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Abstract. In the present thesis, we prove a conjecture belonging to a subbranch of additive

combinatorics that is called combinatorial zero–sum theory. Denoting by p an arbitrary prime

number, it has been known for about forty years that every sequence (P1, P2, . . . , P2p−1)

consisting of 2p − 1 points from the affine plane F2
p possesses a non–empty subsequence

the sum of whose elements equals zero. This fact has first been shown independently by

Kruyswijk and Olson and is nowadays known to be an easy consequence of Alon’s com-

binatorial Nullstellensatz. A less obvious question asks for a classification of all those se-

quences (P1, P2, . . . , P2p−2) of length 2p− 2 whose only zero–sum subsequence is the empty

one. This problem has been investigated by several researchers and in this respect a certain

conjecture implying in particular that any such sequence contains p − 2 equal points has

attracted a great deal of attention in recent years. A precise version of this conjecture will be

given below. By definition, the prime number p has property B if and only if it behaves in

accordance with the conjecture under discussion; by developing for the first time a powerful

method for tackling such inverse problems over F2
p, we prove the result alluded to in the title.

1. Introduction.

The main objective of this paper is a thorough discussion of a certain problem belonging to

that subfield of additive combinatorics which is called combinatorial zero–sum theory. For

its motivation it seems useful to recollect three well known related results. Fix an arbitrary

prime number p.

Fact 1. Suppose that a sequence a1, a2, . . . , ap from Fp, i.e. the field of residue classes of

integers modulo p, is given. Then there exists a non–empty set I ⊆ {1, 2, . . . , p} of indices

such that
∑
i∈I
ai = 0.

The number p of terms required to appear in the given sequence cannot be replaced by p− 1

as the counterexample provided by the sequence all of whose terms are equal to 1 exemplifies.

It can be shown, however, that this is essentially the only such example, or to be more precise:

2000 Mathematics Subject Classification. Primary: 05E15, 11P70. Secondary: 11B50.
Key words and phrases. Combinatorial zero–sum theory, planar lattice points, inverse Davenport prob-

lem, property B.
1



2 CHRISTIAN REIHER

Fact 2. For any sequence a1, a2, . . . , ap−1 of elements from Fp exactly one of the following two

alternatives occurs:

(a) There is a non–empty I ⊆ {1, 2, . . . , p− 1} satisfying
∑
i∈I
ai = 0.

(b) For some non–zero k ∈ Fp we have a1 = a2 = . . . = ap−1 = k.

As usual, one can make matters harder by attempting to generalize what one has just con-

sidered to a setting involving higher dimensions. Thus, you may pretend to be curious about

the corresponding situation in the affine plane F2
p viewed as a vector space over Fp and then

ask about the minimal number of terms a sequence of points needs to contain in order to

enforce for reasons of its mere length the existence of a non–empty zero–sum subsequence.

Here a theorem discovered independently by Kruyswijk and Olson (see [2] and [12]) comes

in handily, which implies, among other things:

Fact 3. Given any sequence P1, P2, . . . , P2p−1 of points from F2
p, there exists a non–empty set

I ⊆ {1, 2, . . . , 2p− 1} of indices such that
∑
i∈I
Pi = 0.

We defer the proof this statement to the end of this section, so the reader not familiar with

it is kindly asked to just believe it for a while. It is important to notice that again, we

cannot replace the number 2p− 1 occurring here by 2p− 2 as, e.g., the sequence whose first

p− 1 terms equal (0, 1) and whose last p− 1 terms equal (1, 0) witnesses. So once more the

question concerning all such examples emerges but as we shall now explain it is going to be

substantially more difficult this time.

