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Abstract

R(n, k) denotes the minimum possible size of a completely separating system C on [n]
with |A| = k for each A ∈ C. Values of R(n, k) are determined for

(
k−1
2

)
≤ n <

(
k
2

)
or

11 ≤ n ≤ 12. Using the dual interpretation of completely separating systems as antichains,
this paper provides corresponding results for dual k-regular antichains.

1 Introduction and Basic Results

This paper extends previous work in [8], [9], [10], [11] and more recent work by Böhm in [1], [2]
and [3], to determine the minimum size completely separating systems (CSSs) with a single block
size. This simultaneously determines the minimum size ground set for which a k-regular antichain
of a given size exists. This section contains some basic results and a summary of relevant results
from the papers mentioned above. Subsequent sections determine the unknown values of R(n, k)
for
(
k−1
2

)
≤ n <

(
k
2

)
or 11 ≤ n ≤ 12.

Let k < n be integers, with [n] = {1, 2, . . . , n}, and with 2[n] denoting the power set of [n]. An
(n)Competely Separating System ((n)CSS) C is a collection of blocks of [n] such that for
any pair of points x, y ∈ [n] there exist blocks A, B ∈ C with x ∈ A \ B and y ∈ B \ A. An
(n, k)Completely Separating System ((n, k)CSS) C is an (n)CSS in which each block is of size
k.

The size of C is the number of blocks in C, denoted by |C|. The integers R(n) and R(n,k) are
defined by: R(n) = min{|C| : C is an (n)CSS} and R(n, k) = min{|C| : C is an (n, k)CSS}. In
what follows R is sometimes written instead of R(n, k). An (n)CSS for which |C| = R(n) is a
minimal (n)CSS and an (n, k)CSS C for which |C| = R(n, k) is a minimal (n, k)CSS.

The volume of a collection of blocks C is V (C) =
∑

A∈C |A|. For an (n, k)CSS C, V (C) = k|C|. A
CSS is said to be fair if each point occurs in either p or p + 1 blocks for some integer p. A point
is said to cover a collection of blocks C if each block in C contains the point. Similarly, a point
a covers another point b if each block containing b also contains a. In any CSS, no point covers
another point. A point is called a p-point if it occurs in exactly p blocks.

1



CSSs or partial CSSs are often represented by arrays in this paper, with each row representing a
block or partial block. Gaps are sometimes left in the rows to aid in seeing the substructures.

Some values of R(n) from [8] and [11] are restated in the following lemma.

Lemma 1.1. The following hold for k < n:
1. If n ≤ 4 then R(n) = n.

2. If n = 5 or 6 then R(n) = 4 and, up to labelling of points, there is a unique way of achieving
R(n) in each case.
3. R(n) is a non-decreasing function of n.
4. R(7) = 5.
5. For 1 ≤ k < n, R(n, k) = R(n, n− k).

In [8], [9] and [10] the values of R(n, k) are determined for n ≥
(
k
2

)
, or for k ≤ 10. The main results

are summarised here:

Theorem 1.1. The following hold for k < n:
1. If n ≥

(
k+1
2

)
, then R(n, k) = d2n/ke;

2. If n =
(
k+1
2

)
− 1, k > 3, then R(n, k) = k + 2 = d2n/ke+ 1;

3. If k2/2 ≤ n ≤
(
k+1
2

)
−2, k ≥ 5, then R(n, k) = k+1, with R(n, k) = d2n/ke except for n = k2/2;

4. If
(
k
2

)
≤ n < k2/2, k ≥ 5, then R(n, k) = k + 1 > d2n/ke;

5. If
(
k
2

)
− k

3 < n <
(
k
2

)
then R(n, k) ≥ k + 1.

The last result can be strengthened to R(n, k) = k + 1 due to work on regular antichains by Böhm
in [1], [2] and [3]. These papers provide various results of interest, including a method to construct
(n, k)CSSs in k + 1 blocks for k + 3 < n ≤

(
k+1
2

)
− 2. That is,

Lemma 1.2. An (n, k)CSS in k + 1 blocks exists for k + 3 < n ≤
(
k+1
2

)
− 2.

Let w = b
(
k
2

)
− 2

5kc for k ≡ 0, 1, 3, 4 (mod 5) and w = b
(
k
2

)
− 2

5kc − 1 for k ≡ 2 (mod 5). The
following lemma appears in [1] in the dual context of k-regular antichains.

Lemma 1.3. Assume that k ≥ 6. Then R(n, k) ≤ k for k + 3 ≤ n ≤ w.

Hence, for all values considered in this paper, it can be assumed that R(n, k) ≤ k + 1. As R(n, k)
is known for all cases with k ≤ 10, it will also be assumed that k ≥ 11.

A catalogue of non-isomorphic configurations for (n)CSSs for n ≤ 35 and with at most 7 blocks is
developed in [6]. Hence R(n, k) is determined for all n ≤ 35 provided R(n, k) ≤ 7. Kündgen et al
[7] use an asymptotic approach to determine upper and lower bounds on R(n, k) for n ≥ 2k. Their
Corollary 1 states that R(

(
rm
r

)
,
(
rm−1
r−1

)
) = rm for r ≥ 1 and m ≥ 2.

CSSs have a dual formulation as antichains, and this has been useful in the determination of
minimum size CSSs. An antichain A on [m] is a collection of subsets of [m] such that A 6⊆ B for
all distinct A, B ∈ A. Let A = {A1, . . . , An} be a collection of subsets of [m]. The dual A∗ of A is
the collection A∗ = {X1, . . . , Xm} of subsets of [n] given by Xi = {q : i ∈ Aq}. Antichains are the
duals of CSSs: if A is a CSS then its dual A∗ is an antichain and vice versa. A flat antichain is an
antichain with ||A|−|B|| ≤ 1 for all A, B ∈ A. Fair CSSs and flat antichains are dual concepts. An
antichain A in 2[m] is m-native if the size of the antichain A exceeds the maximum size antichain
on [m − 1]. That is, |A| >

( m−1
bm−1

2 c
)
. This means that all elements of [m] occur in A. If C is a

minimum size (n, k)CSS in m blocks then the dual antichain is m-native.

