1

wd
′

(λ,d),hb
ppp−
d′
h

)
(47)

bp
pp
λ,d =

fm(ap
pp
λ,d)

D∑
d′=1

fm(ap
pp
λ,d′)

(48)

last state:

sppp
−

c =

D∑
d=1

s
ppp−d
c bp

pp
λ,d (49)
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forget gate:

ap
pp
φ = wφ,cs

ppp−

c +

I∑
i=1

wφ,ib
ppp
i +

D∑
d=1

H∑
h=1

wdφ,hb
ppp−d
h (50)

bp
pp
φ = fφ(a

ppp
φ) (51)

cell state:

spppc = bpppιu
ppp
c + sppp

−

c bp
pp
φ (52)

output gate:

apppω =

I∑
i=1

wω,ib
ppp
i + wω,cs

ppp
c +

D∑
d=1

H∑
h=1

wdω,hb
ppp−d
h (53)

bpppω = fω(a
ppp
ω) (54)

cell output:

bpppc = bpppωgc(s
ppp
c) (55)

3.2.2 backward pass

cell output:

εpppc =
∂E

∂bp
pp
c
=

K∑
k=1

wk,cδ
ppp
k +

D∑
d=1

H∑
h=1

(
wdh,cδ

ppp+d
h + wdι,cδ

ppp+d
ι + wdω,cδ

ppp+d
ω + wdφ,cδ

ppp+d
φ +

D∑
d′=1

wd(λ,d′),cδ
ppp+d
λ,d′

)
(56)

output gate:

εpppω =
∂E

∂bp
pp
ω
= εpppcg(s

ppp
c) (57)

δpppω =
∂E

∂ap
pp
ω
= f ′ω(a

ppp
ω)ε

ppp
ω (58)

cell state:

εppps =
∂E

∂sp
pp
c
= bpppωg

′
c(s

ppp
c)ε

ppp
c + δpppωwω,c +

D∑
d=1

(
ε
ppp+d
s b

ppp+d
φ + wφ,cδ

ppp+d
φ

)
b
ppp+d
λ,d + wdι,cδ

ppp+d
ι + w(λ,d),cδ

ppp+d
λ,d (59)

forget gate:

εp
pp
φ = s

ppp−d
c εppps (60)

δp
pp
φ = f ′φ(a

ppp
φ)ε

ppp
φ (61)

lambda gates:

εp
pp
λ,d =

(
δp
pp
φwφ,c + εpppsb

ppp
φ

)
s
ppp−d
c (62)

δp
pp
λ,d =

f ′m(ap
pp
λ,d)ε

ppp
λ,d

D∑
d′=1
d′ 6=d

fm(ap
pp
λ,d′)− fm(ap

pp
λ,d)

D∑
d′=1
d′ 6=d

f ′m(ap
pp
λ,d′)ε

ppp
λ,d′

(
D∑
d′=1

fm(ap
pp
λ,d′)

)2 (63)
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input gate:

εpppι = upppcε
ppp
s (64)

δpppι = f ′ι(a
ppp
ι )ε

ppp
ι (65)

cell input:

δpppc = f ′c(a
ppp
c)b

ppp
ι ε
ppp
c (66)

3.2.3 the 2-dimensional spezial case

In the often used 2-dimensional case it is possible to simplify the lambda gates. Therefor we have to
chose the activation function fm(x) = ex in equation(48). It follows with the logistic function fl(x)

bp
pp
λ,1 =

ea
ppp
λ,1

ea
ppp
λ,1 + ea

ppp
λ,2

=
1

1 + ea
ppp
λ,2−a

ppp
λ,1

= fl

(
ap
pp
λ,1 − a

ppp
λ,2

)
, (67)

bp
pp
λ,2 =

ea
ppp
λ,2

ea
ppp
λ,2 + ea

ppp
λ,1

=
1

1 + ea
ppp
λ,1−a

ppp
λ,2

= fl

(
ap
pp
λ,2 − a

ppp
λ,1

)
. (68)

When we define wλ,i := w(λ,1),i − w(λ,2),i, w
d
λ,h := wd(λ,1),h − w

d
(λ,2),h and change the sign of w(λ,2),c in

equation (47), we can replace (47) and (48) with

ap
pp
λ :=ap

pp
λ,1 − a

ppp
λ,2 =

I∑
i=1

wλ,ib
ppp
i +

D∑
d=1

(
w(λ,d),cs

ppp−d
c +

H∑
h=1

wdλ,hb
ppp−d
h

)
, (69)

bp
pp
λ,1 =fl (a

ppp
λ) , (70)

bp
pp
λ,2 =fl (−apppλ) = 1− fl (apppλ) . (71)