Let us for the sake of discussion agree to call a sequence of 2p− 2 points (P1, P2, . . . , P2p−2)

suspicious if except for I = ∅ there is no I ⊆ {1, 2, . . . , 2p − 2} for which
∑
i∈I
Pi = 0. To

clarify our understanding of the structure of all suspicious sequences, it is helpful to consider

operations applicable to sequences of points that preserve suspiciousness. Plainly, every

permutation of the involved terms has this property. Moreover for any automorphism ϕ of

the vector space F2
p, the map

(P1, P2, . . . , P2p−2) 7−→ (ϕP1, ϕP2, . . . , ϕP2p−2)

constitutes another such operation. We now call two suspicious sequences isomorphic if they

are mutually obtainable from one another by a certain combination of the transformations just

described and hence, for easy commutativity reasons, also by a single permutation followed

by an automorphism.

For instance, what we have really alluded to when giving the above example is that any

sequence involving each of two linearly independent points exactly p − 1 times has to be

suspicious. In awareness of this, it is natural to wonder whether there are more such sequences
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and a moments reflection reveals that indeed there are some more subtle ones: First, taking

p − 1 times the point (1, 0) and moreover p − 1 points of the form (a, 1) in an arbitrary

fashion, it is easy to verify that we also obtain a suspicious sequence. We say that a sequence

isomorphic to any of the ones just described is of the first type. Second, taking the point

(1, 0) only p−2 times and then p points of the form (a, 1) the sum of which is also = (1, 0) we

get another class of suspicious sequences and any sequence isomorphic to one of these is said

to be of the second type. Of course, in extreme cases a suspicious sequence can be of both

types at the same time, but this circumstance is rather immaterial to what follows. More

relevantly, no other examples of suspicious sequences have hitherto been discovered and it

is widely believed that there are none. The prime number p is said to have property B if it

behaves in accordance with that conjecture and using this terminology the principal result

proved in the following pages reads

(�) Every prime number has property B.

The reader may amuse himself for a few minutes time by verifying directly that 2 and 3 do

indeed have property B, though as we shall see in Example 2.7 below a fairly modest amount

of theory suffices to almost trivialize these two small cases.

Another way of looking at the whole problem involves the notion of a cloudy sequence, by

which we mean any sequence (P1, P2, . . . , P2p−1) of length 2p− 1 such that apart from I = ∅
there is no I $ {1, 2, . . . , 2p − 1} such that

∑
i∈I
Pi = 0. Note that by Fact 3 this can only

occur if P1 + P2 + . . . + P2p−1 = 0. Plainly, every cloudy sequence can be made suspicious

by deleting any of its terms and conversely a suspicious sequence (P1, P2, . . . , P2p−2) can be

cloudified by inserting the point −(P1+P2+. . .+P2p−2) at an arbitrary place. Thus, property

B can equivalently be viewed as a classification of cloudy sequences, and working the details

out one discovers that thereby the two types introduced above unify into a single concept.

More explicitly, we call a sequence of 2p − 1 points simple provided that it is, in the same

sense as above, isomorphic to one that contains p − 1 times the point (1, 0) and p further

points each of which is of the form (a, 1) and that sum up to (1, 0). Then p has property

B if every cloudy sequence is simple. Another convenient reformulation of property B, that

likewise belongs to the folklore of the subject, will be given in Observation 2.6. —

Let us mention some recent partial results towards (�), though none of them will be relied

upon in what follows. Arguably the morally most satisfying of these has been obtained by the

authors of [3], who have shown with the help of a computer that up to 23 every prime number

has property B, so the chances that (�) failed have been negligible ever since we started to

think about the problem. In the same paper, it has also been proved that if the positive

real number δ is chosen sufficiently small, e.g. δ = 4× 10−7, then every suspicious sequence
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contains one point with multiplicity at least δp, and plenty of other statements pertaining

to the three highest multiplicities with which points appear in hypothetical counterexamples

have been established there as well. There are also quite a lot of papers that at some point

just assume (�) to be true and derive interesting consequences (see e.g. [2], [4], [5], [6] and

[14]). In our final section, we have collected some of the more spectacular ones among these

applications.