A k-regular antichain A on [m] has each element of [m] occurring in exactly k sets in A. Thus
V (A) = km. The dual of an (n, k)CSS C in m blocks is a k-regular m-native antichain A with
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|A| = n. Thus, when we determinie R(n, k) = R, we are also determining the existence of a dual
k-regular R-native antichain of size n.

The determination of values of R(n, k) involves several different approaches. A commonly used
method is to establish a lower bound for a particular case and then try to determine whether or not
the bound is achievable. The bound is often obtained by showing that if R(n, k) = R then certain
partial structures must occur, and that these structures cannot be completed to an (n, k)CSS in
R blocks.

For the values of n and k considered here, 2n ≤ V (C) ≤ 3n and each point will normally be a
p-point with 2 ≤ p ≤ 3. For an (n, k)CSS C in R blocks with 2 ≤ V (C) ≤ 3n, t = 3n − kR is
the minimum number of 2-points that must occur in C, and u = n− t is the maximum number of
p-points in C, for p ≥ 3.

If C achieves R(n, k) then it has at least 2t
R 2-points in one of its blocks. An upper bound on the

number of 2-points in a block is given by the following theorem.

Theorem 1.2. Let C be a minimal (n, k)CSS in R blocks. Then each block in C contains at most
p 2-points, where p = R(n, k) − R(k − p) − 1, and R(k − p) is the minimum possible size of a
(k − p)CSS.

Proof. Assume that a block in C contains at least p 2-points. Each of these 2-points occur once
more, each in different blocks of C. The remaining k − p points must be completely separated in
the remaining R− p− 1 blocks, which is only possible if R(k − p) ≤ R(n, k)− p− 1.

Noting that R(n) = n for n ≤ 4 and R(5) = R(6) = 4, an immediate corollary is

Corollary 1.1. Let C be an (n, k)CSS with |C| = k or k − 1. Then
1. Each block in C contains at most (k − 5) or (k − 6) 2-points respectively.
2. If n >

(
k−1
2

)
then R(n, k) ≥ k.

The following related inequality appears in [10].

Lemma 1.4.

R(n, k) ≥
⌈

5− 2k +
√

(2k − 5)2 + 24n

2

⌉
. (1)

2 R(n, k) for
(
k−1

2

)
≤ n <

(
k
2

)
The study of values of R(n, k) when n is bounded by (near) quadratic functions of k has produced
the results summarised in Theorem 1.1, and this approach is continued in this section to determine
R(n, k) for

(
k−1
2

)
≤ n <

(
k
2

)
.

The main results are summarised in the following theorem. The proof is contained in the subsequent
discussion and theorems. Recall that w = b

(
k
2

)
− 2

5kc for k ≡ 0, 1, 3, 4 (mod 5) and w = b
(
k
2

)
−

2
5kc − 1 for k ≡ 2 (mod 5).

Theorem 2.1. For k ≥ 6,
1.

R(
(

k − 1
2

)
, k) =

{
k − 1 k ≡ 1 (mod 5)

k otherwise
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2. R(n, k) = k for
(
k−1
2

)
< n ≤ w.

3. R(n, k) = k + 1 for w < n <
(
k
2

)
.

The proof of Part 2 is straight forward. It follows immediately from Lemma 1.3 and Corollary 1.1.
The proof of the other two parts is contained in the following subsections.

2.1 R(n, k) for w < n <
(

k
2

)
By Theorem 1.1 and Lemma 1.2, R(n, k) = k + 1 for

(
k
2

)
− k/3 < n <

(
k
2

)
.

This leaves R(n, k) to be determined in this section for w < n ≤
(
k
2

)
− k/3 = d (k−1)2

2 e + k
6 − 1/2

for k odd, and
(
k
2

)
− k/3 = d (k−1)2

2 e+ k
6 − 1 for k even. For each k ≥ 11, the number of values of

n in this interval, called the gap, is approximately k
15 . It will be shown that

Theorem 2.2. R(n, k) = k + 1 for w < n ≤
(
k
2

)
− k/3.

Proof. Assume that C is an (n, k)CSS with |C| = k and w < n ≤
(
k
2

)
− k/3. By Corollary 1.1, at

most (k − 5) 2-points can occur in any block in a minimum size (n, k)CSS in k blocks for k ≥ 6.
A block is said to be full if it contains (k − 5) 2-points. Within the gap, the minimum number of
2-points that must occur is t = 3n − k2. For fixed k and |C|, t increases with n, so t achieves its
minimum in the gap when n = w + 1.

In the remainder of this section an argument is presented based upon the minimum number of
2-points which occur in an (n, k)CSS C with |C| = k. For fixed n, k this number is minimised if
all other points are 3-points, so the argument assumes that all other points are 3-points. To be
precise, cases when there are p-points with p ≥ 4 follows immediately from the arguments, as the
number of 2-points increases by p− 3 with the inclusion of each p-point, p > 3.

For fixed k, the number of 2-points t and the number of 3-points u for each n in the gap is bounded
respectively for k ≡ 0, 1, 2, 3, 4 (mod 5) by:
t ≥ 5k2−27k+30

10 and u ≤ 9k−10
5 ; t ≥ 5k2−27k+12

10 and u ≤ 9k−4
5 ; t ≥ 5k2−27k−6

10 and u ≤ 9k+2
5 ;

t ≥ 5k2−27k+6
10 and u ≤ 9k−2

5 ; t ≥ 5k2−27k+18
10 and u ≤ 9k−6

5 .
By calculating 2t−k(k−6) it can be seen that there are at least v blocks of C that contain exactly
(k − 5) 2-points where
v = 3k

5 + 6, 3k
5 + 12

5 , 3k
5 −

6
5 , 3k

5 + 6
5 , 3k

5 + 18
5 respectively for k ≡ 0, 1, 2, 3, 4 (mod 5).

This means that in all cases except when k ≡ 2 (mod 5) and n = w + 1, on average more than
three out of every five blocks of C are full. Note that this average is larger if there is a p-point,
p > 3. The values listed here are used implicitly throughout the proof when making calculations
relating to the number of 2-points or 3-points in various configurations.

Some more structure is needed. Assume that a block B1 ∈ C is full. Let B1 = {1, 2, . . . , k −
5, a, b, c, d, e}. Then each of the 2-points 1, 2, . . . , k − 5 reoccur once more in C, say in blocks
B6, . . . , Bk. This means that the 3-points a, b, c, d, e must be completely separated in blocks in
B = {B2, . . . , B5}. There is one non-isomorphic way to do this, as shown.

