
An approach for output decoding of neural networks

Tobias Strauß∗ Roger Labahn Gundram Leifert Welf Wustlich

December 21, 2012
(date of revision: August 23, 2013)

Abstract

We review two decoding methods for recurrent neural networks – based on the well known weighted
Levenshtein distance and the connectionist temporal classification (CTC) – and we introduce a new
method – the dynamic Levenstein distance (DynWL). We compare these three methods analytically
in terms of time complexity and error performance. Although the approaches are different, there are
deep connections between these ways of decoding. Finally, we test on the Arabic and French ICDAR
data sets. Our experiments show that CTC yields the smallest error rates. Nevertheless, there are
scenarios where DynWL is a good choice between performance and time complexity.

1 Output decoding via dictionaries

In this section, we describe how to choose a lexicon item from a given lexicon D using the output matrix
of the RNN. We look at four different methods which differ in running time and performance: Levenshtein
distance, Hamming, DynWL and CTC.

Let A be the Alphabet. The RNN N : I ⊂
⋃
t∈N Rm×t → C ⊂

⋃
t∈N R|A|+1×t distinguishes between

|A| + 1 different classes namely the different letters and one artificial class called: blank, no label, or
NaC. Further, let A′ := A∪ {NaC} be the set of class labels. A word is a sequence of elements of A. To
symbolize a NaC within a word, we use t. To keep it simple, we abbreviate the number of columns of
N (xxx) by T = T (xxx).

Decoding problem: We define our test data to be (xxx,zzz) ∈ S′ ⊂ I × D where S′ is the set of all
words zzz ∈ D and writings xxx of zzz. The decoding algorithm dµ : C →

⋃
t∈NAt is an algorithm which

chooses the lexicon item from the output matrix N (xxx) of the RNN. Usually, one defines a function
µ : C →

⋃
t∈NAt → R whereas µ(N (xxx), sss) characterizes the confidence that N (xxx) encodes sss ∈

⋃
t∈NAt.

Typically, the decoding function dµ is defined as

dµ(N (xxx)) := argminsss∈D µ(N (xxx), sss).

Thus, dµ returns the lexicon item with the minimum value µ(N (xxx), sss) for a network output N (xxx). To
introduce examples functions, we need to provide some terms: The elements of the output matrix N (xxx)
are (ytc)t,c. If the symbol c describes a class, we usually use c also as subscript symbolizing the related
index of class c of a vector or matrix i.e. ytc is the output value of class c at position t. The vector
yyyt denotes the confidences for all labels. A path πππ = (πt)t ∈

⋃
t∈NA′t is a sequence of class labels

from A′. The activations of the path (πt)t are denoted by ytπt . The best path βββ = βββ(N (xxx)) := (βt)t
is the path with the highest activations maxc y

t
c at each position t. To collapse a path (πt)t means to

merge consecutive identical πt and delete the NaC s. For the related function, we use the notation of
∗Universität Rostock

1

[Gra12]: Let F :
⋃
t∈NA′t →

⋃
t∈NAt define the many to one function which maps a path to a word.

For example, F(t at abt) = F(t aat aabbt) = aab. The symbol sss1:u denotes the subword s1s2 . . . su
of s1s2 . . . sU = sss ∈ AU .

In the following, we want to review several functions µ.

1.1 Levenshtein distance

The first function WL(N (xxx), zzz) works as follows: We collapse the best path and calculate the Levenshtein
distance (also edit distance, see [MRS08]) WL(N (xxx), zzz) := ED(F(βββ), zzz) between zzz and the collapsed best
path βββ. The Levenshtein distance can be calculated efficiently using dynamic programming. Since it is
well known how to compute the Levenshtein distance, we omit a detailed description here. This method
does not incorporate all of the information of the output of the neural net. Thus, we would expect dWL

to yield more errors than the following methods. Better results may be obtained by adapting the edit
costs (weighted Levenshtein distance). The Levenshtein distance is still the most used decoding scheme
for the output neural networks.

1.2 Hamming distance

Similarly to the Levenshtein distance, one can also use the Hamming distance. But in this case, we have
to consider paths instead of words. Given two vectors (of paths in our case) πππ,πππ from A′, the Hamming
distance is defined to be the number of distinct positions πt 6= πt. We define

ham(N (xxx), zzz) := min
πππ∈F−1(zzz)

ham(πππ,βββ).

