
Design strategies for weight
matrices of Echo State Networks

Tobias Strauß1, Welf Wustlich1, Roger Labahn1
1 University of Rostock, Germany

January 20, 2012

Keywords: Echo State Networks, recurrent neural networks

This article develops approaches to generate dynamical reservoirs of ESNs
with desired properties reducing the amount of randomness. It is possible
to create weight matrices with a predefined singular value spectrum. The
procedure guarantees stability (Echo State property) and minimizes the im-
pact of noise on the training process. The final reservoir types were already
known in the literature but related input weights were out of the scope of
previous articles. But our experiments show, that well chosen input weights
can improve performance.

1. Introduction

A considerable problem in theory and practice of artificial recurrent neural networks
(RNN) is the training of recurrent connections. Various gradient descent algorithms
(e.g. BPTT or RTRL, see Jaeger (2002)) have been developed, but they suffer from
slow convergence and local minima. An approach to avoid these problems is the Echo
State approach (see e.g. Jaeger (2001a)) which was introduced at the beginning of this
millennium. The Echo State Networks (ESN) consist of three layer: An input layer,
a hidden layer with recurrent connections (called dynamical reservoir (DR)), and the
output layer. In contrast to ordinary networks, a fundamental concept of ESNs is to train
only the output connections, all other connections remain fixed. This simple but effective
training approach ensures a good performance on many tasks (see e.g. Lukoševičius and
Jaeger (2009)).

State of the art in creating dynamical reservoirs is to choose the connections ran-
domly, and afterwards, to scale the spectral radius of the related weight matrix to (often
slightly) lower 1. This is done to satisfy the necessary condition of the stability prop-
erty namely the “Echo State property”. A point of criticism of this method is that it

1

does not ensure stability since the sufficient condition is much more restrictive and of-
ten unregarded. But practically more relevant is that random matrices damp “echos”
with different “directions” unequally. This in turn means that certain parts of the signal
might vanish fast compared to other parts. We aim to construct reservoirs preserving a
variety of “echos”, but the literature does not provide a construction algorithm for such
reservoirs.

An approach of creating reservoirs with certain dynamics is given in Ozturk et al.
(2007). There the authors investigate the average state entropy and motivate a max-
imization of this value to obtain better performing reservoirs. In contrast, we analyze
the linear algebraic properties of a given weight matrix. We intend to adjust all eigen-
values and singular values. Furthermore, this article is targeted at a deeper insight of
the internal dynamics of these reservoirs at least in the linear case.

In the next section, we briefly introduce the backgrounds of Echo State Networks.
Afterwards in section 3, we present methods to create weight matrices with desired
properties. Those weight matrices shall be equipped with predefined singular values and
eigenvalues, easily verifiable stability and a long short term memory. In section 4, we
analyze the impact of disturbances on Echo State Networks: Here we show that our
new matrices are more robust against noise than randomly created ones. We have also
tested the new reservoirs on standard experiments with convincing success and describe
the observations in section 5. There we also investigate different ways of connecting the
inputs to the reservoir.

2. Echo State Networks

Echo State Networks (as well as most other neural networks) consist of neurons and
links. Each neuron has a time dependent activation. We distinguish three kinds of
neurons:

• input units providing external activations uuu ∈ RK

• hidden units with internal activations xxx ∈ RN

• output units which generate the systems output signal yyy ∈ RL

The connections between neurons are weighted. We collect these weights in weight
matrices which are usually denoted byWWW and some superscript referring to the location
of the respective connections. The activations are calculated by

xxx(n+ 1) =f(WWWxxx(n) +WWW inuuu(n+ 1) +WWW backyyy(n)) (1)
yyy(n+ 1) =f out(WWW out(uuu(n+ 1),xxx(n+ 1), yyy(n))). (2)

The functions f : R→ R and f out : R→ R are applied component-wise. Typically, f is
a sigmoid function (like tanh). We assume f out = id throughout this article. The hidden
layer is called dynamical reservoir (DR). Once initialized, the weight matrix WWW of the
DR remains constant like most of the other weights (e.g. weights of the input WWW in or

2

input layer
K neurons

...

...

...

dynamical
reservoir
N neurons

output layer
L neurons

...

...

...

Figure 1: Layers of an Echo State Network. Dashed connections are ignored in our
theoretical investigations. Feedback (output-to-hidden) connections will be used only in
section 5.3.

feedback connections WWW back). Only the output weights WWW out are trained usually by a
fast linear regression algorithm. The states and the targets are collected row-wisely in
the matrices SSS and TTT , respectively. Then (if f out = id) we have to solve

SSS(WWW out)T = TTT . (3)

Definition 1 (Jaeger (2001a)). Let uuu(n) ∈ U and xxx(n) ∈ A with compact spaces U and
A. Assume that the network has no output feedback connections. Then, the network
has Echo States if the network state xxx(n) is uniquely determined by any left-infinite
input sequence uuu−∞. More precisely, this means that for every input sequence . . . ,uuu(n−
1),uuu(n) ∈ U−N, for all state sequences . . . ,xxx(n− 1),xxx(n) and . . . ,xxx′(n− 1),xxx′(n) ∈ A−N
, where for any i ∈ Z

xxx(i) = f(WWW inuuu(i) +WWWxxx(i− 1)) (4)

and

xxx′(i) = f(WWW inuuu(i) +WWWxxx′(i− 1)) (5)

it holds that xxx(n) = xxx′(n) for any n.

Theorem 2 (Jaeger (2001a)). Assume f = tanh and a network without output feedback.

(a) Let the weight matrix WWW satisfy σmax = Λ < 1, where σmax is it’s largest singular
value. Then ‖xxx(n+ 1)−xxx′(n+ 1)‖2 < Λ‖xxx(n)−xxx′(n)‖2 for all inputs uuu(n+ 1), for
all states xxx(n),xxx′(n) ∈ [−1, 1]N . This implies Echo States for all inputs uuu(n + 1),
for all states xxx(n),xxx′(n) ∈ [−1, 1]N .

(b) Let the weight matrix WWW have a spectral radius ρ(WWW) > 1, where ρ(WWW) is an

3

eigenvalue ofWWW with the largest absolute value. Then the network has an asymp-
totically unstable null state. This implies that it has no Echo States for any input
set U containing 0 and admissible state set A = [−1, 1]N .

See Jaeger (2001a) for the proof. Obviously, Theorem 2 provides a necessary and a
sufficient condition for the Echo State property.

To avoid a necessary but trivial case-by-case analysis we assume both one-dimensional
input and output (i.e. L = K = 1). Therefore, some matrices become vectors which we
denote by small bold letters, i.e. wwwin instead ofWWW in or wwwout instead ofWWW out. The higher
dimensional case can be treated in almost the same way.

We usually will refer to the linear case, f = id, to allow some analysis. Experiments
show that improvements derived from the linear case usually also work quite well in the
nonlinear case (e.g. f = tanh).

3. Construction

As already mentioned in the introduction, the dynamical reservoir typically is initialized
randomly and stays untrained. Jaeger (Jaeger (2002)) suggested the following procedure:

1. Randomly generate an internal weight matrix WWW 0.

2. Normalize WWW 0 to a matrix WWW 1 with unit spectral radius by putting WWW 1 =
(1/|ρ(WWW 0)|)WWW 0, where |ρ(WWW 0)| is the spectral radius of WWW 0.

3. ScaleWWW 1 toWWW = αWWW 1, where α < 1, such that finallyWWW has a spectral radius of
α.

The above procedure does not state anything about the singular values. Therefore,
the Echo State property is not ensured. Naturally, it arises the question about stable
reservoirs. Furthermore, only the absolute value of the maximal eigenvalue is known
which induces the question about a design for reservoirs with user-defined properties.
One approach to answer these questions was developed in Ozturk et al. (2007). They
suggested two different methods but the second is out of focus since it is a bias learning
method. The first one concerns the steps 1 and 2 of Jaeger’s reservoir construction.
Instead choosing of a random matrixWWW 0, the authors generate a matrix with predefined
eigenvalue spectrum using the rational canonical form:

WWW 0 :=

−a1 −a2 · · · −aN−1 −aN

1 0 · · · 0 0

0
.