B =

a b c
a d e X Y
b d
c e
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Here, X represents the subcollection of 3-sets in these blocks, other than a, b, c, d, e, and Y is the
subcollection of 2-sets in these blocks. Let Xi, Yi denote the ith block of X, Y respectively. Call the
collection A = {B1, B2, B3, B4, B5} a collection of associated blocks. We proceed by considering the
possible size and structure of X and Y . The known partial structure for these associated blocks
is used to impose structural constraints within parts of a partitioning of the remaining blocks,
without having to deal with each block individually. This will make use of the following process.

Block Partitioning Process (BPP)
Let X1, X2 be the sets of 3-points in collections of associated blocks A1, A2 respectively in the
same form that X is for A above. Assume that A1, A2 are disjoint in the sense that X1 ∩ X2 =
∅. It is then said that A1, A2 are X-disjoint. Then we can partition the blocks of C into X-
disjoint collections of blocks of size five, labelled, A1, . . . , As, V, s ≤ bk

5 c, by recursively choosing
a previously unassociated full block, and including it, together with its associated blocks, in the
same part. V consists of any remaining blocks called the excess blocks.

Let A = {B1, . . . , B5} be a collection of associated blocks, let B = {B2, . . . , B5}, Z = {B6, . . . , Bk},
and let B ×Z = {(i, j) : Bi ∈ B, Bj ∈ Z}. A row in Y and a row in Z are said to clash if a row in
Z is covered by both a 3-point and a 2-point from the same row in B. This reflects the fact that
the 3-point covers the 2-point and so the CSS property is violated.

Case 1: Assume that there is no 2-point which occurs twice in Y .

It is easy to see that |X| 6= 10, 11 as follows. If |X| = 10 then |Y | = 4(k − 5) and each row of Y
contains exactly (k − 5) 2-points which must be completely separated in rows in Z. We represent
this situation with the following notation for the possible configuration of X and Y

W =

2 k − 5
2 k − 5
3 k − 5
3 k − 5

where each row represents the number of 3-points in X and 2-points in Y in the corresponding
blocks of B. As |X| = 10, an element in X must reoccur somewhere in blocks in Z, so rows in Y
and Z will clash.

For |X| = 11 the possible nonisomorphic configurations are

W1 =

3 k − 6
2 k − 5
3 k − 5
3 k − 5

and W2 =

2 k − 5
2 k − 5
3 k − 5
4 k − 6

In either case, it is easily checked that there is a row which contains a 2-point and a 3-point which
occur together again in a block in Z, and so a 2-point is covered by a 3-point.

Now consider the case |X| = 12. There are five possible configurations, given the possible values
in Y :

W1 =

2 k − 5
2 k − 5
3 k − 5
5 k − 7

, W2 =

2 k − 5
2 k − 5
4 k − 6
4 k − 6

, W3 =

2 k − 5
3 k − 6
3 k − 5
4 k − 6

, W4 =

2 k − 5
4 k − 7
3 k − 5
3 k − 5

, W5 =

3 k − 6
3 k − 6
3 k − 5
3 k − 5

The fact that each 2-point in Y needs to reoccur once in Z means that |Y × Z| = 4k − 22 so
|X × Z| ≤ 2. As |X| = 12, it is easily seen, by considering the possible placement of three points
of X in Z, that |X × Z| ≥ 3 if more than four distinct points are used in X. So we can assume
that only four distinct points occur in X.

For W1: as there are at least five distinct points in X, |X × Z| ≥ 3.
For W2: assume that X4 = fghi. With only four points allowed, X3 = fghi, and the first two
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blocks cannot be filled using only points from fghi.
For W3 or W4: for W3 assume that X4 = fghi. Then X3 = fgh and X2 cannot be filled by points
chosen from fghi, given that each point occurs 3 times in C. The configuration W4 uses the same
argument style with X2 = fghi.
For W5: there is one possibility, namely X1 = fgh, X2 = fgi,X3 = fhi,X4 = ghi. This is the
only possible configuration for |X| = 12.

It follows that if all associated collections have |X| = 12 then there are two possibilities. If s = bk
5 c

then there are insufficient 3-points for the number of associated collections except when n = w + 1
and k ≡ 2 (mod 5). Then there are insufficient distinct 3-points left to fill the excess rows. In all
other cases there are insufficient full rows as none of the excess rows can be full. This follows from
the assumption that |X| = 12 for all associated collections and from the fact that 3-points cannot
be shared by distinct associated collections.

Assume that C contains some associated blocks with |X| = 13, or equivalently |Y | = 4k − 23. En-
suring that no more than three pairs of rows are covered in B×Z, the eight possible configurations
are:

W1 =

2 k − 5
2 k − 5
3 k − 5
6 k − 8

, W2 =

2 k − 5
2 k − 5
4 k − 6
5 k − 7

, W3 =

2 k − 5
3 k − 6
3 k − 5
5 k − 7

, W4 =

2 k − 5
3 k − 6
4 k − 6
4 k − 6

,

W5 =

3 k − 6
3 k − 6
3 k − 5
4 k − 6

, W6 =

3 k − 6
4 k − 7
3 k − 5
3 k − 5

, W7 =

2 k − 5
4 k − 7
3 k − 5
4 k − 6

, W8 =

2 k − 5
5 k − 8
3 k − 5
3 k − 5

Given these configurations, it can be easily checked by considering the possible placement of points
from X in Z, that if there are at least six distinct 3-points occuring in X, then |X × Z| ≥ 4. So
we can assume that there are at most five distinct points in X. Hence the configuration W1 is not
feasible.

Given that there are five distinct 3-points in X, two places in Z include values from X, and there
are three possible arrangements of these points in Z: the point x repeated in two different rows
of Z; the points x, y occurring in the same row of Z; or the points x, y occurring in different rows
of Z. Only the first two cases are feasible as in the third case at least four pairs of rows will
be covered by x or y. The following constructions implicitly assume that these are the only two
feasible arrangements. Let the rows in Z, which may contain points from X, be labelled Z1, Z2.

For W2: let X4 = fghij and X3 = fghi. Then one each of f, g, h are in X1, X2, Z1 respectively,
and j must be in X1, X2, forcing i into Z2. This is not feasible.