So we have to calculate just one lambda gate in the 2-dimensional case.
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4 more stable cells

4.1 stability-discussion

In section 3.1 we discussed the growing of an error errpppc = spppc−spppc . We construct cells which do not increase
this error over time. But in experiments the internal state grows (linearly). Another well known stability-
criterion is the Bounded-Input-Bounded-Output-Stability (BIBO-stability). In our multidimensional case
we can define BIBO-stability for cells:

Definition 3 (BIBO-stability). Let upppc = ft(a
ppp
c) be the input of a cell and spppc the internal state. We call

the cell BIBO-stable if

∀M ∈ (0,∞) :
{
∀ppp ∈ ZD : |upppc | ≤M ⇒ ∃C ∈ (0,∞) : |spppc | ≤ CM

}
(72)

holds.

In our cells we use upppc = fc(a
ppp
c) = tanh(apppc). With

|uc| = |tanh(ac)| ≤ max
ac∈R

|tanh(ac)| = 1 (73)

we get the bound M = 1. Now we want to find an inequation for the gate activations that fulfill the
BIBO-stability. Therefore we assume bounded states in the past∣∣∣sppp−dc ∣∣∣ ≤ C ∀d = 1, . . . , D. (74)

With (72), (73) and (74) we can define criteria to the gate activations of the cells.

Lemma 4 (BIBO-stability of LSTM-cells). If

bpppι
C

+

D∑
d=1

bp
pp
φ,d ≤1 (75)

holds for any activations bpppι , b
ppp
φ,1, . . . , b

ppp
φ,D, the LSTM-cell is BIBO-stable.

Proof. The inequation

|spppc | =

∣∣∣∣∣bpppιupppc +
D∑
d=1

s
ppp−d
c bp

pp
φ,d

∣∣∣∣∣ ≤ bpppι +
D∑
d=1

Cbp
pp
φ,d = C

(
bpppι
C

+

D∑
d=1

bp
pp
φ,d

)
≤ C (76)

is fulfilled, if

bpppι
C

+

D∑
d=1

bp
pp
φ,d ≤1 (77)

holds.

Lemma 5 (BIBO-stability of LSTM-stable-cells). If

bpppι ≤ C
(
1− bpppφ

)
(78)

holds for any activations bpppι , b
ppp
φ the LSTM-stable-cell is BIBO-stable. The stability is independent of the

activations bpppλ,1, . . . , b
ppp
λ,D.
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Proof. Using
∑D
d=1 b

ppp
λ,d = 1, the inequation

|spppc | =

∣∣∣∣∣bpppιupppc + bp
pp
φ

D∑
d=1

s
ppp−d
c bp

pp
λ,d

∣∣∣∣∣ ≤ bpppι + bp
pp
φC

D∑
d=1

bp
pp
λ,d = C

(
bpppι
C

+ bp
pp
φ

)
≤C (79)

is fulfilled, if

bpppι
C

+ bp
pp
φ ≤1 ⇔ bpppι ≤ C

(
1− bpppφ

)
(80)

holds.

Now we construct a cell which fulfill the BIBO-stability for an arbitrary C and a fixed M = 1. The key
idea is to fulfill (78) and expand the forward pass with a scalar G ∈ (0,∞) such that it substitute C.

4.2 forward pass

cell input:

apppc =

I∑
i=1

wc,ibi +

D∑
d=1

H∑
h=1

wdc,hb
ppp−d
h (81)

upppc = fc (a
ppp
c) (82)

lambda gates:

ap
pp
λ,d = w(λ,d),cs

ppp−d
c +

I∑
i=1

w(λ,d),ibi +

D∑
d′=1

(
H∑
h=1

wd
′

(λ,d),hb
ppp−
d′
h

)
(83)

bp
pp
λ,d =

fm(aλ,d)
D∑
d′=1

fm(aλ,d′)