As promised, we now give a quick

Proof of Fact 3. Let Pi = (ai, bi) for all i ∈ [2p− 1], take 2p− 1 variables η1, η2, . . . , η2p−1, set

A =
∑

16i62p−1

aiηi, B =
∑

16i62p−1

biηi

and finally

Q =
∏

16i62p−1

(1− ηi)− (1− Ap−1)(1−Bp−1).

The total degree of Q, viewed as a member of the ring Fp[η1, η2, . . . , η2p−1] of polynomials

is 2p − 1 and the coefficient accompanied by which the monomial η1η2 · . . . · η2p−1 occurs is

(−1)2p−1 and thus in particular non vanishing. Invoking the Combinatorial Nullstellensatz

from [1], we find values ηi ∈ {0, 1} such that Q 6= 0 and setting I = {i ∈ [2p− 1] | ηi = 1} it

is straightforward to see that I 6= ∅ and hence A = B = 0, wherefore I is as desired. �

2. Some initial observations.

Repeating the argument just given, we can deduce something about suspicious sequences as

well. But before doing so, it seems advisable to introduce the following

Definition 2.1. Let F denote any field of characteristic p and m, n two non negative integers.

Given any sequence P1, P2, . . . , Pm+n of m + n points from F 2, say Pi = (ai, bi) for all i ∈
[m+ n], we set

µm(P1, P2, . . . , Pm+n) =
∑

M∪N=[m+n]
|M |=m,|N |=n

∏
i∈M

ai
∏
j∈N

bj.

In the particular case where exactly 2p− 2 points are involved and m = n = p− 1, we simply

write µ in place of µp−1.

Observation 2.2. If ϕ denotes an automorphism of F 2 and D its determinant, then for all

P1, P2, . . . , P2p−2 ∈ F 2 we have

µ(ϕP1, ϕP2, . . . , ϕP2p−2) = Dp−1µ(P1, P2, . . . , P2p−2).
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Proof. Fix the sequence (P1, P2, . . . , P2p−2) and consider ϕ as varying. If the claim is already

known for two automorphisms ϕ and ϕ′, then by multiplicativity of determinants it follows to

hold for their product ϕϕ′ as well. Hence it suffices to verify the above identity in those cases,

where either ϕ is of the form (x, y) 7−→ (kx, y) for some k ∈ F× or given by (x, y) 7−→ (y, x)

or by (x, y) 7−→ (x+ y, y). The first two of these alternatives offer no difficulty, so we restrict

our attention to the third one. Let Pi = (ai, bi) and Qi = (ai+ bi, bi) for all i ∈ [2p−2]. Then

µ(Q1, Q2, . . . , Q2p−2) =
∑

06i6p−1

(
2p− 2− i
p− 1

)
µi(P1, P2, . . . , P2p−2)

and taking into account that except for the last one all binomial coefficients appearing here

are divisible by p, we get

µ(Q1, Q2, . . . , Q2p−2) = µ(P1, P2, . . . , P2p−2)

as claimed. �

The additional generality gained by admitting possibilities other than F = Fp will become

exploited at the end of our next section.

Lemma 2.3. If the sequence (P1, P2, . . . , P2p−2) of points from F2
p is suspicious, then

µ(P1, P2, . . . , P2p−2) = 1.

Proof. Again let Pi = (ai, bi) for i = 1, 2, . . . , 2p−2, then take 2p−2 variables η1, η2, . . . , η2p−2

and set

A =
∑

16i62p−2

aiηi, B =
∑

16i62p−2

biηi

as well as

Q =
∏

16i62p−2

(1− ηi)− (1− Ap−1)(1−Bp−1).