For notational convenience when the points in one row of X are specified, then the sets of points in
the remaining rows, including those in Z, are recorded in summary form in numeric order of their
row name, as illustrated in the next case with the vertical stroke signifying the divide between X
and Z.

For W3: with X4 = fghij, the only feasible solution is gi, fij, fgh|hj (for rows X1, X2, X3, Z1 in
this order) but then Y3 clashes with Z1.

For W5: with X4 = fghi, these points must occur in pairs in four more rows, giving fgj, fhj, gij|hi.
Then Y3 clashes with Z1. A similar methodology can be used to show that W6 (without using Z2),
W7 and W8 are not feasible.

W6 is feasible with fgh, fgij, fhi, ghi|j, j.

For W4: with X4 = fghi, X3 must be fghj, forcing fj, gij|hi.
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Thus W4, W6 are the only feasible configurations for |X| = 13.

The reason for doing this analysis is the following. Given the feasible configurations above, it will
be shown that for any two distinct associated collections A1, A2 of five blocks, with A1, A2 having
their associated blocks with |X| = 12 or 13, then A1, A2 are X-disjoint. Then BPP can be applied
to the blocks in C.

Assume that A1, A2 are each collections of associated blocks with blocks BA1 ∈ A1, BA2 ∈ A2 being
full, and X is related to A1. Assume that some 3-points are common to both A1 and A2. This
cannot happen with the one feasible configuration for |X| = 12 so assume that |X| = 13. BA1 , BA2

cannot contain any of the same five 3-points, else the 3-points cannot be completely separated
appropriately. Assume that the 3-points in BA1 , BA2 are abcde, fghij respectively. Assume that
A1, A2 share 3-points in a common block B3 in A1. Then B3 contains one of the following non-
isomorphic combinations of 3-points abcfgh, abcfg, abfg. For |X| = 13 there are two feasible
configurations for X, namely W4 and W6. Neither of these configurations allow for the 3-points
fghij ∈ BA2 to share 3-points with A1 and have them completely separated in only four blocks.

Hence there are no collections of associated rows with shared blocks, and any excess rows containing
3-points common with an associated collection with |X| = 13 cannot be full.

BPP can be applied for the case of associated blocks with |X| = 12 or 13. The volume of 2-points
in C is maximised when all but one of the associated collections have |X| = 12. As any excess
rows are not full, the volume of 2-points in C is at most bk−5

5 c(5k − 27) + (5k − 28) + i(k − 6) =
k−5−i

5 (5k−27)+(5k−28)+ i(k−6) < k2− 27k
5 < 2t, with i ≡ 0, 1, 2, 3, 4 (mod 5), except possibly

when n = w + 1 and k ≡ 2 (mod 5). For k ≡ 2 (mod 5) there must be two excess rows which are
not full, so the appropriate inequality is k−7

5 (5k− 27) + (5k− 28) + 2(k− 6) =< k2 − 27k
5 −

6
5 and

again there are insufficient 2-points in C. That is, if all associated collections have |X| ≤ 13 then
the volume of 2-points will be less than 2t.

Assume that C contains an associated collection in which |X| = 14. If there is more than one
collection of associated rows with |X| = 14, and which do not share some common 3-points, or
where the excess rows are not full, then calculations similar to those above show that the volume
of 2-points is less than 2t.

Assume that all but one collection of associated rows has |X| = 12 and one collection A of associated
rows has |X| = 14. For this latter X it must be that |X × Z| ≤ 4. There are several possible
arrangements for X, but to show that the volume of 2-points in C is less than 2t, it is sufficent in
most cases to show that any excess rows associated with A cannot be full.

Assume that A shares 3-points with another full row, say Z1, which contains the 3-points fghij.
There is one way to completely separate these in four other blocks. There must be at least two
other distinct 3-points in X with one or both reoccurring in an excess row, not Z1, and contributing
at least two to the size of |X×Z|. It does not matter how fghij are arranged in X or excess rows,
these contribute at least three additional values to the size of |X ×Z|. Hence |X ×Z| > 4. This is
also the case if any of fghij appear in the other excess row. Hence Z1 and any other excess rows
cannot be full. After using BPP, it is easy to check that for each value of k (mod 5), except for
n = w + 1 and k ≡ 2 (mod 5), the volume of 2-points in C is less than 2t.

When n = w + 1 and k ≡ 2 (mod 5) then there are insufficient distinct 3-points to complete the
two excess rows.

If there is an associated collection with |X| ≥ 15 then the volume of 2-points in C requires that
there is one such collection and the remaining ones have |X| = 12. Then there are k (mod 5)
excess rows, and whether or not these are full, the calculation of the maximum volume of 2-points
in C can be found for each value of k (mod 5), and the volume of 2-points is less than 2t.
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Case 2: Assume that there is a 2-point which occurs twice in Y . Then the following structure
occurs with x the repeated 2-point in Y , and rows labelled B1, . . . B5.

1 . . . k − 5 a b c d e
a b c
a d e X Y
b d x
c e x

This means that it is necessary that |X × Z| ≤ 4(k − 5)− |Y |+ 2. It also means that all 3-points
in the last 2 rows B4, B5 are distinct to avoid covering x, so there are at least six distinct points
in X in B4 ∪B5.

It is easy to check that for |X| = 10 and |Y | = 4k − 20, or for |X| = 11 and |Y | = 4k − 19, that
|X × Z| ≥ 4 > 4(k − 5) − |Y | + 2, as there must be at least two positions filled in Z by 3-points
from each of B4, B5. Thus any asssociated collection contains at most 3 full rows.

If |X| ≥ 12 then X has the following partial structure with 3-points f, g, h, i, j, k

a b c
a d e
b d i j k x
c e f g h x

with each of B2, B3 containing at least two 3-points. Each of the collections fgh, ijk require at
least three more rows to completely separate each of them, so each collection has points which
occupy at least two places in Z.

For |X| = 12 or 13, the possible arrangements of the points fghijk which keep |X × Z| small
enough, require that there are four places in each of B2, B3 occupied by pairs of points chosen
from each of fgh and ijk. This is not possible as |X| ≤ 13.

Thus all collections of associated rows have |X| ≥ 14 and using arguments similar to those used in
Case 1, it is easy to verify that the volume of 2-points in C is less than 2t.