(84)

last state:

sppp
−

c =

D∑
d=1

s
ppp−d
c bp

pp
λ,d (85)

forget gate and input gate: The accumulations (45) and (50) were combined to one accumulation. We
set fφ(x) := fl(x) and get:

ap
pp
φ =

I∑
i=1

wφ,ibi +

D∑
d=1

(
wdφ,cs

ppp−d
c +

H∑
h=1

wdφ,hb
ppp−d
h

)
(86)

bp
pp
φ = fφ(a

ppp
φ) (87)

bpppι = fφ(−apppφ) = 1− fφ(apppφ) (88)

cell state: The Input is multiplied by G:

spppc = Gbpppιu
ppp
c + sppp

−

c bp
pp
φ (89)

output gate:

apppω =

I∑
i=1

wω,ibi + wω,cs
ppp
c +

D∑
d=1

H∑
h=1

wdω,hb
ppp−d
h (90)

bpppω = fω(a
ppp
ω) (91)
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cell output:

bpppc = bpppωgc(s
ppp
c) (92)

4.3 backward pass

cell output:

εpppc =
∂E

∂bp
pp
c
=

K∑
k=1

wk,cδ
ppp
k +

D∑
d=1

H∑
h=1

(
wdh,cδ

ppp+d
h + wdω,cδ

ppp+d
ω + wdφ,cδ

ppp+d
φ +

D∑
d′=1

wd(λ,d′),cδ
ppp+d
λ,d′

)
(93)

output gate:

εpppω =
∂E

∂bp
pp
ω
= εpppcg(s

ppp
c) (94)

δpppω =
∂E

∂ap
pp
ω
= f ′ω(a

ppp
ω)ε

ppp
ω (95)

cell state:

εppps =
∂E

∂sp
pp
c
= bpppωg

′
c(s

ppp
c)ε

ppp
c + δpppωwω,c +

D∑
d=1

(
ε
ppp+d
s b

ppp+d
φ + wφ,cδ

ppp+d
φ

)
b
ppp+d
λ,d + w(λ,d),cδ

ppp+d
λ,d (96)

forget gate and input gate:

εp
pp
φ = s

ppp−d
c εppps (97)

εpppι = Gupppcε
ppp
s (98)

δp
pp
φ = f ′φ(a

ppp
φ)
(
εp
pp
φ − ε

ppp
ι

)
(99)

lambda gates:

εp
pp
λ,d =

(
δp
pp
φwφ,c + εpppsb

ppp
φ

)
s
ppp−d
c (100)

δp
pp
λ,d =

f ′m(aλ,d)ελ,d
D∑
d′=1
d′ 6=d

fm(aλ,d′)− fm(aλ,d)
D∑
d′=1
d′ 6=d

f ′m(aλ,d′)ε
ppp
λ,d′

(
D∑
d′=1

fm(aλ,d′)

)2 (101)

cell input:

δpppc = f ′c (a
ppp
c)Gb

ppp
ι ε
ppp
c (102)

4.4 BIBO-stability of the leaky-cell

Lemma 6 (BIBO-stability of LSTM-stable-cells). The LSTM-leaky-cell is BIBO-stable for any activa-
tions bdφ, b

ppp
λ,1, . . . , bλ,D with an arbitrary C ∈ (0,∞).
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Proof. Using
∑D
d=1 b

ppp
λ,d = 1, bpppι + bp

pp
φ = 1 and setting G := C, the inequation

∣∣sdc ∣∣ =
∣∣∣∣∣Gbpppιupppc + bp

pp
φ

D∑
d=1

s
ppp−d
c bp

pp
λ,d

∣∣∣∣∣ ≤ Gbpppι + bp
pp
φC

D∑
d=1

bp
pp
λ,d = C

(
1− bpppφ + bp

pp
φ

)
= C (103)

(104)

holds.
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5 general derivation of Leaky-Cells

in this chapter we introduce a more general way to create cells. Therefor we combine the results of the
previous sections with the theory of time-discrete linear shift invariant (LSI)-systems. In many signal
processing tasks there exists an information signal added with white noise. The aim is to filter the
information out of the noisy signal. Often the signals have a specific frequency. When this (often low)
frequency is known, an LSI-system can be used to get the information by suppressing the noise. For the
theory we orientate towards Poularikas (2000) and Schlichthärle (2000).