...
... 0 0
0 · · · 0 1 0

 (6)

4

Due to the particular structure of WWW 0, the characteristic polynomial of this matrix has
the coefficients contained in the first row of −WWW 0, i.e.

p(λ) = det(λIII −WWW 0) = λN + a1λ
N−1 + a2λ

N−2 + · · ·+ aNλ
0. (7)

Thus, all eigenvalues are (and especially the spectral radius is) determined by the first
row of WWW 0. Consequently, a normalization to spectral radius 1 is unnecessary if the ai
are chosen properly. The first row ofWWW 0 is calculated by a maximization of the average
state entropy through a uniform eigenvalue distribution in the complex plane. A neural
network equipped with such a reservoir weight matrix is called ASE-ESN.
Our approach is similar: Instead of Jaeger’s step 1 and 2, we specify classes of matrices

with spectral radius 1 from which WWW 0 is taken.

3.1. Sparse and orthogonal reservoir matrices

Due to Theorem 2, the Echo State property is fulfilled if the singular values are smaller
than 1 and the activation function f is Lipschitz continuous with Lipschitz constant 1.
The Echo State property guarantees that the outputs of the neural net are basically
determined by the sequence of inputs. To calculate the singular values of any matrix
MMM ∈ Rn×n, we can use its singular value decomposition (SVD): There exist unitary
matrices UUU,VVV ∈ Cn×n such that MMM = UUUΣΣΣVVV ∗ where ΣΣΣ is a diagonal matrix containing
the singular values on the main diagonal and ∗ denotes the Hermitian transpose. On the
other hand, if we start with any diagonal matrix DDD and multiply it by any orthogonal
matrices from left and from right, the singular values remain unchanged. This means,DDD
andUUUDDDVVV T have the same singular values becauseDDDTDDD and VVVDDDTUUUTUUUDDDVVV T = VVVDDDTDDDVVV T

are similar and, hence, have the same eigenvalues. The outline is now as follows: We start
with any diagonal matrix with maximal singular value 1 and obtain WWW 0 by consecutive
multiplications by orthogonal matrices. Then also WWW 0 has a maximal singular value of
1 and the Echo State property is satisfied if 0 ≤ λ < 1 where WWW = λWWW 0 as in step 3.
Furthermore, we propose to choose all singular values equal to 1. In this case, also

the absolute values of all eigenvalues equal 1. Since the identity matrix III satisfies all
desired properties, we may start with DDD = III. Self connecting neurons may be not
well motivated biologically. In the theory of artificial neural networks, self connecting
neurons are even not permitted sometimes (e.g. in Hopfield neural networks, see Hopfield
(1982)). Therefore, we first multiply III by any random permutation matrix PPP to shift
nonzero entries away from the main diagonal. Note that PPP is orthogonal, i.e. the desired
spectral properties remain true.
So far, every neuron has exactly one input and one output connection within the

reservoir. To generate some more connections, we multiply PPPIII = PPP by other orthogonal
matrices UUU and VVV . It is computationally important to use sparse weight matrices WWW .
Dense matrices consume many floating point operations which slow down the algorithm
during the working phase. Unfortunately, random UUU and VVV typically generate dense
matrices WWW 0 = UUUPPPVVV T . To avoid too many nonzero entries, we start with WWW 1 = PPP ,
and multiply WWW i−1 step-by-step by sparse orthogonal matrices QQQi to generate only few

5

nonzero entries. I.e. WWW i = QQQiWWW i−1 or WWW i = WWW i−1QQQi. A set of sparse matrices is for
example the set of two-dimensional (Givens) rotation matrices QQQ(h, k, ϕ) defined by

QQQ(h, k, ϕ) :=

. . .
1

cos(ϕ) − sin(ϕ)
1

. . .
1

sin(ϕ) cos(ϕ)
1

. . .

← hth row

← kth row

. (8)

We stop this procedure if WWW i reaches a predefined density and obtain

WWW r+l+1 = QQQ(hil , kil , ϕil) · · · · ·QQQ(hi1 , ki1 , ϕi1)PPPQQQ(hj1 , kj1 , ϕj1) · · · · ·QQQ(hjr , kjr , ϕjr). (9)

Now, we set WWW 0 = WWW r+l+1 and continue with step 3 of Jaeger’s procedure.
Thus, we obtain sparse and orthogonal reservoir matrices to which we refer as SORM

in the following. All singular values and the absolute values of the eigenvalues of the
SORM are known since they are determined by the construction. At least in the linear
case the damping of our RNN is constant and also the stability (Echo State property)
is easy to verify.

Algorithm SORM:

1. Permute the rows of I to avoid small cycles. Then the singular values as
well as the absolute values of the eigenvalues of the resulting matrix all
are 1.

2. Choose some rotation matrix QQQ(h, k, ϕ) and multiply it from left or from
right by the current weight matrix.

3. Repeat step 2 until the desired target density is reached.

3.2. CyclicSORMs

Remember that we assume one input neuron, i.e. the input weight matrixwwwin is a vector.
In section 4 we will show that the matrix

MMM := (wwwin|WWWwwwin| . . . |WWWN−1wwwin) (10)

has a direct influence on the impact of errors in the following sense: If the condition
number of MMM is very high or the rank of MMM is low, then the neural net is very suscep-
tible to noise (in the linear case). This means, the columns of MMM should be linearly

6

independent to guarantee a full rank and, additionally, orthogonal to guarantee a small
condition number. A second motivation for a high rank is given by Jaeger in Jaeger
(2001b): He proved that the short term memory is maximum if WWWMMM is regular which
implies necessarily thatMMM is regular. This meansMMM is directly related to the network’s
ability to remember past inputs.

Note that MMM = (wwwin|WWWwwwin| . . . |WWWN−1wwwin) = (wwwin|λWWW 0www
in| . . . |λN−1WWWN−1

0 wwwin) and,
thus, MMM can never be orthogonal for λ 6= 1 and orthogonal WWW 0: Although the columns
are mutually orthogonal, they do not have unit length. Therefore, we aim to construct
a set of matrices WWW 0 whose elements at least generate an orthogonal matrix MMM0 :=
(wwwin|WWW 0www

in| . . . |WWWN−1
0 wwwin). The rank ofMMM equals rank(MMM0) and the condition number

of MMM0, cond(MMM0), is 1
λN−1 cond(MMM). Since wwwin is part of MMM0, our investigations shall

include also these input weights.
The construction of section 3.1 yields WWW 0 = UUUPPPVVV T (whereas UUU = QQQ(hil , kil , ϕil) ·
· · · ·QQQ(hi1 , ki1 , ϕi1) and VVV T = QQQ(hj1 , kj1 , ϕj1) · · · · ·QQQ(hjr , kjr , ϕjr)). We denote the i-th
column of the identity matrix by eeei.

Lemma 3. If UUU = VVV , wwwin = VVV eee1, and the permutation related to PPP is of cycle length
N , then MMM0 is orthogonal.

Proof. AssumeUUU := VVV . The resulting matrixWWW 0 = VVVPPPVVV T is similar to the permutation
matrix PPP (i.e. both matrices have the same eigenvalues). Now, WWW k

0www
in is orthogonal to

WWW j
0www

in for k 6= j ∈ {0, . . . , N − 1} if and only if (WWW k
0www

in)TWWW j
0www

in = 0. Since wwwin is the
first column of the orthogonal matrix VVV ,

(WWW k
0www

in)TWWW j
0www

in = eeeT1VVV
T (VVVPPP TVVV T)k(VVVPPPVVV T)jVVV eee1 = eeeT1 (PPP k)TPPP jeee1 = eeeT1PPP

j−keee1. (11)

Denote the permutation corresponding to PPP by π. Then PPPeee1 = eeeπ(1). Therefore,
eeeT1PPP

j−keee1 = 0 is satisfied for any k 6= j ∈ {0, . . . , N − 1} iff π is a cycle of length N (i.e.
PPP ieee1 6= eee1 for any i ∈ {1, . . . , N − 1}). Consequently, MMM0 is orthogonal for this special
choice of WWW 0 and wwwin iff the cycle length of PPP is N .