Thus R(n, k) ≥ k+1 for all values of n in the gap. The fact that R(n, k) = k+1 follows immediately
by Lemma 1.2.

2.2 R(n, k) for n =
(

k−1
2

)
By Lemma 1.4, R(

(
k−1
2

)
, k) ≥ k − 1.

Lemma 2.1. If k ≥ 6 and R(
(
k−1
2

)
, k) = k − 1 then k ≡ 1 (mod 5).

Proof. A fair minimal CSS on
(
k−1
2

)
points and with (k − 1) blocks has each block containing

exactly (k − 6) 2-points and six 3-points. The 3-points must be distributed as follows:

a b c d e f
a b c
a d e
b d f
c e f

Each of the remaining (k − 6) blocks contains exactly one 2-point from each of these five blocks.
So the remaining 3-points in these blocks occur as shown:
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a b c d e f
a b c g h i
a d e g h j
b d f g i j
c e f h i j

Therefore k − 1 must be divisible by five in order to allow complete separation.

It follows that if k 6≡ 1 (mod 5), R(
(
k−1
2

)
, k) ≥ k, and the following lemma provides a construction

for this case.

Lemma 2.2. For k ≥ 6, if R(
(
k−1
2

)
, k) = k then R(

(
k+4
2

)
, k + 5) = k + 5

Proof. Construct a (k + 5)× (k + 5) array M with the following structure, where A, B and X are
disjoint collections, and X is a minimum size (

(
k−1
2

)
, k)CSS.

where A =

1 2 3 . . . k − 2
...

...
4k − 7 5(k − 2)

,

which together with AT completely separates (5k−10) 2-points, and B is the following array which
completely separates 15 3-points.

B =

a b c d e f g
a b c g h i j
a d e h j m o
b d f h i l n
c e f i k n o

g j k l m
k l m n o

.

Then M is a (k + 5) × (k + 5) array which completely separates
(
k−1
2

)
+ (5k − 10) + 15 =

(
k+4
2

)
points.

Lemma 2.2 is applicable for k = 7, . . . , 10, as shown in Table 1. However, this is not the case for
k = 6 as R(10, 6) = 5.

Lemma 2.3. For k ≥ 6, if R(
(
k−1
2

)
, k) = k − 1 then R(

(
k+4
2

)
, k + 5) = k + 4.

Proof. Construct a (k + 4)× (k + 5) array M with the following structure, where A, B and X are
disjoint collections.
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where A =

1 2 3 4 5
...

...
5k − 1 5(k − 1)

,

which together with AT completely separates 5(k−1) 2-points. B is a 5×6 array which completely
separates ten 3-points and X is a (k − 1)× k array which completely separates

(
k−1
2

)
points.

Then M is a (k + 4) × (k + 5) array which completely separates
(
k−1
2

)
+ 5(k − 1) + 10 =

(
k+4
2

)
points.

The lemmas give part 1 of Theorem 2.1.

3 Minimal CSSs for 11 ≤ k ≤ 12

In Theorem 1.1 the values of R(n, k) for n ≥ k2/2 are stated and R(n, k) is known for all n with
k ≤ 10. The remaining unknown values of R(n, k) for k = 11 and 12 are determined here. When
it is stated in this section, that a construction satisfying certain parameters has been found, then
that construction appears in [4]. The construction of Böhm provides an alternative construction
technique when R = k + 1.

3.1 Remaining cases for R(n, 11)

R(n, 11) can be determined for n ≤ 21 using results from [10] and applying R(n, k) = R(n, n− k).
Roberts [10] gives values of R(n, 11) for n = 23, . . . , 26. R(45, 11) = 10 by Theorem 2.1, R(50, 11) =
11 by Theorem 2.1, and R(n, 11) has been determined for all n ≥ 55 by Theorem 1.1. The following
unknown cases need to be determined.

Roberts [10] gives the lower bound:
(i) R(22, 11) ≥ 7.

By Lemma 1.3 lower bounds for R(n, k) are:
(ii) For 27 ≤ n ≤ 28, R(n, 11) ≥ 7
(iii) For 29 ≤ n ≤ 33, R(n, 11) ≥ 8
(iv) For 34 ≤ n ≤ 39, R(n, 11) ≥ 9
(v) For 40 ≤ n ≤ 45, R(n, 11) ≥ 10
(vi) For 46 ≤ n ≤ 50, R(n, 11) ≥ 10.

By Theorem 2.2
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(vii) For 51 ≤ n ≤ 54, R(n, 11) ≥ 12.

Case (i) n = 22
Constructions have been found for R(22, 11) = 7 in [4] and [6].

Case (ii) 27 ≤ n ≤ 28

Lemma 3.1.
R(n, 11) = 8 for n = 27, 28.

Proof. For n = 27, 28 let C be an (n, k)CSS in 7 blocks. If R(27, 11) = 7, then V (C) = 77, so
there have to be at least four 2-points giving a block B with at least two 2-points which is not
possible by Theorem 1.2. If R(28, 11) = 7 there are at least seven 2-points and a similar argument
follows.

The same non-existence result could be obtained by using the catalogue in [6]. Constructions have
been found for R(27, 11) = 8 and R(28, 11) = 8.

Case (iii) 29 ≤ n ≤ 33
For n = 29, 30, 31, the lower bound for R(n, k) is achieved and constructions have been found for
R(n, 11) = 8.

Lemma 3.2.
R(n, 11) = 9 for n = 32, 33.

Proof. Let C be a (32, 11)CSS in 8 blocks. Then V (C) = 88 and there have to be least eight
2-points giving a block B with at least two 2-points.

There are at least nine 2-points then there is block B with at least three 2-points which is not
possible by Theorem 1.2.

Assume that there are exactly eight 2-points in C. By Theorem 1.2 there are at most two 2-points
in any block giving the configuration:

1 2 a . . . i
1 . . .
2 . . .

. . .

.

The nine 3-points a, . . . , i need to be completely separated in blocks three to eight. They cover
nine of the ten available pairs. This allows at most one pair of 2-points in these blocks, and the
2-points cannot be appropriately included.

Let C be a (33, 11)CSS in 8 blocks. V (C) = 88, and there must be 11 2-points and 22 3-points or, if
there is one 4-point there are 12 2-points and 20 3-points. Neither is possible by Theorem 1.2.