5.1 LSI-systems

Let u : R+ → R be a causal signal. We denote U(s) = L{u(t)} the Laplace-transform of u (Poularikas,
2000, 5.1),(Schlichthärle, 2000, 1.2.1). Sampling the signal by the sample time Ts > 0, we get a sequence
u[n] = {u(nTs)}. We denote U(z) = Z {u[n]} the (one-sided) Z-transform of u (Poularikas, 2000,
6.2),(Schlichthärle, 2000, 3.3). Let y[n] = f(u[n]) be the an LSI-system with an input sequence u[n] and
an output sequence y[n]. The ouput sequence can be calculated by convolving the input sequence with
the impulse response h[n] of the LSI-system:

y[n] = u[n] ∗ h[n] =
∞∑

i=−∞
u[i]h[n− i] =

∞∑
i=−∞

u[n− i]h[i] = h[n] ∗ u[n] (105)

For a causal LSI-system we get h[n] = 0 ∀n < 0. So we can change the limits

y[n] =

∞∑
i=0

u[n− i]h[i]. (106)

Let u(t) = ejωt, j2 = −1 be a harmonic function and u[n] = {u(nTs)} the sampled sequence. The output
sequence

y[n] = u[n] H(z)|z=ejωTs (107)

N∑
i=0

aiy[n− i] =
M∑
i=0

biu[n− i] (108)

with N,M ∈ N , ai, bi ∈ R a time-discrete LSI-system of the order max{N,M}. In some literature a
linear shift invariant (LSI)-system is called time-discrete linear time invariant (LTI)-system.
If we Z-transform equation (108) we get:

Z

{
N∑
i=0

aiy[n− i]

}
=Z

{
M∑
i=0

biu[n− i]

}
(109)

⇔
N∑
i=0

aiZ {y[n− i]} =
M∑
i=0

biZ {u[n− i]} (110)

⇔
N∑
i=0

aiz
−iZ {y[n]} =

M∑
i=0

biz
−iZ {u[n]} (111)

⇔ Z {y[n]} =
∑M
i=0 biz

−i∑N
i=0 aiz

−i
Z {u[n]} (112)

⇔ Y (z) =H(z)U(z) (113)
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The rational function

H(z) =
Y (z)

U(z)
=

M∑
i=0

biz
−i

N∑
i=0

aiz−i
(114)

is know as transfer function of an LSI-system (Poularikas, 2000, 6.9). We can split H(z) into a transfer
function H1(z) with infinite impulse response (IIR) and H2(z) with finite inpulse response (FIR):

H(z) =

M∑
i=0

biz
−i

N∑
i=0

aiz−i
=

1
N∑
i=0

aiz−i︸ ︷︷ ︸
H1(z)

M∑
i=0

biz
−i

︸ ︷︷ ︸
H2(z)

= H1(z)H2(z) (115)

Converting this back to difference equations and introducing an internal state x[n], we get

X(z) =H1(z)U(z) (116)

⇔ X(z) =
1

N∑
i=0

aiz−i
U(z) (117)

⇔
N∑
i=0

aiz
−iX(z) =U(z) (118)

⇔
N∑
i=0

aix[n− i] =u[n] (119)

⇔ x[n] =
1

a0

(
u[n]−

N∑
i=1

aix[n− i]

)
(120)

⇔ x[n] =α0u[n] +

N∑
i=1

αix[n− i] (121)

with α0 = a−10 , αi = −a−10 ai∀i = 1, . . . , N and

Y (z) =H2(z)X(z) (122)

⇔ Y (z) =

M∑
i=0

biz
−iX(z) (123)

⇔ y[n] =

M∑
i=0

bix[n− i]. (124)

The advantige of these equations is the dependency just of the previous activations of x[n]. We want
to design a first order LTI-system with trainable coefficients α0, α1, b0, b1 ∈ R. One of the well-known
properties of LTI-systems is the following:

Lemma 7. Let u[n] =
{
ejωnTs

}
be a harmonic input sequence with the imaginary number j2 = −1. Let

H1(z), H2(z) be the transfer function as defined before. When the poles of H1(z) are inside the circle
|z| = 1, the internal state x[n] and the output y[n] of the LTI-system are also harmonic sequences with
the same frequency ω, but with different amplitude and phase and can be calculated as x[n] = H1(ω)u[n]
and y[n] = H2(ω)x[n] = H1(ω)H2(ω)u[n] = H(ω)u[n] with H1,2(ω) = H1,2(z)|z=ejωTs .