The properties ofWWW 0 = VVVPPPVVV T are well known. E.g. the weight matrixWWW 0 is similar
to PPP , i.e. the characteristic polynomial, p(x), equals that of PPP , p(x) = xN − 1. (To
show this just use the Laplace expansion to calculate det(xIII − PPP).) This means the
eigenvalues are uniformly distributed on the complex unit circle.

Afterwards, we again scale the spectral radius to the desired value. The above pro-
cedure yields sparse and orthogonal matrices like in subsection 3.1. Additionally, the
columns of the above matrices go through the orthogonal subspaces in a cyclic manner
if wwwin = VVV eee1. Under these conditions the reservoir saves the last N inputs u(n) in dis-
joint orthogonal subspaces of RN . Only inputs older than N − 1 time steps do not have
an own subspace and superpose newer inputs. The matrices provide a maximum short
term memory since they produce less superpositions of inputs than random matrices do.
Mainly for the experimental section, we abbreviate the notation and call neural networks
equipped with reservoirs based on the above procedure CyclicSORMs.

7

Algorithm CyclicSORM:

1. Choose a permutation π of cycle length N . The related matrix is denoted
by PPP .

2. Choose a sparse and orthogonal transformation matrix VVV as in subsection
3.1.

3. Set WWW 0 := VVVPPPVVV T .

For all theoretical investigations, we assume a linear activation function f . We will
show later that under this assumption, wwwin = VVV eee1 yields a well conditioned correlation
matrix of the network states. Using a linear combination of different columns of VVV does
not make sense because no additional dynamic is introduced. This linear combination
can also be done within the readout layer leading to the same outcome. The only
(unwanted) effect is a reduction of the memory capacity.
However, for nonlinear activation functions (f = tanh), there it could be (there are,

as we will see later) additional dynamics if wwwin is such a linear combination of different
columns of VVV . Therefore, inspired by the above analysis for wwwin, we will practically use
a weighted sum of different columns of VVV as input weights for the experiments.

3.3. RingOfNeurons and ChainOfNeurons

Taking a closer look at the CyclicSORMs, we discover an even simpler system which has
the same properties in the linear case. Again, let us assume linear activation functions
f = id and f out = id for this section. Then the current activations can be calculated as

xxx(n) = WWWxxx(n− 1) +wwwinu(n), (12)
yyy(n) = wwwoutxxx(n). (13)

For WWW and wwwin generated by the construction of subsection 3.2, we obtain

xxx(n) = (λVVVPPPVVV T)xxx(n− 1) + VVV eee1u(n) (14)

and

VVV Txxx(n) = λPPPVVV Txxx(n− 1) + eee1u(n). (15)

Considering xxx(n) and x̂̂x̂x(n) = VVV Txxx(n) as states of the same but rotated dynamical
system, we can also work with the simpler version x̂̂x̂x generated by the network update

x̂̂x̂x(n) = λPPPx̂̂x̂x(n− 1) + eee1u(n) (16)

i.e. with the very simple reservoir matrix PPP together with input weights eee1. It produces
the same outputs y(n) as before if y(n) = wwwoutxxx(n) = wwwoutVVV x̂̂x̂x(n) i.e. with appropriately

8

modified output weights ŵ̂ŵwout = wwwoutVVV .
According to the permutation matrix PPP , the internal units of the simplified network

are connected in a cyclic way. The units can be relabeled such that without loss of
generality the reservoir matrix is

Ŵ̂ŴW := λ

0 0 . . . 0 1
1 0 . . . 0 0

0
.

...
... 0 0
0 . . . 0 1 0

 . (17)

The neural net with this matrix Ŵ̂ŴW is called RingOfNeurons.
Now, x1(n) =

∑∞
i=0 λ

iNu(n− iN) while all other activations xj(n) are independent of
u(n− iN) for all i ∈ N. This means, neither u(n) nor former inputs can be reproduced
without error except for the trivial case that u(n) = αu(n − N) for some α. So, the
activation x1(n) is an uncontrolled superposition of the inputs u(n− iN) (i ∈ N) which
we would like to avoid by forbidding the connection from the last internal neuron to the
first one (ŵ1,N = 0). It remains

Ŵ̂ŴW := λ

0 0 . . . 0 0
1 0 . . . 0 0

0
.

...
... 0 0
0 . . . 0 1 0

 . (18)

The above matrix Ŵ̂ŴW is nilpotent and has only zero eigenvalues. Such a dynamical
reservoir acts like a FIFO-memory. After N steps the system forgets the input. We will
refer to this reservoir as a ChainOfNeurons.
Because of the same motivation as at the end of section 3.2, for practical experiments,

we will use linear combinations of the columns of the identity matrix III as input weights
in section 5.

3.4. Related publications

The idea of using orthogonal matrices was already reported in Jaeger (2001b). However,
the construction of the matrix was different and without control of the matrix density.
It was shown there experimentally that the short term memory of reservoirs equipped
with orthogonal matrices is almost maximum.
A theoretical analysis of the short term memory of related reservoir matrices in linear

networks was done by White et al. in White et al. (2004). The authors investigated
the memory of random orthogonal matrices and distributed shift register networks. The
latter are strongly related to the CyclicSORM, the RingOfNeurons and the ChainOfNeu-
rons. Actually, the ChainOfNeurons is a distributed shift register network. The differ-

9

ence to the other kinds of reservoir weights is that a distributed shift register depends
only on the last N inputs. The authors give precise formulas to calculate the memory
capacity of these networks.

Reservoirs similar to the RingOfNeurons and the ChainOfNeurons were also intro-
duced in Čerňanský and Tiňo (2008) and Rodan and Tiňo (2011) where the major
intention was a simplification of the network complexity and the authors concluded that
for some tasks the above reservoirs work as well as random reservoirs. The first article
investigates full input connections as well as wwwin = αeee1, The second one analyzes an
even more simplified connection method where all input weights are constant and only
the sign varies. In the latter article, the authors prove that, under certain conditions,
the RingOfNeurons can achieve a memory capacity arbitrarily close to N .

4. Estimation of errors

The states of the dynamical reservoir are typically noisy. Sources of noise are for ex-
ample perturbed input data, user forced noise to avoid overfitting or to regularize the
training equation (ridge regression). But noisy activations lead to perturbations of the
training, to incorrect output weights, and, finally, to a larger output error. One would
expect that the error highly depends on the rank and the singular values of the matrix
MMM := (wwwin|WWWwwwin| . . . |WWWN−1wwwin). This is exactly what we will show on the next pages.
Furthermore, we will prove that for linear activation functions, the ChainOfNeurons’
matrixMMM has optimal singular values. Randomly created weight matrices usually yield
ill-conditioned or even singular MMM and, thus, are more susceptible to noise. This also
motivates to prefer the ChainOfNeurons architecture compared to random matrices.

We store all reservoir states row-by-row in the matrix Ŝ̂ŜS. Analogously, the targets are
saved in ttt. Assuming the linear case, Jaeger (2001b) proved that the memory capacity
is bounded by N and that MCk (which is a measure for the memory of the input k
time steps before) is decreasing monotonically. This was shown experimentally to be
valid also in the nonlinear case (see e.g. section 5.1). Consequently, if one wants to
reproduce the input u(n − N) entered N time steps before, this implicates two facts:
Firstly, since MC is bounded by N , u(n − k) (k = 0, . . . , N − 1) is regenerated with
errors. Secondly, sinceMCk is monotonically decreasing, the ESN also cannot reproduce
u(n−N) without error. Therefore, we assume that the exact state xxx(n) depends only
on the last N inputs to guarantee an optimal - noiseless linear dependence of yyy(n) on
the previous N inputs. The exact matrix of the reservoir activations is denoted by SSS,
and SSS+ is its pseudoinverse. We denote the perturbation by ∆∆∆SSS, i.e. Ŝ̂ŜS = SSS + ∆∆∆SSS.
Analogously, let ŵ̂ŵwout be the solution of

‖Ŝ̂ŜS(ŵ̂ŵwout)T − ttt‖ → min , (19)

whereas wwwout = tttT (SSS+)T is the exact output weight vector and ∆∆∆wwwout denotes the differ-
ence ŵ̂ŵwout −wwwout. Let IIIp be the p × p identity matrix and assume for this section that
‖ · ‖ is the spectral norm. The proofs of the following theorems and lemmas are given

10

in the appendix.