Constructions have been found for R(32, 11) = R(33, 11) = 9.

Case (iv) 34 ≤ n ≤ 39
Constructions have been found for R(34, 11) = R(35, 11) = R(36, 11) = 9.

Lemma 3.3.
R(n, 11) = 10 for 37 ≤ n ≤ 39.

Proof. Let C be a (37, 11)CSS in nine blocks. V (C) = 99 and if there is a 4-point there must be 13
2-points and 23 3-points as follows:
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X 1 2 3 a− g . . . or 1 2 3 a− h . . . or 1 2 3 a− h . . .
X . . . 1 . . . 1 X . . .
X . . . 2 . . . 2 . . .
X . . . 3 . . . 3 . . .
1 . . . X . . . X . . .
2 . . . X . . . X . . .
3 . . . X . . . X . . .

. . . X . . . . . .

. . . . . . . . .

.

By Lemma 1.1, the seven (or eight) points a, . . . , g (or a, . . . , h) require five rows to be completely
separated and this will allow at most three pairs of 2-points in these rows, so this is not possible.

If there are no 4-points then there are 25 3-points and 12 2-points, giving the following configura-
tion:

1 2 3 a . . . h
1 . . .
2 . . .
3 . . .

. . .

. . .

.

The eight points a, . . . , h require five rows to completely separate and this will not allow for any
pair of 2-points in these rows, so this is not possible.

Let C be a (38, 11)CSS with R = 9. V (C) = 99 so there must be at least 15 2-points with at least
four 2-points in at least one block. Let B1 = {1, 2, 3, 4, a, . . . , g} then a, . . . , g cannot be completely
separated in the last four blocks.

Let C be a (39, 11)CSS with R = 9. V (C) = 99 so there must be at least 17 2-points with at least
four 2-points in at least one block. The proof involves the same argument as used for n = 38.

Constructions have been found for R(37, 11) = R(38, 11) = R(39, 11) = 10.

Case (v) 40 ≤ n ≤ 44
Constructions have been found for R(n, 11) = 10 for 40 ≤ n ≤ 44.

Case (vi) 46 ≤ n ≤ 49
By Corollary 1.1, R(n, 11) ≥ 11 for n > 45, and constructions have been found for R(n, 11) = 11
for 46 ≤ n ≤ 49.

Case (vii) 51 ≤ n ≤ 54
R(51, 11), . . . , R(54, 11) ≥ 12 by Theorem 2.2, and constructions have been found for R(n, 11) = 12
for 51 ≤ n ≤ 54.

3.2 Remaining cases for R(n, 12)

R(n, 12) can be determined for n ≤ 24 using results from [10] and applying R(n, k) = R(n, n− k),
and in [10] there is a construction for R(25, 12) = 7.

R(55, 12) = 11 by Theorem 2.1. Theorem 2.1 gives R(61, 12) = 13. All values of R(n, k) have been
determined for n ≥ 66 in Theorem 1.1.

The remaining unknown cases are for n = 24, 26 ≤ n ≤ 30, 36 ≤ n ≤ 54, 56 ≤ n ≤ 60 and
62 ≤ n ≤ 65.

Roberts [10] gives the lower bound:
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(i) R(24, 12) ≥ 7.

By Lemma 1.4 lower bounds for R(n, k) are:
(ii) For 26 ≤ n ≤ 30, R(n, 12) ≥ 7
(iii) For 31 ≤ n ≤ 36, R(n, 12) ≥ 8
(iv) For 37 ≤ n ≤ 42, R(n, 12) ≥ 9
(v) For 43 ≤ n ≤ 48, R(n, 12) ≥ 10
(vi) For 49 ≤ n ≤ 54, R(n, 12) ≥ 11
(vii) For 56 ≤ n ≤ 60, R(n, 12) ≥ 12.

By Theorem 2.2
(viii) For 62 ≤ n < 65, R(n, 12) ≥ 13.

By Theorem 1.2, if C is an (n, 12)CSS with |C| = 7, then each block in C contains at most |C|−6 = 1
2-point.

Lemma 3.4. For k = 12 and R(n, 12) = 7 there cannot be a 2-point in any block.

Proof. Let C be an (n, 12)CSS with R = 7. Assume there is a block containing a 2-point. This
gives the following partial structure:

1 a b c d e f g h i j k
1 . . .
...

.

The 11 points a, . . . , k must be completely separated in five blocks which is not possible since
R(11) = 6.

Case (i) n = 24
A construction has been found for R(24, 12) = 7.

Case (ii) 26 ≤ n ≤ 30
By the catalogue in [6], R(n, 12) 6= 7 for n = 26, 27, 29, 30 and a construction is given there for
R(28, 12) = 7. Constructions have been found for R(26, 12) = R(27, 12) = R(29, 12) = R(30, 12) =
8.

Case (iii) 31 ≤ n ≤ 36
Constructions has been found for R(n, 12) = 8 for 31 ≤ n ≤ 33.

Lemma 3.5. R(n, 12) = 9 for 34 ≤ n ≤ 36.

Proof. Assume C is a (34, 12)CSS in eight blocks. By Theorem 1.2 there must be eight 2-points
and 26 3-points, with exactly two 2-points per block giving the following configuration:

1 2 a b c d e f g h i j
1 − . . .
2 − . . .
...

.

The ten 3-points a, . . . , j must be completely separated in the last five blocks covering exactly ten
pairs of these blocks (see [10]). Hence the remaining 2-points cannot be completely separated.
Adaptations of this proof show that R(35, 12), R(36, 12) > 8. Constructions have been found for
R(n, 12) = 9 for 34 ≤ n ≤ 36.
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Case (iv) 37 ≤ n ≤ 42
Constructions have been found for R(n, 12) = 9 for 37 ≤ n ≤ 39.

Lemma 3.6. R(n, 12) = 10 for 40 ≤ n ≤ 42.

Proof. Assume C is an (n, 12)CSS (40 ≤ n ≤ 42) in 9 blocks. V (C) = 108 so there are at least 14
2-points, but this would require some blocks to contain at least four 2-points. This is not possible
by Theorem 1.2. If there were any p-points, p ≥ 4, the number of 2-points would be greater.
Constructions have been found for R(n, 12) = 10 for 40 ≤ n ≤ 42.