By hypothesis, we have Q(η1, η2, . . . , η2p−2) = 0 whenever the values of the involved variables

are chosen from {0, 1}. Thus the Combinatorial Nullstellensatz tells us that upon expanding

and simplifying Q, the coefficient appearing in front of the monomial η1η2 · . . . · η2p−2 has to

vanish and as this coefficient is

= 1− (p− 1)!2µ(P1, P2, . . . , P2p−2)

the desired conclusion follows from Wilson’s Theorem. �
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Remark 2.4. Given an arbitrary cloudy sequence, there are 2p−1 possibilities to apply this

lemma and the equations arising thereby will be referred to as the conditional equations. The

argument just encountered can also be carried out in a one dimensional setting and there it

directly yields an alternative proof of Fact 2 from the introduction. Thus one might hope for

the two dimensional case that by combining and manipulating the conditional equations in a

sufficiently clever way one could similarly prove (�). It can be shown, however, that there are

some sequences which are not cloudy but nevertheless satisfy the conditional equations. Still,

these counterexamples do by no means preclude the possibility of establishing property B

by extracting certain polynomial equations from the Combinatorial Nullstellensatz and then

proving that their solutions are only the desirable ones. They just indicate that to proceed

along these lines one has to work somewhat more strategically and in fact to some extent this

is what we shall do in the sequel.

Something the conditional equations do indeed imply is stated in

Corollary 2.5. Any two linearly dependent points appearing in the same cloudy sequence are

equal.

Proof. Suppose that the sequence (P1, P2, . . . , P2p−1) is cloudy and that αP1 + βP2 = 0 for

some α, β ∈ Fp not vanishing simultaneously. The conditional equations associated with P2

and P1 read

µ(P1, P3, . . . , P2p−1) = 1 and µ(P2, P3, . . . , P2p−1) = 1.

Multiplying the first of them by α, the second one by β and adding up what results, we infer

α + β = 0 and from this P1 = P2 immediately follows. �

Somewhat unrelatedly, we have

Observation 2.6. Every cloudy sequence containing p−1 pairwisely linearly dependent points

is simple.

Proof. By Fact 2 from the introduction or alternatively by Corollary 2.5 we know that the

dependent points have to be equal. Now consider any cloudy sequence containing p− 1 times

e.g. the point (1, 0) and p further points (ai, bi) where i = 1, 2, . . . , p. Applying Fact 2 to the

sequence (b1, b2, . . . , bp−1) it follows that for some k ∈ F×p we have b1 = b2 = . . . = bp−1 = k

and in view of (p− 1) · (1, 0) +
∑

16i6p
(ai, bi) = (0, 0) we finally obtain bp = k. �

Example 2.7. As cloudy sequences cannot contain the origin, it follows from the last obser-

vation that 2 has property B. Slightly less trivially, there are eight points in F2
3 differing from

the origin and these can be grouped together into four pairs of linearly dependent points.
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Now as for p = 3 the length of cloudy sequences is five, it follows from the box–principle

that any such sequence necessarily involves two linearly dependent points and thus we infer

that 3 has property B as well. Having thereby seen that the two smallest cases can easily

be dealt with separately, one should bear in mind that when we come to the more advanced

aspects of our theory there will never arise any loss of generality by assuming p > 5 whenever

this appears to be advantageous. Actually we shall reach a point later on (see Example 8.2)

where we can easily dispose of the case p = 5 as well, whence for our most general argument,

to be given in Proposition 10.1, it will be permissible to assume even p > 7.

Remark 2.8. Different proofs of Corollary 2.5 and Observation 2.6 may be found in [10], see

Corollary 5.6.9 and Theorem 5.8.7 there.

3. A polynomial system of equations.

In this section, we shall occupy ourselves with a peculiar system of equations a sequence of

points might satisfy and that does impose strong structural constraints. Throughout this pre-

liminary investigation, we suppose to be working in an arbitrary field F whose characteristic

is p and by points we shall mean elements of F 2.

Lemma 3.1. Among any 2p−1 points P1, P2, . . . P2p−1 different from the origin and satisfying

µ(P1, . . . , Pi−1, Pi+1, . . . , P2p−1) = 0

for all i ∈ [2p− 1] there are p+ 1 pairwisely linearly dependent ones.