Theorem 4 (First order approximation of ∆∆∆wwwout). For sufficiently small ‖∆S∆S∆S‖,

∆w∆w∆wout ≈ tttT
[
(SSS + ∆S∆S∆S)VVV JJJuVVV

∗ (VVV JJJ lVVV ∗∆S∆S∆STSSS
)+

+ ∆S∆S∆SVVV JJJ lVVV
∗ (SSST∆S∆S∆SVVV JJJ lVVV

∗)+
]
+

+ rrrT∆S∆S∆S(SSSTSSS)+ −wwwout∆S∆S∆ST (SSS+)T (20)

is a first order approximation of the disturbance of wwwout, where rrr := ttt − SSS(wwwout)T is

the residuum and VVV is the orthogonal matrix from the SVD SSS = UUU

(
ΣΣΣ 000
000 000

)
VVV ∗. Let

JJJ l =

(
000 000
000 III s̄

)
and JJJu =

(
IIIs 000
000 000

)
be the diagonal matrices with s̄ = N − rank(SSS) one

entries in the lower right or s = rank(SSS) entries in the upper left corner, respectively.

Lemma 5. Let f = id. If rank(MMM) = N and at least N nonzero inputs are entered,
then

JJJ l = 0. (21)

On the following pages, we aim to estimate the ratio ‖∆∆∆www
out‖

‖wwwout‖ and decrease this ap-
proximation afterwards to guarantee a robust training. We estimate this ratio for small
perturbations ‖∆∆∆SSS‖ using Theorem 4:

‖∆∆∆wwwout‖
‖wwwout‖

≈ 1

‖wwwout‖

(∥∥∥rrrT∆S∆S∆S(SSSTSSS)+ −wwwout∆S∆S∆ST (SSS+)T+

+ tttT
[
(SSS + ∆S∆S∆S)VVV JJJuVVV

∗ (VVV JJJ lVVV ∗∆S∆S∆STSSS
)+

+ ∆S∆S∆SVVV JJJ lVVV
∗ (SSST∆S∆S∆SVVV JJJ lVVV

∗)+
]∥∥∥)
(22)

≤ ‖rrr‖
‖wwwoutSSST‖

‖∆S∆S∆S‖
‖SSS‖

‖(SSSTSSS)+‖‖SSS‖2 +
‖∆S∆S∆S‖
‖SSS‖

‖SSS+‖‖SSS‖+

+

∥∥∥tttT[(SSS + ∆S∆S∆S)VVV JJJuVVV
∗ (VVV JJJ lVVV ∗∆S∆S∆STSSS

)+
+ ∆S∆S∆SVVV JJJ lVVV

∗ (SSST∆S∆S∆SVVV JJJ lVVV
∗)+

]∥∥∥
‖wwwout‖

(23)

If rank(MMM) = N and f = id the application of Lemma 5 yields

‖∆∆∆wwwout‖
‖wwwout‖

.
‖rrr‖

‖wwwoutSSST‖
‖∆S∆S∆S‖
‖SSS‖

cond(SSS)2 +
‖∆S∆S∆S‖
‖SSS‖

cond(SSS). (24)

To decrease this bound, we decrease cond(SSS) assuming that the targets can be well
approximated by the network such that ‖rrr‖/‖wwwoutSSST‖ is small.

Lemma 6. Let f = id, θ be the training size, and the inputs u(i) be independent
realizations of the random variable u with zero expectation and variance V(u). Then for

11

θ →∞, the singular values of SSS asymptotically equal those of
√
θ V(u)MMM . Consequently,

the matrices SSS and MMM have asymptotically equal condition numbers.
Remark 7. A crucial assumption of the above Lemma 6 is the identical and independent
distribution of the inputs u(n). Typically, this is not satisfied in practical situations,
but it is necessary to allow our linear algebraic investigation. However, in section 5.3
we also perform an experiment which does not satisfy this assumption but the results
remain comparable to experiments fulfilling it. But of course there may be situations
for which our assertions do not hold at all.

Due to the above lemma, we can minimize the condition number ofMMM instead of SSS for
sufficiently large training sizes. Obviously, cond(MMM) = σmax(MMM)

σmin(MMM)
≥ 1. Here, the minimum

1 can be achieved by matrices MMM for which holds:

∀vvv ∈ RN : ‖MMMvvv‖ = ρ(MMM)‖vvv‖. (25)

Below, we assume ρ(MMM) = 1 keeping in mind that we also could scaleMMM by any factor.
Since the above equation holds for any vvv ∈ RN ,MMM is an orthogonal matrix. Multiplying
WWW by MMM from left and from right yields a surprisingly simple matrix:

MMMTWWWMMM = MMMT (WWWwwwin|WWW 2wwwin| . . . |WWWNwwwin)

=

0 0 . . . 0 ∗
1 0 . . . 0 ∗
0

.
...

... 0 ∗
0 . . . 0 1 ∗

 =: QQQ (26)

For later use, note that (WWWwwwin|WWW 2wwwin| . . . |WWWNwwwin) contains N − 1 columns ofMMM . The
crucial consequence of (26) is that, in order to get a regular matrix MMM with minimum
condition number, WWW has to be an orthogonal transformation of a matrix of type QQQ.
Along the same line, the first column of the transformation matrix contains the appro-
priate, optimal input weights wwwin = MMMeee1.
This means, for any orthogonal matrix VVV , WWW = VVVQQQVVV T as above, and wwwin = VVV eee1, the

rank ofMMM is N provided that also nonzero inputs are entered in the network for at least
N time steps.
Finally, let us take a closer look at ∆S∆S∆S. We assumed that the exact states just depend

on the previous N inputs whereas earlier influences are considered to be part of ∆∆∆SSS. But
the calculated states x̂̂x̂x strongly depend on even earlier inputs for thoseQQQ with a big norm
of the last column. To see this, let δδδ(n) = x̂̂x̂x(n)−

∑N−1
i=0 WWW ieee1u(n− i) +WWWNxxx(n−N) be

the external noise. Then ‖∆∆∆xxx(n)‖ ≤ ‖δδδ(n)‖+ ‖WWWN‖. A first step to minimize ‖∆∆∆xxx(n)‖
is to decrease ‖WWWN‖ = ‖QQQN‖ ≥ ‖QQQeeeN‖ since QQQeeeN appears as the first column of QQQN . A
small norm is therefore preferable and choosing the last column to be eee1 appears to be
reasonable. Note that this construction then corresponds to CyclicSORM.
If evenQQQeeeN = 000, then we finally arrived at the ChainOfNeurons model. It can provide

robust weights which yield a small error, which has been derived and shown to be optimal

12

even theoretically at least for a linear activation function and fairly well-suited taskes
(e.g. with ‖rrr‖ ≤ ‖SSSwwwout‖).

In this linear case, it is easy to see that including further ChainOfNeurons with differ-
ent weights does not provide any further improvement because the corresponding states
are linearly dependent. However, this is different in the nonlinear case. If rank(SSS) = N ,
equation (24) holds also in the nonlinear case. Here, two or more separate chains (with
different weights of course) may decrease rrr. Due to the nonlinear activation function, the
states are not linearly dependent and thus the rank of SSS does not decrease. Apparently,
it has almost the same effect if, instead of injecting the input only to the first hidden
neuron, we connect input and hidden layer sparsely with different weights, i.e. in the
nonlinear case, we apply other input weights than those derived in the earlier sections
3.2 and 3.3. Although our experiments seem to confirm this proposition, corresponding
theoretical investigations remain to be done for nonlinear activation functions.

At least for the for the ChainOfNeurons with wwwin = αeee1, similar results can be derived
for the nonlinear activation function (f = tanh). Since Theorem 4 is independent of the
activation function, the first order approximation hold also in the nonlinear case for any
reservoir type (only f out = id is crucial). Also the Lemma 5 is valid for nonlinear f using
the ChainOfNeurons. Lemma 6 holds in a slightly modified version for nonlinear f and
the ChainOfNeurons. Let ρ(WWW) be the spectral radius ofWWW . Then Lemma 6 holds also
under the current assumptions by substituting MMM by

MMMnl :=
(
E[φ0(αu)]eee1

∣∣∣ E[(φ1(αu)]eee2

∣∣∣ . . . ∣∣∣ E[φN−1(αu)]eeeN

)
,

where φn ≡ (tanh ◦ρ(WWW))n ◦ tanh. This means, if E[φ0(αu)]/E[φN−1(αu)] is small, also
the relative error ‖∆∆∆wwwout‖/‖wwwout‖ will be small.