Case (v) 43 ≤ n ≤ 48
Constructions have been found for R(n, 12) = 10 for 43 ≤ n ≤ 45.

Lemma 3.7. R(46, 12) = 11.

Proof. Assume that C is a (46, 12)CSS in ten blocks. There are at most four 2-points per block
by Lemma 1.1. It can be seen that there are no p-points, p ≥ 4 as follows. Assume that the
point A occurs in at least four blocks. Then there are at least 19 2-points in C and the partial
structure below must occur to completely separate the points of row 1. This forces all of the
2-points 1, . . . , 19 to occur in rows five to eight and this is not possible.

A 1 2 3 4 a b c d e f g
A b e . . .
A c f . . .
A d g . . .
1 . . .
2 . . .
3 . . .
4 . . .
a b c d . . .
a e f g . . .

The following arguments can be made without loss of generality. V (C) = 120 so there are 18
2-points and 28 3-points, and there is a block which contains exactly four 2-points. This gives the
following partial structure:

1 2 3 4 a b c d e f g h
1 . . .
2 . . .
3 . . .
4 . . .
...

.

The eight 3-points a, . . . , h must be completely separated in the last five blocks, and by [10] there
are two ways of doing this with volume 16. This leads to two cases based upon the partial forms
of rows six to ten:

Case 1:

a b c d
a e f g
b e h
c f h
d g

, Case 2:

a b c d
a e f
b e g
c f h
d g h

.

These points cover eight of the 10 pairs in rows six to ten, and so at most two 2-points can
occur here twice. This means that the first five rows must have the following form:
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1 2 3 4 a b c d e f g h
1 5 6 7 . . .
2 8 9 10 . . .
3 11 12 13 . . .
4 14 15 16 . . .

with each of 5, . . . , 16 occurring exactly once more in rows six to ten, and with 17 in rows eight
and ten, and 18 in rows nine and ten. It follows that at least one of the rows 6, . . . , 10 contains
exactly four 2-points.

Case 1:
Assume that 5, 8 are in row ten, along with the six 3-points A, . . . F . These 3-points must be
completely separated in the four rows 4, . . . , 7 with three of each of the 3-points in each row. This
means that at least one of 11, 12, 13 cannot be completely separated from them.
Assume that 5, 8, 11 are in row nine, along with the five 3-points A, . . . , E. Each of the points
A, . . . , E must occur twice in rows 5, . . . , 8 and they cover five of the six pairs of rows. This means
that at least one of 14, 15, 16 cannot be completely separated from them.
Assume that 5, 8, 11, 14 are in row six, along with the four 3-points A, . . . ,D. Each of the points
A, . . . ,D must occur twice in rows 7, . . . , 10 as follows, to avoid covering 17 or 18. The placement
of 9, 10, 11, E, F is then forced as shown.

A B C 9 10 11 E F
A D E
B D F
C

Similarly to the above arguments, it can be seen that 14, 15, 16 cannot be completely separated
from some of the other points. Hence Case 1 does not lead to a (46, 12)CSS.

Case 2 follows by similar reasoning to Case 1 to show that a (46, 12)CSS cannot be created, so
only some details are included.
Assume that 5, 8, 11, 14 are in row six, along with the four 3-points A, . . . D. Then rows 7, . . . , 10
have the following partial form and there are two subcases to check based upon the possible ways
to complete row seven: with 6, 9, 12, E, F,G or 6, 9, E, F,G, H.

a e f 18 A B
b e g 17 A C
c f h 17 B D
d g h 18 C D

.

This means that one of rows 7, . . . , 10 contain four 2-points, say row seven,
containing 5, 8, 11, 18, I, J,K, L, M . Then I, . . . , M must be completely separated in rows 5, 6, 8
and 9, with I, J, K in row five, and one each of these in rows 6, 8, 9. This means that 14, 15, 16
cannot be completely separated from them.

Lemma 3.8. R(n, 12) = 11 for n = 47, 48.

Proof. Assume C is an (n, 12)CSS in ten blocks. V (C) = 120 and there are 21 or 24 2-points
respectively, but this would require some blocks to contain at least five 2-points which is not
possible by Theorem 1.2. If there was a 4-point there would be more 2-points and a similar
argument would follow.

Constructions have been found for R(n, 12) = 11 for 46 ≤ n ≤ 48.

Cases (vi) 49 ≤ n ≤ 54
Constructions have been found for R(n, 12) = 11 for 49 ≤ n ≤ 54.

Case (vii) 54 ≤ n ≤ 60
Constructions have been found for R(n, 12) = 13 for 54 ≤ n ≤ 60.
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R(61, 12) = 13 by Theorem 2.2. It is worth noting that a computer search (see [5]) had previously
determined that R(61, 12) 6= 12, and a long analytic proof of this is outlined in [6]. The new
method using BPP is a significant improvement to these previously used methods which dealt with
this one case only. A construction for R(61, 12) = 13 is shown in Section 4.

Case (viii) 62 ≤ n ≤ 65
Constructions have been found for R(n, 12) = 13 for 62 ≤ n ≤ 65.

Table 1 provides a complete set of values of R(n, k) for 2 ≤ n ≤ 63 and k ≤ 12.

4 Comments

Quadratic Bands

It is interesting to note that in the case of n = d (k−1)2

2 e, R(n, k) = k + 1 for 6 ≤ k ≤ 8 or k = 12,
and R(n, k) = k for k > 8, k 6= 12. For n =

(
k−1
2

)
, R(n, k) = k − 1 if and only if k ≡ 1 (mod 5),

and R(n, k) = k otherwise. This is the first time that the values of R(n, k) have not been found to
be the same function of k for each n of the form n = d (k+a)2

2 e or n =
(
k+a

2

)
, a ≥ −1, k ≥ 10.

A (61, 12)CSS in 13 blocks is shown below, partly because of the property just mentioned, but also
because it was very difficult to show that R(61, 12) 6= 12 before BPP was developed.