Proof. For brevity, we call a sequence of 2p− 1 points magical if it satisfies the hypothesis of

the lemma. Clearly, this property is invariant under permutations. Now we claim

(∗) If (P1, P2, . . . , P2p−1) is a magical sequence such that for at most p− 1 values of

i ∈ {2, 3, . . . , 2p− 1} the points P1 and Pi are linearly dependent, then for any point Q other

than the origin the sequence (Q,P2, . . . , P2p−1) is also magical.

To show this, we may assume that there is some r ∈ [p] such that P1 and Pi are linearly

dependent if i 6 r and linearly independent otherwise. If m+k 6 2p− 1 and i1, i2, . . . , ik are

distinct elements of [2p − 1], we write µ∗m(i1, i2, . . . , ik) for the result of applying µm to the

sequence remaining from (P1, P2, . . . , P2p−1) after removing those of its terms whose indices

are i1, i2 . . . , ik. Finally, let Pi = (ai, bi) for i ∈ [2p − 1] and Q = (x, y). Now whenever

r < i 6 2p− 1 we have a1bi − aib1 6= 0 by our choice of r, moreover

(a1bi − aib1)µ∗p−2(1, i) = bi
{
a1µ

∗
p−2(1, i) + b1µ

∗
p−1(1, i)

}
− b1

{
aiµ
∗
p−2(1, i) + biµ

∗
p−1(1, i)

}
= biµ

∗
p−1(i)− b1µ∗p−1(1) = 0,
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and similarly

(a1bi − aib1)µ∗p−1(1, i) = a1

{
aiµ
∗
p−2(1, i) + biµ

∗
p−1(1, i)

}
− ai

{
a1µ

∗
p−2(1, i) + b1µ

∗
p−1(1, i)

}
= a1µ

∗
p−1(1)− aiµ∗p−1(i) = 0.

Therefore µ∗p−2(1, i) = µ∗p−1(1, i) = 0, whence in particular

µ(Q,P2, . . . , Pi−1, Pi+1, . . . , P2p−1) = xµ∗p−2(1, i) + yµ∗p−1(1, i) = 0.

This finishes the proof of (∗) in case r = 1, so we may suppose r > 1 from now on. Then

there are some other equations we need to know and these require an additional idea: As P1

is different from the origin, we may assume by symmetry that a1 6= 0. By linear dependency,

this entails a2, . . . , ar 6= 0. Now if 2 6 i < j 6 r, then aibj − ajbi = 0 and thus

aiµ
∗
p−2(1, i)− ajµ∗p−2(1, j) = ai{ajµ∗p−3(1, i, j) + bjµ

∗
p−2(1, i, j)}

− aj{aiµ∗p−3(1, i, j) + biµ
∗
p−2(1, i, j)}

= (aibj − ajbi)µ∗p−2(1, i, j) = 0,

and similarly

aiµ
∗
p−1(1, i)− ajµ∗p−1(1, j) = ai{ajµ∗p−2(1, i, j) + bjµ

∗
p−1(1, i, j)}

− aj{aiµ∗p−2(1, i, j) + biµ
∗
p−1(1, i, j)}

= (aibj − ajbi)µ∗p−1(1, i, j) = 0.

In other words, we have

a2µ
∗
p−2(1, 2) = . . . = arµ

∗
p−2(1, r)

as well as

a2µ
∗
p−1(1, 2) = . . . = arµ

∗
p−1(1, r).

Using

a2µ
∗
p−2(1, 2) + . . .+ a2p−1µ

∗
p−2(1, 2p− 1) = (p− 1)µ∗p−1(1) = 0

and

a2µ
∗
p−1(1, 2) + . . .+ a2p−1µ

∗
p−1(1, 2p− 1) = pµ∗p(1) = 0,

it follows from what we have shown by now that for any i ∈ {2, . . . , r} we have

(r − 1)aiµ
∗
p−2(1, i) = (r − 1)aiµ

∗
p−1(1, i) = 0,

whence by (r − 1)ai 6= 0 we arrive at

µ∗p−2(1, i) = µ∗p−1(1, i) = 0,

which in turn tells us

µ(Q,P2, . . . , Pi−1, Pi+1, . . . , P2p−1) = xµ∗p−2(1, i) + yµ∗p−1(1, i) = 0



PROPERTY B 9

as before. Thereby, (∗) is proved.