5. Experiments

In this section, we compare the error rates of ESNs equipped with one of

• StandardMat - the original randomly generated reservoirs

• SORM

• CyclicSORM

• RingOfNeurons

• ChainOfNeurons.

All results of the following experiments are reported in tables with the following cap-
tions:

• ρ - spectral radius, or constant connection weight along the ChainOfNeurons, re-
spectively

• N - number of reservoir neurons

13

• RDens - connection density of the reservoir

• FScale - feedback scale: bound for weights of output-hidden connections

• FDens - feedback density: portion of used output-hidden connections

• IScale - input scale: bound for weights of input-hidden connections (see below)

• IDens - connection density from the input neurons into the reservoir; × - means
only first input unit/vector will be used

All experiments (except for the first one in 5.1) were accomplished both with the Oger
(OrGanic Environment for Reservoir computing) toolbox and with the ANN toolbox
of PLANET intelligent systems GmbH. We optimize the parameter setup using the
convenient gridsearch functionality of Oger. All these optimizations are organized in
the same way. We provide a number of training sets, including input and target data.
Afterwards, we take two samples from these data sets. The first is the training set and
the second is used for validation. The plots are generated by fixing all but one parameter
of the resulting error arrays.

We test different input strategies. The first strategy is the classical random connection
of input and hidden layer. We set a predefined percentage of the connections to uniformly
distributed random values from [− IScale, IScale]. The second way of connecting input
and hidden neurons is to distribute the input connections equally on the neurons, e.g.,
if we use a density of IDens = 0.25, only those neurons with index ≡ 1 (mod 4) are
connected with the input. The input weights of the CyclicSORM additionally are rotated
afterwards by the matrix VVV of the Algorithm CyclicSORM. Again, the weight strengths
are uniformly distributed from the interval [− IScale, IScale].

5.1. Delayline

The first experiment of this section is the well known delayline experiment. The neural
net gets random inputs (uniformly distributed over [−0.5, 0.5]), and the task is to re-
produce those inputs after a given time delay at the output of the neural net. We refer
to Jaeger (2001a,b, 2002) for details. We only used PLANET’s ANN toolbox for this
experiment.

We have tested all of the considered matrices and improved the parameters roughly
for every class of matrices separately by hand. The most important values are given in
table 1. The experiment was processed 10.000 steps with a washout of 200 steps, we
have measured the mean squared error (MSE) over the last 100 steps of the experiment.
The output activation function is the identity function and the activation of the hidden
units is tanh. We use (N =) 50 internal neurons. For each system, the results are
averaged over 50 different runs (50 different randomly generated systems and workflows).
CyclicSORM, SORM and StandardMat have a connection density of RDens = 0.1.
In Figure 2 the error is plotted against the delay interval. The slope of the pink curve,

which represents the results of SORM, is smoother than the one of the light blue curve
achieved by StandardMat. The random reservoir produces already at a delay interval
of 30 an output signal which is almost uncorrelated to the target signal. At this point

14

ρ IScale IDens
ChainOfNeurons 0.95 1.0 ×
RingOfNeurons 0.95 1.0 ×
CyclicSORM 0.95 1.0 ×
SORM 0.95 1.0 0.1
StandardMat 0.99 1.0 0.1

Table 1: Best parameters for the delayline experiment optimized by hand.

Figure 2: Delayline experiment executed with different reservoir types and averaged
over 50 different initializations

the SORM reservoir still yields good results. The curves of the CyclicSORM and the
RingOfNeurons show a good short term memory until a delay interval of N − 1 = 49.
In section 4, we proved the relation of MMM to perturbations. The greater the rank

and the smaller the condition number of the related matrix, the smaller is the impact
of disturbances on the system predictions in the linear case. In fact, the more precise
bound substitutes cond(MMM) by ‖MMM‖‖MMM+‖. Instead of rank(MMM) and ‖MMM‖‖MMM+‖, we can
use rank(SSSTSSS) and ‖SSSTSSS‖ ‖(SSSTSSS)+‖ as an approximation if the training size θ is large.
Table 2 shows these values for the matrices used in this experiment. As expected, the
ChainOfNeurons, the RingOfNeurons, and the CyclicSORM yield the best values. This
coincides with the measured errors of the experiment where these three matrices also
yield a good performance.
The delayline experiment shows that the newly introduced weight matrices have a good

15

rank(SSSTSSS) ‖SSSTSSS‖ ‖(SSSTSSS)+‖
ChainOfNeurons 50.0 12.34648
RingOfNeurons 50.0 12.34648
CyclicSORM 50.0 12.34648
SORM 49.86 1584.37109
StandardMat 48.68 2.53285 · 1013

Table 2: Averaged rank of SSSTSSS and ‖SSSTSSS‖ ‖(SSSTSSS)+‖ on average of 50 runs

short term memory. The CyclicSORM, the RingOfNeurons, and the ChainOfNeurons
provide the best memory and work almost flawless until a delay of N − 1 time steps.
Although the error of the SORM is soon greater than the error of these matrices, it
is significantly lower than the error obtained by the randomly created matrices. This
means for tasks requiring a high short term memory one should choose any of the
CyclicSORM, the RingOfNeurons, or the ChainOfNeurons. Interestingly, it seems that
networks equipped with SORMs have an (blurred) memory of what happened earlier
than N − 1 time steps before.

5.2. Pattern detection

The delayline experiment is a simple recognition task to test the short term memory
of the neural net. As seen above, the introduced matrices provide a better short term
memory. The next experiment shows that the newly introduced matrices are also capable
of distinguishing (with a higher accuracy) between a known pattern (six consecutive
values p1, . . . , p6 ∈ [−0.5, 0.5]) and a random sequence. The input is a random sequence
merged with this pattern. The intervals between two pattern are of random length.
The task is to identify this pattern within the random sequence (for details see Jaeger
(2001b)). This is obviously not a short term memory test since the important inputs
are entered just within the last few steps.

The data sets contain 10000 elements plus 200 additional washout data points. We
use one data set for training and another for validation. The neural net contains one
input, one output and 50 hidden neurons. The grid of the search is four-dimensional
containing the bias scaling value of the reservoir, the input connection density, the
scaling value for the input and reservoir weights. The best values found by this search
are contained in Table 3. We say the network has detected a pattern if the output neuron
has an activation greater than a certain threshold. This threshold is set optimally and
separately for each matrix by minimizing the sum of false positives and false negatives
after the experiment. For any parameter setup, the experiments are executed with 10
different reservoirs and 6 different data sets each.

Using a linear activation function f = id increases the error rates because of the
following important feature of the nonlinearity: Assume q is part of the pattern (neither
0 nor ±0.5), and assume further two hidden neurons which are not connected. Their
activation in each step is defined as tanh(win1 x) and tanh(win2 x) if x is the current input.

16

The output activation y (a linear combination of the activations of the hidden neurons
y = α tanh(w1x) + β tanh(w2x)) should increase if x = q since q is part of the pattern
and decrease else. Figure 3 shows the activation of the output neuron for fixed wwwout,
win1 and win2 . There is a maximum within the input interval which can be adjusted by
changing win1 and win2 and learning wwwout such that the maximum is near q. I.e. saving
the input within the reservoir several times with different input scalings improves the
detection of pattern. This is the reason why the ChainOfNeurons can detect values far
away from the boundary. To support this feature, we also use the second input strategy
(distribute the input weights equally) already mentioned above.