1.3 Connectionist Temporal Classification

The Connectionist Temporal Classification (CTC) was introduced in [GFGS06]. To train neural networks
for sequence labeling, one usually needs position depended targets which often are difficult to generate
since they are expensive and the creating consumes a lot of time. CTC overcomes this difficulty by an
automatic separation of the inputs. All you need is the target string but not the precise position of the
letter. Additionally, a great benefit of CTC is that it interprets output activations as probabilities such
that we can ask for the probability of any reference given image xxx. To choose the maximum probability
lexicon item is not a new approach (it is a standard approach for HMMs, see for example [KLSS02]) but
it is not very common for neural networks.

To normalize the output matrix to entries between 0 and 1, every column (which means the output at a
certain position) of the neural net is applied to softmax. The normalized activations sum to 1 such that
we will interpret them as probabilities p(c|yyyk) of c given yyyk. Let stc be

stc :=
exp(N (xxx)t,k)∑
j exp(N (xxx)t,j)

.

We define CTC(N (xxx), zzz) := −p(zzz|xxx) to formulate a minimization problem. Assume p(c1|yyyk) and p(c2|yyyl)
are independent for any c1, c2 ∈ A ∪ {NaC} and k 6= l, then

p(zzz|xxx) :=
∑

πππ∈F−1(zzz)

p(πππ|xxx)

whereas

p(πππ|xxx) :=
T∏
k=1

skπk .

2

Fortunately, we do not have to evaluate every path individually. The probability p(zzz|xxx) can be calculated
using dynamic programming. For a detailed description see [GFGS06] or [Gra12].

1.4 Dynamic Weighted Levenshtein distance

In this subsection, we introduce a new function - the Dynamic Weighted Levenshtein Distance (DynWL)
- which is strongly inspired by the Levenshtein Distance but it turns out to have also connections to the
CTC approach. Just like the previous functions, DynWL is also calculated in a dynamic programming
way. But we just have to compute half as much values as CTC. This results from the fact that we do not
need to extend zzz by inserting NaC s.

We introduce the new term “squash”. Squashing a path πππ means almost the same as collapsing πππ. The
result is a word. The difference between both terms is the treatment of repeated letters: If a NaC is
between two other repeated labels the path collapses to two letters but squashing the same path yields
both one and two letters. The other way around, two repeated labels without a NaC inbetween collapse
to one letter but it squashes to both one letter and two letters. Formally, we model this by the mapping
G : A′∗ → P(A∗). The mapping G deletes or substitutes all the NaC s by neighboring labels and outputs
all possibilities for keeping or deleting repeated labels. With the above example G(t at abt) = {aab, ab}
and G(t aat aabbt) = {aaaabb, aaabb, aabb, abb, aaaab, aaab, aab, ab}.

Therefore, one path can squash to a set of words (containing more than one element). The idea behind
this is a more careful treatment with the NaC . If the NaC does not work as expected - namely as a
separator between different characters - we allow several possibilities to be valid.

The costs of any character c depends on the maximum activation ytβt
at position t and the activation ytc.

I.e. DynWL uses dynamical, output dependent costs instead of constant costs as Hamming or Levenshtein.
Substituting βt at position t with label c generates the costs

dtc := N (xxx)t,βt −N (xxx)t,c.

We denote the costs ytβt
−ytπt as distance (to the bestpath) hereafter. The Dynamic Weighted Levenshtein

Distance calculates the minimum distance of any path squashing to the reference zzz. Now, let

dynwl(N (xxx), zzz) := min
πππ∈G−1(zzz)

|π|∑
t=1

dtβt .

An efficient way to calculate this distance is given in section 2.

2 DynWL Algorithm

The most efficient way to calculate dynwl(N (xxx), zzz) is a Viterbi-style algorithm. We denote the entries of
the related matrix by γtu describing the minimal “distance” of the best path at position t to a path πππzzz,u
where zzz1:u ∈ G(πππzzz,u). γt0 specifies the distance that the word does not begin until position t. The initial
values are

γ0k =

d0t k = 0

d0z1 k = 1

0 else
.