To analyze H(z) we divide it into the amplitude |H(z)| and phase arg (H(z)) and transform from Z- to
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F-transform. The amplitude of H1(ω) = H1(z)|z=ejωTs is calculated by

|H1(ω)| =
∣∣∣∣ α0

1 + α1ejωTs

∣∣∣∣ (125)

=
|α0|

|1 + α1 cos(ωTs) + α1j sin(ωTs)|
(126)

=
|α0|√

(1 + α1 cos(ωTs))
2
+ α2

1 sin
2(ωTs)

. (127)

To get the low frequency of u[n] we have to set α1 ≥ 0. To have the poles of H1(z) into the circle |z| = 1,
it follows |α1| < 1, so α1 ∈ [0, 1). To get a maximal gain of C1 := max

ω
|H1(ω)| we get the constraint

|α0| ≤ C1 (1− α1). In the same way in analyze H2(z):

|H2(ω)| =
∣∣b0 + b1e

jωTs
∣∣ (128)

=

√
(b0 + b1 cos(ωTs))

2
+ b21 sin

2(ωTs) (129)

To get the maximal gain at low frequency the parameters b0 and b1 must have the same sign. To fulfill
the additional constraint C2 := max

ω
|H2(ω)|, we get |b0 + b1| ≤ C2.

With the bounds for the parameters we now can define a new cell type. Our parameters should be
activations of units like the gates in LSTM-cells. We have to find the right activation functions to fulfill
the inequations above. Using the weight-space symmetries in a network with at least one hidden layer
((Bishop, 2006, 5.1.1)), wlog. we set α0, α1, b0, b1 ≥ 0. Like in 4 we have a cell input upppc and a previous

internal state sppp
−

c as weighted convex combination of all other previous states sppp
−
d
c , d = 1, . . . , D. The

internal state spppc is calculated like in 4.2 with G := C1. For the output we set C2 := 2.
output gate 0:

apppω0
=

I∑
i=1

wω0,ibi + wω0,cs
ppp
c +

D∑
d=1

H∑
h=1

wdω0,hb
ppp−d
h (130)

bpppω0
= fω0

(apppω0
) (131)

output gate 1:

apppω1
=

I∑
i=1

wω1,ibi + wω1,cs
ppp
c +

D∑
d=1

H∑
h=1

wdω1,hb
ppp−d
h (132)

bpppω1
= fω1(a

ppp
ω1
) (133)

With the logistic functions fω0
(x) = fω1

(x) = fl(x) the inequation b0 + b1 ≤ 2 = C2 is fulfilled. The
output is squashed by gc(x) := tanh(x) to get one more non-linearity into the cell.
cell output:

bpppc = gc

(
bpppω0

spppc + bpppω1
sppp
−

c

)
(134)

How can we interpret different activations of the gates? When we assume small input |upppc | � 1, the
output can be approximated with bpppc ≈ bpppω0

spppc + bpppω1
sppp
−

c . For constant activations of the gate we get the
transfer function

H(z) =
Y (z)

U(z)
= α0

b0 + b1z
−1

1− α1z−1
= G(1− bpppι )

bpppω0
+ bpppω1

z−1

1− bpppι z−1
(135)

and the update equations

x[n] =α0u[n] + α1x[n− 1] ⇔ spppc = G(1− bpppι )upppc + bpppι s
ppp−

c , (136)

y[n] =b0x[n] + b1x[n− 1] ⇔ bpppc ≈ bpppω0
spppc + bpppω1

sppp
−

c (137)
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∑

bpppc u

∑s
ppp−1,2
c

bpppc

u

λ

∑
s
ppp−1,2
c

bpppc u

λ

∑

spppc bpppc u

×

spppc

sppp
−

c

+

∑

spppc bpppc u

×

bpppc

s
ppp−1
c s

ppp−2
c

Figure 2: schematic diagram of a LeakyLP cell

bpppι bpppω0
bpppω1

H(z)
G interpretation

0 1 0 1 normal unit
∈ (0, 1) ∈ (0, 1) 0 (1− bpppι )

bpppω0

1−bpppι z−1 cell of section 4

∈ (0, 1) 0 ∈ (0, 1) (1− bpppι )
bpppω1

1−bpppι z−1 z
−1 cell of section 4 with delay 1

∈ (−1, 1) 0.5 0.5
(1−bpppι )

2

(1+z−1)
1−bpppι z−1 Butterworth lowpass filter (see (138))

Table 1: interpretation of gate activations

For special activations of the gates there exists an interpretation. In table 1 we show some of them.
The most interesting row is the last one. There is a direct relation between the cutoff-frequency of a
discrete Butterworth lowpass filter and the activation of bpppι : Let fcutoff be the frequency, where amplitude
response is reduced to 1√

2
of the maximal gain. Let Ta = 1 be the sample time. The cutoff frequency

fcutoff can be calculated by

fcutoff =
1

π
arctan

(
1− bpppι
1 + bp

pp
ι

)
, (138)

bpppι =
1 + tan(πfcutoff )