Figure 3: Output y = α · tanh(win1 · x) − β · tanh(win2 · x) for x ∈ [0, 1] whereas α = 1,
β = tanh(1)/ tanh(0.1), win1 = 1 and win2 = 0.1. The maximum is between 0.5 and 0.6.

bias ρ IScale IDens
ChainOfNeurons 0.0 0.1 0.8 1/7
RingOfNeurons 0.0 0.1 1.0 1/9
CyclicSORM 0.0 0.15 0.9 1/9
SORM 0.0 0.1 1.0 1.0
StandardMat 0.0 0.05 1.0 1.0

Table 3: Best parameter setup for the pattern detection experiment found by gridsearch.

Figure 5 shows the number of false detections against the spectral radius. We take
the average over 100 different initializations. The minimal number of false detections
using StandardMat (random reservoirs) is clearly larger than the minimal number of
those neural nets equipped with SORMs. Again, we obtain the best results by using
RingOfNeurons or CyclicSORM. They provide a similar behavior which is not surprising
since, in the linear case, the mappings are identical: We just rotate the coordinate
system. Changing the input strategy does not change the error of the networks with
randomly generated DR weights (6.7 or 8.8, respectively, false detections minimum using
random or equally distributed input weights) and SORM (8.0 or 7.3, respectively, false
detections minimum using random or equally distributed input weights) much. On the

17

Figure 4: Pattern detection: time series of the random sequence (black), the merged
sequence (blue), the pattern (green), the training signal (red) and the network output
(pink)

other side, the RingOfNeurons and the ChainOfNeurons produce similar error rates in
the case of random inputs. But if the inputs are equally distributed, the error rates
decrease to only one false detection on average for the best setup. In this case, also
the variance (shown as errorbars in Figure 5) is small in relation to the other weight
matrices.

At this point, we want to note some observations we made during this experiment.
We tested with different bias scales and interpreted a bias as input (expectation value)
shift which possibly increases cond(SSSTSSS). We obtained the best results with no bias.
This supports one assumption for the estimates of sections 4, namely E(u) = 0 which is
(almost) satisfied with no bias.

5.3. Mackey-Glass

The Mackey-Glass experiment is a prediction task, where the system has to do a 1-
step ahead prediction of the Mackey-Glass time series (a nonlinear chaotic time series,
see Jaeger (2001a) for details and parameters). In the “free run” mode, the system
will perform several of these prediction steps and therefore produce a given number of
steps ahead into the future, in other words: it will “generate” the time series. For our
experiments, the Mackey-Glass time series is generated with τ = 17, the traditional
value for cautiously chaotic behavior.

The system is designed with 400 reservoir neurons connected as before by one of the
corresponding connection matrices and one output neuron aiming to predict the next

18

Figure 5: Results of pattern detection experiments averaged over 60 different initializa-
tions. The errorbars denote the variance.

step of the time series. The system input is organized by feeding back the output of
the system: The single output neuron is connected back into the reservoir by feedback
connections. These feedback connections are treated just like input connections.

Except for the “free run” mode, the output value of the system (activation of the
output neuron) is set to the sequence value (teacher forcing mode for washout and
training). We do not touch the system in the free “run mode”. The size of the training
and test data sets is 5000 including 500 steps washout. The “free run” mode lasts 200
steps. We measure the NRMSE over 12 different matrix initializations with 12 different
runs for each parameter setup. The search includes the bias scaling factor, the number
of input connections, the input and reservoir scaling factor. Both the random and
the equidistant input connection modes are tested. For this experiment, we use leaky
integrator neurons within the reservoir which after the update according to equation (4)
additionally perform the following second step:

xxx′(n+ 1) = (1− δ)xxx′(n+ 1) + δxxx(n+ 1).

The value xxx′(n) is used as neuron activation instead of xxx(n) at time n. We use constant
δ = 0.4 as the Oger samples suggest. Table 4 shows other parameters for obtaining a
minimum error rate.

Figure 7 shows the experimental results. Since the variances are very small (at least

19

bias ρ FScale FDens
ChainOfNeurons 0.15 0.85 1.1 1.0
RingOfNeurons 0.05 0.95 1.1 1.0
CyclicSORM 0.2 1.0 1.2 1.0
SORM 0.2 1.05 1.2 1.0
StandardMat 0.2 1.1 0.9 1.0

Table 4: Best parameters for the Mackey-Glass experiment (found by Oger gridseach).

Figure 6: Mackey-Glass experiment: time series of the random sequence (black), the
merged sequence (blue), the pattern (green), the training signal (red) and the network
output (pink) sequence.

until the spectral radius reaches the minimum), we omit them in the plot. Again the
standard ESNs do not perform as well as the other matrices. Interestingly, a complete
connection of output and hidden layer yields the best performance for all reservoir types.
A sparse but equal distribution did not lead to an improvement.

20

Figure 7: Results of the Mackey-Glass experiment executed with different reservoir types
and averaged over 144 different initializations.

5.4. NARMA

The target signal in this section will be the 10th order nonlinear autoregressive moving
average (NARMA).

t(n+ 1) = 0.3t(n) + 0.05t(n)

(
9∑
i=0

t(n− i)

)
+ 1.5u(n− 9)u(n) + 0.1

The task is to predict this sequence for one future step. The parameters of this se-
quence were taken from Jaeger (2003) where we refer to for a detailed description of this
experiment.

Each neural net has 200 hidden neurons, one input and one output neuron. The data
sets contain 2200 elements each, whereby the first 200 steps are for washout. Again, one
data set is used to train the neural net and we validate on a second one. We measure the
NMSE error. The grid of the parameter search consists of the input scaling, the weight
scaling value of the reservoir and the number of input connections. For every parameter
set, 5 different reservoir initializations each with 10 different data sets are tested. Again,
we connect input and hidden layer in the two already mentioned ways. Table 5 provides
the optimal parameters resulting from the gridsearch.

Figure 8 plots the average NMSE and the minimum NMSE against the spectral radius.
The CyclicSORM, the RingOfNeurons, and the ChainOfNeurons generate the smallest
error rates. In contrast to the above experiments, the average error rates of all SORMs

21

ρ IScale IDens
ChainOfNeurons 0.75 0.95 1/9
RingOfNeurons 0.75 0.95 1/9
CyclicSORM 0.8 0.75 1/9
SORM 0.65 0.45 1/5
StandardMat 0.75 0.2 1/8

Table 5: Best parameters for the NARMA experiment (found by Oger gridsearch).

this time are worse than the random matrices. The variances of the errors are all small
(of magnitude 10−6) except for the ESNs with small spectral radius (0.7, 0.75). So we
omit the errorbars.

Figure 8: Results of the NARMA experiment executed with different reservoir types and
averaged over 50 different initializations.

6. Conclusions and outlook

We have introduced design strategies for reservoir weight matrices and analyzed their
linear algebraic properties. In contrast to many state of the art articles, we consider
superpositions as a source of errors instead of “interesting echos”. In this paper, we
compare the different approaches at 4 academic test scenarios:

22

• short term memory test

• pattern detection

• discretization of the Mackey-Glass differential equation

• NARMA

Finally, we come up with the surprisingly simple ChainOfNeurons, which is shown
to be the most robust reservoir in the linear case and performed very well in our ex-
periments. We like to point out that ChainOfNeurons is not even a recurrent system
anymore. It seems that the reservoir does not need internal dynamics for many tasks. In
comparision to the recent Echo State approach, the ChainOfNeurons has the following
advantages:

• extremely sparse (1 input connection per unit) and computationally very fast

• maximum robustness against noise on the training data

• no random variants of different reservoirs

• clearly defined and maximum short term memory

• much easier for applying additional approaches as, e.g., leaky or bandpass filters
(which make the ChainOfNeurons slower from the beginning of the chain up to its
end)

• much more intuitive and therefore easier to handle “echos”, e.g. the historical
inputs

As a small note, we would like to add the following remarks: Firstly, in case of multi-
dimensional inputs we would recommend a separat ChainOfNeurons for each dimension
or a maximum distance between the input vectors on the ChainOfNeurons because the
idea is to reduce superposition as much as possible. Secondly, remembering previous
research, we tested special reservoir topologies, as for example sparse versus densely
connected matrices, or small world and fractal connection topologies. There we discov-
ered that it does not matter what topology we use for certain tasks. We think now
that the results, presented in this paper, fit with this experience. It seems that linear
algebraic properties are more essential than the topology of the connections.