Now assume that there was a magical sequence violating our lemma. Applying (∗) very often,

we inferred that then the sequence whose first p− 1 terms are = (0, 1) and whose remaining

p terms are = (1, 0) was also magical, but clearly this is not the case. �

Remark 3.2. This easily implies Alon’s Permanent Conjecture for 2 × 2 matrices, cf.

Conjecture 8.4 of [1].

It is worth our while to point out that the hypothesis of our lemma can still be weakened

further.

Proposition 3.3. Suppose that a sequence P = (P1, P2, . . . , P2p−1) of points different from

the origin, two further points Q and R also different from the origin and two disjoint subsets

A and B of [2p − 1] the cardinality of whose union is less than p satisfy the following three

conditions:

(a) If i ∈ A, then Q and Pi are linearly dependent.

(b) If i ∈ B, then R and Pi are linearly dependent.

(c) If i ∈ [2p− 1]− (A ∪B), then µ(P1, . . . , Pi−1, Pi+1, . . . , P2p−1) = 0.

Then P contains p+ 1 points that are pairwisely linearly dependent.

Proof. It suffices to consider the case, where Q and R are linearly independent, for otherwise

we may replace the quadruple (A,B,Q,R) by (A∪B, ∅, Q,X) for some appropriately selected

point X. Applying some automorphism of F 2 to the whole situation if necessary, we may

further suppose in view of Observation 2.2 that Q = (1, 0) and R = (0, 1). Now as usual

let Pi = (ai, bi) for all i ∈ [2p − 1] and we also continue to use µ∗ as in the previous proof.

Note that bi = 0 whenever i ∈ A and ai = 0 whenever i ∈ B by conditions (a) and (b),

respectively. Hence for all i ∈ A we have ai 6= 0 by Pi 6= 0 and taking also (c) into account

we infer aiµ
∗(i) = 0 for all i ∈ [2p − 1] − A. Moreover, if i and i′ denote distinct members

of A, then aiµ
∗(i) = aiai′µ

∗(i, i′) = ai′µ
∗(i′) and this tells us that for some α ∈ F we have

aiµ
∗(i) = α whenever i ∈ A. Finally we find

|A| · α =
∑
i∈A

aiµ
∗(i) =

∑
i∈[2p−1]

aiµ
∗(i) = pµp(P1, P2, . . . , P2p−1) = 0,

whence µ∗(i) = 0 for all i ∈ A. Similarly one verifies this equation for all i ∈ B and taken

together with (c) these facts reveal that our sequence P satisfies the hypothesis of Lemma 3.1,

which in turn entails the desired conclusion. �

Corollary 3.4. Suppose that p is odd, let a, b and c denote three elements of F that are not

vanishing simultaneously and let P = (P1, P2, . . . , P2p−3) a sequence of points different from
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the origin such that for all i ∈ [2p− 3] we have

aµp−3(P1, . . . , Pi−1,Pi+1, . . . , P2p−3) + 2bµp−2(P1, . . . , Pi−1, Pi+1, . . . , P2p−3)

+ cµp−1(P1, . . . , Pi−1, Pi+1, . . . , P2p−3) = 0.

Then some p− 1 terms from P are pairwisely linearly dependent.

Proof. As the conclusion of this statement is not affected by passing from the field F to an

arbitrary extension, it is permissible to suppose that b2 − ac is a square in F and thus that

there are points P2p−2 = (r, s) and P2p−1 = (u, v) different from the origin for which

ax2 + 2bxy + cy2 = (rx+ sy)(ux+ vy)

holds as an equation between polynomials. Now note that the sequence (P1, P2, . . . , P2p−1)

just constructed satisfies the hypothesis of Proposition 3.3 with Q = P2p−2, R = P2p−1,

A = {2p− 2} and B = {2p− 1}. �

4. The strategic equations.

For any points A = (u, v) and B = (x, y) from F2
p, we write [AB] = uy − vx. The reader is

reminded of the equation

A[BC] +B[CA] + C[AB] = 0

valid for any three points A,B,C ∈ F2
p.