1− tan(πfcutoff )
. (139)

with the bounds fcutoff ∈ (0, 0.5) and bpppι ∈ (−1, 1). [very more details here....]
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6 experiments

6.1 the arabic dataset

To compare the cells with state of the art, we took the 2007 Arabic dataset from ICDAR. This dataset
contains of 7 (a-f,s) sets, where 5 (a-e) are available for training and validation. With all information
we got from Graves, we were able to reproduce the training-log of him. The networks are trained
with gradient decent, using learning rate of 10−4 and momentum of 0.9, if not otherwise specified. To
compare the different networks we take the Label-Error-Rate (LER) how described in (REFERENCE of
ALEX or write down by yourself!) at the validation set. First, we want to discuss the typical training
of these network, taking a network with LSTMs in all layers. To compare cells we take the neural

network described in Graves (2008). The only thing we do is to substitute the cells. There are three
multidimensional (MD) layers. The first MD-layer has just two cells in each direction, but there is a
longer MD time series than in the second and third MD-layer. So, for the first layer the stability criterion
perhaps is more important than the performance. To compare the different cells with each other, we
train 10 networks with different initialization of weights per cell. Of these networks, we take the minimal
LER at validation set over all epochs. Afterwords we take the minimum, maximum and median of these
10 values. So we have 3 values to compare different cells.

6.2 different cells in the lowest layer

In this section we chose the lowest layer for comparison. Here, we take all cells described in this paper.
All network are trained 100 epochs. The 3 values are shown in the table.

Label-Error-Rate in Percent
Celltype min max median
LSTM 8,58% 14,73% 10,58%
Stable 8,78% 11,75% 9,55%
Leaky 8,87% 10,47% 9,10%

LeakyLP 8,24% 9,40% 8,93%
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6.3 different cells in other layers

Celltype in layers Label-Error-Rate in Percent
1st 2nd 3rd min max median

LSTM LSTM LSTM 8,58% 14,73% 10,58%
LeakyLP LSTM LSTM 8,24% 9,40% 8,93%
LeakyLP LeakyLP LSTM 8,35% 11,27% 8,91%
LeakyLP LeakyLP LeakyLP 8,92% 11,69% 9,74%

6.4 stability of cells regarding learning-rate

Label-Error-Rate in Percent
Celltype BP-delta min max median
LSTM 1 · 10−4 8,58% 14,73% 10,58%
LSTM 2 · 10−4 9,15% 16,86% 10,51%
LSTM 5 · 10−4 9,03% 21,77% 11,44%
LSTM 1 · 10−3 10,21% 30,20% 11,44%

LeakyLP 1 · 10−4 8,92% 11,69% 9,74%
LeakyLP 2 · 10−4 8,38% 9,09% 8,81%
LeakyLP 5 · 10−4 8,25% 8,95% 8,78%
LeakyLP 1 · 10−3 8,29% 9,20% 8,88%
LeakyLP 2 · 10−3 8,95% 12,81% 9,55%

6.5 French: different cells in the lowest layer

In this section we chose the lowest layer for comparation. Here, we take all cells decribed in this paper
again. All network are trained 111 epochs. The 3 values are shown in the table.

Label-Error-Rate in Percent
Celltype min max median
LSTM 14,96% 17,63% 16,50%
Stable 14,45% 16,02% 15,11%
Leaky 14,77% 16,39% 15,85%

LeakyLP 14,63% 15,78% 15,30%

6.6 French: different cells in other layers

Celltype in layers Label-Error-Rate in Percent
1st 2nd 3rd min max median

LSTM LSTM LSTM 14,96% 17,63% 16,50%
LeakyLP LSTM LSTM 14,63% 15,78% 15,30%
LeakyLP LeakyLP LSTM 14,21% 15,57% 14,92%
LeakyLP LeakyLP LeakyLP 14,94% 16,18% 15,52%
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6.7 French: stability of cells regarding learning-rate

Label-Error-Rate in Percent
Celltype BP-delta min max median
LSTM 1 · 10−4 14,96% 17,63% 16,50%
LSTM 2 · 10−4 14,41% 16,88% 15,61%
LSTM 5 · 10−4 15,05% 16,27% 15,47%

LeakyLP 1 · 10−4 14,94% 16,18% 15,52%
LeakyLP 5 · 10−4 12,68% 13,95% 13,57%

LeakyLP 1st & 2nd 2 · 10−4 13,26% 14,04% 13,65%
LeakyLP 1st & 2nd 5 · 10−4 12,08% 13,42% 12,87%
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