From our perspectives there are several interesting open points for further research:

Training algorithms It has turned out that Echo State Networks deal not very well
with gradient descent learning techniques. Roughly spoken, we think that this is re-
lated to the spectrum of eigenvalues of these reservoirs. Different inputs from different
time scales will be represented by the echos of the reservoir with extremely different
magnitudes. The ChainOfNeurons, as well as SORMs and CyclicSORMs have differ-
ent properties due to representing previous inputs. So we think, it could be interesting
to evaluate different gradient descent learning techniques for the ChainOfNeurons ap-
proach. This is also related to the next point.

23

Time Delay Neural Networks (TDNN) The ChainOfNeurons and the TDNN ap-
proaches are quite similar. Indeed an ChainOfNeurons could be considered as a certain
TDNN. So we think, it will be interesting to evaluate TDNNs and its recent learning
techniques in comparison with the ChainOfNeurons approach.

Implications for reservoir computing technologies From our perspective it is an
open question, how the presented results will affect the research of other reservoir com-
puting technologies as for example the liquid state machines (LSMs). It would be inter-
esting to evaluate and if possible to adapt or to generalize the presented ideas for related
research areas.

7. Acknowledgment

This research was entirely funded by the research grant no. V220-630-08-TFMV-S/F-059
(Verbundvorhaben, Technologieförderung Land Mecklenburg-Vorpommern) in European
Social / Regional Development Funds.

References

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79:2554–
2558.

Jaeger, H. (2001a). The “echo state” approach to analysing and training recurrent neural
networks. Technical Report GMD Report 148, German National Research Center for
Information Technology.

Jaeger, H. (2001b). Short term memory in echo state networks. Technical Report GMD
Report 152, German National Research Center for Information Technology.

Jaeger, H. (2002). A tutorial on training recurrent neuronal networks, covering
BPPT,RTRL, EKF and the "echo state network" approach. Technical Report GMD
Report 159, German National Research Center for Information Technology. Third
revision.

Jaeger, H. (2003). Adaptive nonlinear system identification with echo state networks.
In Becker, S. T. S. and Obermayer, K., editors, Advances in Neural Information
Processing Systems, pages 593–600. MIT Press Cambridge.

24

Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3):127–149.

Ozturk, M. C., Xu, D., and Príncipe, J. C. (2007). Analysis and Design of Echo State
Networks. Neural Computation, 19:111–138.

Rodan, A. and Tiňo, P. (2011). Minimum complexity echo state network. Neural
Networks, IEEE Transactions on, 22(1):131 –144.

Čerňanský, M. and Tiňo, P. (2008). Predictive modeling with echo state networks. In
Proceedings of the 18th international conference on Artificial Neural Networks, Part
I, ICANN ’08, pages 778–787, Berlin, Heidelberg. Springer-Verlag.

White, O. L., Lee, D. D., and Sompolinsky, H. (2004). Short-term memory in orthogonal
neural networks. Physical Review Letters, 92:148102.

A. Appendix

In this section, we need the generalized or pseudoinverse of a matrix SSS. Let

SSS = UUU

(
ΣΣΣ 000
000 000

)
VVV ∗, ΣΣΣ =

σ1 0 . . . 0

0 σ2
.

... 0
0 . . . 0 σr

 (27)

be the singular value decomposition (SVD) of SSS with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where UUU
and VVV are unitary, and ΣΣΣ ∈ Rr×r (i.e. r = rank(SSS)). Then the pseudoinverse SSS+ of SSS is
defined as

SSS+ = VVV

(
ΣΣΣ−1 000

000 000

)
UUU∗. (28)

SSS+ is uniquely determined by the Moore–Penrose criteria: SSSSSS+SSS = SSS, SSS+SSSSSS+ = SSS+,
(SSSSSS+)∗ = SSSSSS+ and (SSS+SSS)∗ = SSS+SSS.

Lemma 8. Let VVV
(

ΣΣΣ 000
000 000

)
VVV ∗ be the SVD of AAA ∈ Rn×n where ΣΣΣ ∈ Rr×r is a regular

r×r diagonal matrix and JJJu =

(
IIIr 000
000 000

)
. Let BBB ∈ Rn×m for any m ∈ N and ‖AAA+BBB‖ < 1

for some appropriate, sub-multiplicative matrix norm ‖ · ‖. Then

[
AAA(VVV JJJuVVV

∗ +AAA+BBBVVV JJJuVVV
∗)
]+

=

(
∞∑
i=0

(−1)i(AAA+BBB)i

)
AAA+. (29)

25

Proof. We denote CCC := AAA(VVV JJJuVVV
∗ +AAA+BBBVVV JJJuVVV

∗) and CCC− := (
∑∞

i=0(−1)i(AAA+BBB)i)AAA+.
Furthermore, we define (AAA+BBB)0 = VVV JJJuVVV

∗.

CCCCCC− =AAA

(
∞∑
i=0

(−1)i(AAA+BBB)i + (−1)i(AAA+BBB)i+1

)
AAA+ (30)

=AAA (VVV JJJuVVV
∗)AAA+ = VVV JJJuVVV

∗ (31)

In the same way we get

CCC−CCC =

(
∞∑
i=0

(−1)i(AAA+BBB)i

)
VVV JJJuVVV

∗ [VVV JJJuVVV ∗ +AAA+BBBVVV JJJuVVV
∗] (32)

=

(
∞∑
i=0

(−1)i(AAA+BBB)iVVV JJJuVVV
∗ + (−1)i(AAA+BBB)i+1VVV JJJuVVV

∗

)
= VVV JJJuVVV

∗. (33)

Therefore, (CCC−CCC)∗ = CCC−CCC and (CCCCCC−)∗ = CCCCCC−. Furthermore, CCCCCC−CCC =
VVV JJJuVVV

∗AAA(VVV JJJuVVV
∗ +AAA+BBBVVV JJJuVVV

∗) = CCC and CCC−CCCCCC− = (
∑∞

i=0(−1)i(AAA+BBB)i)AAA+VVV JJJuVVV
∗ =

CCC−. Thus, the Moore–Penrose criteria are satisfied and CCC− is the pseudoinverse of CCC.
Let ‖MMM‖max := max1≤i,j≤n |mi,j|. The sum

∑∞
i=0(−1)i(AAA+BBB)i converges since for any

ε > 0, there is some C ∈ N, such that for any k ≥ l > C∥∥∥∥∥
k∑
i=0

(−1)i(AAA+BBB)i −
l∑

i=0

(−1)i(AAA+BBB)i

∥∥∥∥∥
max

=

∥∥∥∥∥
k∑

i=l+1

(−1)i(AAA+BBB)i

∥∥∥∥∥
max

(34)

Because of the equivalence of all norms, there is an α such that

≤ α

∥∥∥∥∥
k∑

i=l+1

(−1)i(AAA+BBB)i

∥∥∥∥∥ (35)

≤ α
k∑

i=l+1

‖AAA+BBB‖i ≤ ε. (36)

Proof of Theorem 4. Remember that ŵ̂ŵwout = wwwout + ∆w∆w∆wout is the solution of
(SSS + ∆S∆S∆S)ŵ̂ŵwout = ttt, whereas wwwout := tttTSSS+. Below, we will neglect terms containing ∆∆∆SSS
of higher order.

(SSS + ∆S∆S∆S)(ŵ̂ŵwout)T =ttt (37)
(SSS + ∆S∆S∆S)T (SSS + ∆S∆S∆S)(ŵ̂ŵwout)T =(SSS + ∆S∆S∆S)Tttt (38)

Let
SSS = UUU

(
ΣΣΣ 000
000 000

)
VVV ∗ (39)

26

the SVD ofSSS. We multiply equation (38) by VVV (JJJu + JJJ l)VVV
∗ = IIIN whereas JJJu =

(
IIIr 000
000 000

)
and JJJ l =

(
000 000
000 IIIN−r

)
are the upper and lower part of the identity matrix. Obviously, JJJ l

is a diagonal matrix with N − r one entries and zeros else.