1 2 3 4 5 a b c d u v w
6 7 8 9 10 a e f g u v x
11 12 13 14 15 b e h i u w y
16 17 18 19 20 c f h j v x y
21 22 23 24 25 d g i j w x y
26 27 a b c d e f g h i j
26 k l m n o p q r s t H
27 k l m n o z A B C D E
1 6 11 16 21 k p q C F G H
2 7 12 17 22 l p r B E F G
3 8 13 18 23 m q s A D G E
4 9 14 19 24 n r t z D H F
5 10 15 20 25 o s t z A B C

Monotonicity in n
Lemma 1.1 implies that R(n) is a non-decreasing function of n. One of the questions posed in [9]
was whether or not the value of R(n, k) is monotonic in n, for fixed k 6= 4, 5 and n ≥ 2k. In [8] it
was shown that the lower bound of d 2n

k e = k + 1 cannot be achieved for n =
(
k+1
2

)
− 1, whilst it

is achieved for
(
k+1
2

)
− 2, and for n =

(
k+1
2

)
. Thus R(n, k) is not a non-decreasing function of n at

least at one point for k ≥ 4. This paper shows that R(26, 12) = R(27, 12) = 8 but R(28, 12) = 7
and this is the first case found of another value of n and k where R(n, k) is not monotonic as a
function of n.

Regular antichains
The dual of an (n, k)CSS in R(n, k) blocks is an R-native k-regular AC of size n. Hence Table 1
provides the smallest size ground set for the existence of a k-regular AC of size n.

Flat antichains
All of the constructions mentioned in Section 3 are fair CSSs. Hence their duals are flat ACs.
This continues support for the conjecture that R(n, k) can always be achieved by a fair CSS.
Equivalently, the results support the conjecture that whenever there is a k-regular AC of size n on
[R], then there is also a k-regular flat AC of size n on [R].
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k
n 1 2 3 4 5 6 7 8 9 10 11 12
2 2
3 3
4 4 4
5 5 5
6 6 6 4
7 7 7 5
8 8 8 6 5
9 9 9 6 6

10 10 10 7 5 6
11 11 11 8 6 6
12 12 12 8 6 6 6
13 13 13 9 7 6 7
14 14 14 10 7 7 7 6
15 15 15 10 8 6 7 7
16 16 16 11 8 7 7 7 6
17 17 17 12 9 7 7 7 7
18 18 18 12 9 8 7 8 7 6
19 19 19 13 10 8 7 8 7 7
20 20 20 14 10 8 8 8 8 7 6
21 21 21 14 11 9 7 8 8 7 7
22 22 22 15 11 9 8 8 8 8 7 7
23 23 23 16 12 10 8 8 8 8 7 7
24 24 24 16 12 10 8 8 8 8 8 7 7
25 25 25 17 13 10 9 8 9 8 8 7 7
26 26 26 18 13 11 9 8 9 8 8 7 8
27 27 27 18 14 11 9 9 9 9 8 7 8
28 28 28 19 14 12 10 8 9 9 8 8 7
29 29 29 20 15 12 10 9 9 9 9 8 8
30 30 30 20 15 12 10 9 9 9 9 8 8
31 31 31 21 16 13 11 9 9 9 9 8 8
32 32 32 22 16 13 11 10 9 9 9 8 8
33 33 33 22 17 14 11 10 9 10 9 9 8
34 34 34 23 17 14 12 10 9 10 9 9 9
35 35 35 24 18 14 12 10 10 10 10 9 9
36 36 36 24 18 15 12 11 9 10 10 9 9
37 37 37 25 19 15 13 11 10 10 10 10 9
38 38 38 26 19 16 13 11 10 10 10 10 9
39 39 39 26 20 16 13 12 10 10 10 10 9
40 40 40 27 20 16 14 12 10 10 10 10 10
41 41 41 28 21 17 14 12 11 10 10 10 10
42 42 42 28 21 17 14 12 11 10 11 10 10
43 43 43 29 22 18 15 13 11 10 11 10 10
44 44 44 30 22 18 15 13 11 11 11 10 10
45 45 45 30 23 18 15 13 12 10 11 10 10
46 46 46 31 23 19 16 14 12 11 11 11 11
47 47 47 32 24 19 16 14 12 11 11 11 11
48 48 48 32 24 20 16 14 12 11 11 11 11
49 49 49 33 25 20 17 14 13 11 11 11 11
50 50 50 34 25 20 17 15 13 12 11 11 11
51 51 51 34 26 21 17 15 13 12 11 12 11
52 52 52 35 26 21 18 15 13 12 11 12 11
53 53 53 36 27 22 18 16 14 12 11 12 11
54 54 54 36 27 22 18 16 14 12 12 12 11
55 55 55 37 28 22 19 16 14 13 11 12 12
56 56 56 38 28 23 19 16 14 13 12 12 12
57 57 57 38 29 23 19 17 15 13 12 12 12
58 58 58 39 29 24 20 17 15 13 12 12 12
59 59 59 40 30 24 20 17 15 13 12 12 12
60 60 60 40 30 24 20 18 15 14 12 12 12
61 61 61 41 31 25 21 18 16 14 13 12 13
62 62 62 42 31 25 21 18 16 14 13 12 13
63 63 63 42 32 26 21 18 16 14 13 12 13

Table 1: Values of R(n, k) for 2 ≤ n ≤ 63 and k ≤ 12.
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Addendum: The value of R(34, 10) has been amended in Table 1 from 10 to 9. This corrects a
typographic error in [10].
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[6] M. Grüttmüller, I.T. Roberts, L. Rylands Completely Separating Systems - a catalogue and
applications. Submitted to Discrete Mathematics, 2010.

[7] A. Kündgen, D. Mubayi, P. Tetali, Minimal Completely Separating Systems of k-sets, J.
Combin. Theory A 93, 192-198, 2001.

[8] C. Ramsay, I.T. Roberts, Minimal Completely Separating Systems of Sets, Australasian Jour-
nal of Combinatorics, 13, 129-150, 1996.

[9] C.Ramsay, I.T. Roberts, F. Ruskey Completely Separating Systems of k-sets, Discrete Math-
ematics, 183, 265-275, 1998.

[10] I.T. Roberts, Completely Separating Systems of k-sets for 7 ≤ k ≤ 10, Australasian Journal
of Combinatorics, 33, 87-98, 2005.

[11] I.T. Roberts, L. Rylands Minimal (n) and (n, h, k) Completely Separating Systems, Aus-
tralasian Journal of Combinatorics, 33, 57-67, 2005.

18