The recursive formula for γtu is

γtu := min
{
γt−1u + dt−1zu , γt−1u−1 + dt−1zu , γt−1u + dt−1t

}
,

with the initial values γtu =∞ if t < u, and γt0 =
∑
s∈[t] d

s
t and γ11 = d1zzz1 . The overall costs for zzz can be

read from the last item of the matrix dynwl(N (xxx), zzz) = γT|zzz|. Figure 2 illustrates the DynWL algorithm
and Algorithm 1 provides the pseudocode for DynWL.

3

Ref

c

a

t

Position: 1 2 3 4 5 6 7 8

∑
t∈[2]

dtt
∑

t∈[3]
dtt

∑
t∈[4]

dtt
∑

t∈[5]
dttd1t

d1c

∞

∞

∞

γ5
2

γ5
3 γ6

3

Figure 1: Scheme of the dynamic programming matrix for DynWL. The varable dkt denotes the distance
of the NaC activation to the maximum and [n] := {1, . . . , n}. There are 2 previously calculated γ values
which determine a table entry γtu in the center. Either you already read the letter zu , then you continue
with a NaC or again with the same letter, or you read the previous letter zu−1. Then you have to
continue with the letter zu.

Algorithm 1 DynWL
Require: zzz, (dtc)c,t

for t := 1→ T do
γt0 ←

∑t
i=1 d

t
t

end for
γ11 ← d1z1
for u := 2→ |zzz| do

γ1u ←∞
end for
for t := 2→ T do

for u := 2→ |zzz| do
γtu ← min

{
γt−1u + dt−1zu , γt−1u−1 + dt−1zu , γt−1u + dt−1t

}
end for

end for
return γT|zzz|

3 Comparision

DynWL is an extension to the Hamming and Levenshtein decoding whereas the substitution, deletion
and insertion costs depend on the activations.

Similarly to CTC, DynWL returns the dictionary item which is also optimal in some way. It returns the
dictionary item zzz whose optimal path yields the highest softmax probability under all paths squashing to
any dictionary item. This is because the distance dtc of the activations can be rewritten as the distance
of logarithmic softmax values:

dynwl(N (xxx), zzz) = min
zzz=G(πππ)

T∑
t=1

(max
c′

ytc′ − ytc)

= min
zzz=G(πππ)

T∑
t=1

(max
c′

ln(stc′)− ln(stc)) (1)

So if neural net works well and the softmax probabilities approximate the real probability of a character
at the current position reliably, DynWL will do better than Hamming and Levenshtein decoding.

4

WLD Hamming DynWL CTC
average error 18,32% 17,68% 11,22% 10,77%
minimum error 13,84% 15,73% 7,95% 7,62%
maximum error 35,71% 34,23% 23,92% 22,83%

Table 1: Word error rate on the IFN/ENIT dataset. The minimum error represents the smallest error of
the ten randomly initialized networks. maximum error is analogously defined.

DynWL could also be seen as modified CTC but there are two main differences: the NaC s role and the
way different paths are combined. CTC interprets the NaC as letter separator (paths are collapsed)
whereas DynWL sees this special label also as placeholder for an unsure character (squashed paths). As
a result of squashing the paths, several words may yield the same DynWL costs and a special treatment
for these cases is required. On the other hand, DynWL also incorporates paths which CTC does not.
This could be of advantage if for example two repeated letters are written narrow, there might be not
enough space to insert a separation NaC such that CTC will generate more costs and might return the
wrong dictionary item.

As another difference, CTC sums all distinct paths collapsing to sss to get the overall probability of sss in
N (xxx). In contrast, DynWL takes the minimum of both paths, returning only the distance to sss of the
“nearest” path.

4 Experiments

In this section, we compare the decoding methods on two experiments from ICDAR 2009. We use the
same neural network architectures as in [Gra12]. The network consists of MDLSTM Layer and two
Feedforward Layer. We omit a detailed description and refer to [Gra12] where the interested reader will
find all important information. The program is written in JAVA. Note that we use exactly the same
input to all decoding methods.

4.1 Offline Arabic Handwriting Recognition

Data We compare the performance of WL, Hamming, DynWL and CTC decoding on the IFN/ENIT
database of handwritten Arabic words (see [PMM+02]). It contains 32492 different imagines of Tunisian
places. Unlike the original task, we compare the names of the places and do not incorporate the zip
codes.