VVV (JJJu + JJJ l)VVV
∗(SSS + ∆S∆S∆S)T (SSS + ∆S∆S∆S)VVV (JJJu + JJJ l)VVV

∗(ŵ̂ŵwout)T =VVV (JJJu + JJJ l)VVV
∗(SSS + ∆S∆S∆S)Tttt

(40)

We separate this into four equations

VVV JJJuVVV
∗(SSS + ∆S∆S∆S)T (SSS + ∆S∆S∆S)VVV JJJuVVV

∗(ŵ̂ŵwout1)T =VVV JJJuVVV
∗(SSS + ∆S∆S∆S)Tttt (41)

VVV JJJuVVV
∗(SSS + ∆S∆S∆S)T (SSS + ∆S∆S∆S)VVV JJJ lVVV

∗(ŵ̂ŵwout2)T =VVV JJJuVVV
∗(SSS + ∆S∆S∆S)Tttt (42)

VVV JJJ lVVV
∗(SSS + ∆S∆S∆S)T (SSS + ∆S∆S∆S)VVV JJJuVVV

∗(ŵ̂ŵwout3)T =VVV JJJ lVVV
∗(SSS + ∆S∆S∆S)Tttt (43)

and

VVV JJJ lVVV
∗(SSS + ∆S∆S∆S)T (SSS + ∆S∆S∆S)VVV JJJ lVVV

∗(ŵ̂ŵwout4)T =VVV JJJ lVVV
∗(SSS + ∆S∆S∆S)Tttt. (44)

For small ‖∆S∆S∆S‖, we approximate

(SSS + ∆S∆S∆S)T (SSS + ∆S∆S∆S) ≈ (SSSTSSS + ∆S∆S∆STSSS +SSST∆S∆S∆S). (45)

We analyze (41) first.

(ŵ̂ŵwout1)T ≈[VVV JJJuVVV
∗(SSSTSSS +SSST∆S∆S∆S + ∆S∆S∆STSSS)VVV JJJuVVV

∗]+VVV JJJuVVV
∗(SSS + ∆S∆S∆S)Tttt (46)

=
[
SSSTSSS(VVV JJJuVVV

∗ + (SSSTSSS)+(∆∆∆SSSTSSS +SSST∆∆∆SSS))VVV JJJuVVV
∗]+VVV JJJuVVV ∗(SSS + ∆∆∆SSS)Tttt

(47)

Due to Lemma 8 the generalized inverse ofSSSTSSS(VVV JJJuVVV
∗+(SSSTSSS)+(∆∆∆SSSTSSS+SSST∆∆∆SSS))VVV JJJuVVV

∗

is(∑∞
k=0(−1)k((SSSTSSS)+(∆∆∆SSSTSSS +SSST∆∆∆SSS))k

)
(SSSTSSS)+ if ‖∆S∆S∆S‖ < 1

2
σmax(SSS)−1σmin(SSS)2. We

approximate the pseudoinverse by the first two terms.

≈
[
VVV JJJuVVV

∗ − (SSSTSSS)+(SSST∆∆∆SSS + ∆∆∆SSSTSSS)
]

(SSSTSSS)+(SSS + ∆∆∆SSS)Tttt (48)
≈ (SSSTSSS)+SSSTttt︸ ︷︷ ︸

=(wwwout)T

+(SSSTSSS)+∆∆∆SSST (ttt−SSS(SSSTSSS)+SSSTttt)︸ ︷︷ ︸
=ttt−SSS(wwwout)T =:rrr

−(SSSTSSS)+SSST∆∆∆SSS (SSSTSSS)+SSSTttt︸ ︷︷ ︸
=(wwwout)T

(49)

27

The term rrr is called residuum and describes the approximation error. We obtain a
first-order approximation of ∆∆∆wwwout1 := ŵ̂ŵwout1 −wwwout.

(∆w∆w∆wout1)T ≈(SSSTSSS)+∆S∆S∆STrrr − (SSSTSSS)+SSST∆S∆S∆S(wwwout)T (50)
=(SSSTSSS)+∆S∆S∆STrrr −SSS+∆S∆S∆S(wwwout)T (51)

For i ∈ {2, 3, 4}, ŵ̂ŵwouti contains JlJlJl such that we obtain (together with (45))

(ŵ̂ŵwout2)T ≈
(
SSST∆S∆S∆SVVV JJJ lVVV

∗)+
VVV JJJuVVV

∗(SSS + ∆S∆S∆S)Tttt (52)

(ŵ̂ŵwout3)T ≈
(
VVV JJJ lVVV

∗∆S∆S∆STSSS
)+
VVV JJJ lVVV

∗∆S∆S∆STttt (53)

and

(ŵ̂ŵwout4)T ≈000. (54)

The last approximation results from SSSVVV JJJ l = 000 and JJJ lVVV ∗SSS = 000. Finally, we obtain

∆∆∆wwwout = ŵ̂ŵwout1 + ŵ̂ŵwout2 + ŵ̂ŵwout3 + ŵ̂ŵwout4 −wwwout (55)

≈ rrrT∆S∆S∆S(SSSTSSS)+ −wwwout∆S∆S∆ST (SSS+)T + tttT
[
(SSS + ∆S∆S∆S)VVV JJJuVVV

∗ (VVV JJJ lVVV ∗∆S∆S∆STSSS
)+

+

+ ∆S∆S∆SVVV JJJ lVVV
∗ (SSST∆S∆S∆SVVV JJJ lVVV

∗)+
]

(56)

Proof of Lemma 5. If rank(MMM) = rank(SSS), the proposition is obvious because then JJJ l
just contains zeros by definition. So let us prove rank(MMM) = rank(SSS). Recall SSST =
(xxx(1),xxx(2), . . . ,xxx(θ)). We assumed that f = id. Thus,

rank(SSS) = dim

{
θ∑
i=0

αixxx(i) | αi ∈ R

}
= dim

{
θ∑
i=0

N−1∑
j=0

αiu(i− j)WWW jwwwin | αi ∈ R

}

= dim

{
N−1∑
j=0

WWW jwwwin
θ∑
i=0

αiu(i− j) | αi ∈ R, u(k) = 0 if k < 0

}
.

Due to the N nonzero inputs, for any j ∈ {0, 1, . . . , N − 1} there exist real values
(αi)i=0,...,θ such that for any βj ∈ R: βj =

∑θ
i=0 αiu(i− j), such that

rank(SSS) = dim(span{WWW iwwwin | i = 0, 1 . . . , N − 1}) = rank(MMM).

28

Proof of Lemma 6. Let SSS ∈ Rθ×N , i.e. θ is the training size.

1

θ
SSSTSSS =

1

θ

θ∑
t=0

xxx(t)xxx(t)T (57)

=
1

θ

θ∑
t=0

(
N−1∑
i=0

WWW iwwwinu(t− i)

)(
N−1∑
k=0

WWW kwwwinu(t− k)

)T

(58)

=
1

θ

N−1∑
i=0

N−1∑
k=0

WWW iwwwin
(
WWW kwwwin

)T θ∑
t=0

u(t− k)u(t− i) (59)

=MMMMMMT

θ∑
t=0

(u(t))2

θ
+

N−1∑
i=0

N−1∑
k=0
k 6=i

WWW iwwwin
(
WWW kwwwin

)T θ∑
t=0

u(t− k)u(t− i)
θ

(60)

For k 6= i

lim
θ→∞

1

θ

θ∑
t=0

u(t− k)u(t− i) = E(u)2 = 0 (61)

because u(t − k) and u(t − i) are independently distributed with zero expectation. In
case of k = i

lim
θ→∞

1

θ

θ∑
t=0

(u(t− k))2 = E(u2) = V(u) (62)

Let σi(SSS) and λi(SSS) be the ith singular value of SSS and the ith eigenvalue of SSS, respec-
tively. For sufficiently large θ, we approximate then

σi

(
1√
θ
SSS

)
=

√
1

θ
λi(SSSTSSS) ≈

√
V(u)λi(MMMMMMT) =

√
V(u)σi(MMM). (63)

29

	Introduction
	Echo State Networks
	Construction
	Sparse and orthogonal reservoir matrices
	CyclicSORMs
	RingOfNeurons and ChainOfNeurons
	Related publications

	Estimation of errors
	Experiments
	Delayline
	Pattern detection
	Mackey-Glass
	NARMA

	Conclusions and outlook
	Acknowledgment
	Appendix