Setup We divide the data into a training set of size 30,000 and a validation set containing 2492 items.
We train 10 randomly initialized neural networks on the training set. The tests are only performed on
the validation set. The lexicon was created from all words occurring in the whole data set. It contains
1508 different words.

Evaluation Table 1 shows the average minimum and maximum word error rates of the 10 neural
networks on the IFN/ENIT dataset. Levenshtein and Hamming decoding perform worst. CTC performs
slightly better than DynWL. Note that the RNNs are trained to minimize the CTC error. This might
be a disadvantage for DynWL. However, we did not implement network training version of DynWL. The
computation times are almost equal. CTC and Hamming decoding need a little bit more computation
time since the dynamic programming table is about 2 times bigger than for DynWL. WL is the fastest
algorithm.

5

Test 1 Test 2
WLD Hamming DynWL CTC WLD Hamming DynWL CTC

average error 16,49% 16,05% 9,42% 8,66% 19,82% 19,72% 12,52% 10,87%
minimum error 14,98% 14,39% 8,34% 7,66% 18,23% 17,82% 11,31% 9,77%
maximum error 18,67% 17,86% 10,77% 10,00% 22,13% 21,61% 14,17% 12,33%

Table 2: Word error rate for the two French handwriting recognition test. The minimum error represents
the smallest error of the ten randomly initialized networks. Maximum error is analogously defined.

4.2 French Handwriting Recognition

Data We compare the performance of WL, Hamming, DynWL and CTC decoding on a subset of the
RIMES database of handwritten mail snippets (see [GA09]) published at ICDAR 2009.

Setup Again the neural network architecture for this task was provided by Graves (see [Gra12]). The
systems parameter are reported there. We divide the data into a training set of size 44,196 and a validation
set containing 7542 items. We train 10 randomly initialized neural networks on the training set. The
tests are only performed on the validation set. Similar to the original task, we test with two different
lexicons: The first one (Test 1) contains all elements from the validation list (1636 words) and the second
one (Test 2) was created from all words occurring in the whole data set (4936 words).

Evaluation Table 2 shows the average minimum and maximum word error rates of the 10 neural
networks on the dataset for the different dictionaries. The results are similar to those of Section 4.1.
Levenshtein and Hamming decoding perform worst. CTC performs slightly better than DynWL.

5 Conclusion

We presented 4 different algorithms for output decoding for neural networks and tested it on two hand-
writing recognition tasks. The newly introduced DynWL performs slightly worse than CTC. In case of
very long output matrices, it still makes sense to use DynWL since CTC is often used in log scale to avoid
underflows as reported in [Gra12]. This dramatically increases the time complexity. This is unnecessary
for DynWL since underflows cannot appear.

We also hope to convince the reader of the great benefits of CTC. Decoding / spelling correction works
much better compared to Levenshtein where much of the network information is lost.

References
[GA09] Emmanuele Grosicki and Haikal El Abed. Icdar 2009 handwriting recognition competition.

In ICDAR, pages 1398–1402. IEEE Computer Society, 2009.

[GFGS06] Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhuber. Connec-
tionist temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In William W. Cohen and Andrew Moore, editors, ICML, volume 148 of ACM
International Conference Proceeding Series, pages 369–376. ACM, 2006.

[Gra12] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume 385 of
Studies in Computational Intelligence. Springer, 2012.

6

[KLSS02] Alessandro L. Koerich, Yann Leydier, Robert Sabourin, and Ching Y. Suen. A hybrid large
vocabulary handwritten word recognition system using neural networks with hidden markov
models. In In proceedings of IWFHR’2002, pages 99–104, 2002.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[PMM+02] M. Pechwitz, S. S. Maddouri, V. Mrgner, N. Ellouze, and H. Amiri. Ifn/enit-database of hand-
written arabic words. In 7th Colloque International Francophone sur l’Ecrit et le Document
(CIFED 2002), Hammamet, Tunis, 2002.

7

	1 Output decoding via dictionaries
	1.1 Levenshtein distance
	1.2 Hamming distance
	1.3 Connectionist Temporal Classification
	1.4 Dynamic Weighted Levenshtein distance

	2 DynWL Algorithm
	3 Comparision
	4 Experiments
	4.1 Offline Arabic Handwriting Recognition
	4.2 French Handwriting Recognition

	5 Conclusion