The following result, when applied in all possible ways to a given cloudy sequence, leads to

a plethora of equations shedding so much light onto the whole problem that we are going to

call them strategic.

Proposition 4.1. Let p > 2 and suppose that a suspicious sequence (A,B,C, P1, . . . , P2p−5)

is given. Then writing

µ∗(X, Y, Z) = µ(X, Y, Z, P1, . . . , P2p−5)

for all X, Y, Z ∈ F2
p, we have

[BC]µ∗(A,A,A) + [CA]µ∗(B,B,B) + [AB]µ∗(C,C,C)

+ 3{[BC] + [CA] + [AB]}µ∗(A,B,C) = 0.

Proof. If two among the three points A, B and C are equal, then this formula is true even

irrespective of the definition of µ∗, so we may assume additionally that these points are

distinct and hence pairwise linearly independent. Exploiting Observation 2.2 we see that

the validity of the strategic equations is not affected by applying automorphisms of F2
p to the
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sequence under discussion and thus we may also suppose A = (1, 0), B = (0, 1) and C = (x, y)

for some x, y ∈ Fp, where xy 6= 0. Our goal is then to prove

(x3 − x)µ+
p−4 + 3x(x− 1)(y − 1)µ+

p−3 + 3(x− 1)y(y − 1)µ+
p−2 + (y3 − y)µ+

p−1 = 0,

where we have written µ+
m in place of µm(P1, P2, . . . , P2p−5) for m ∈ {p−4, p−3, p−2, p−1}.

Let Pi = (ui, vi) for all i ∈ [2p− 5], take 2p− 5 variables ε1, ε2, . . . , ε2p−5 and set

U =
∑

16i62p−5

uiεi as well as V =
∑

16i62p−5

viεi.

We now divide into three cases that are not mutually exclusive but cover all possibilities.

First Case: x = 1 or y = 1.

By symmetry we may suppose x = 1 and what remains to be shown is (y3−y)µ+
p−1 = 0. This

is clear if y ∈ {−1, 0, 1}, so from now on let this be not the case. Consider the polynomial

Q =
∏

m∈Fp−{1}

(U +m) ·
∏

n∈Fp−{0,1,y,y+1}

(V + n)

and assume that for some choice of ε1, ε2, . . . , ε2p−5 ∈ {0, 1} we had Q 6= 0. Then U = −1,

V ∈ {0,−1,−y,−(y + 1)} and defining I = {i ∈ [2p− 5] | εi = 1} as well as

J = {A} {A,B} {C} {B,C}
if V = 0 −1 −y −(y + 1)

we find
∑
J +

∑
i∈I
Pi = 0, contrary to the suspiciousness of (A,B,C, P1, . . . , P2p−5).

It has thereby been shown that our assumption regarding the non–zeroes of Q must have

been wrong and looking at the coefficient of ε1ε2 · . . . · ε2p−5 one sees that this can only mean

µ+
p−1 = 0.

Second Case: x = −1 or y = −1.

As before, it suffices to consider the case x = −1 and this time we have to prove

(y − 1){6µ+
p−3 − 6yµ+

p−2 + (y2 + y)µ+
p−1} = 0.

This is plain if y = 1, the case y = 0 has already been excluded at the beginning and y = −1

is also impossible for then we had A+B + C = 0. Therefore we may suppose y 6∈ {−1, 0, 1}
and setting

H ′(ξ, η) = (y2 + y)ξ2 − 2yξη + 2η2 + (y + 1)(yξ − 2η)

we find that the polynomial

Q′ =
∏

m∈Fp−{−1,0,1}

(U +m) ·
∏

n∈Fp−{0,1,y,y+1}

(V + n) ·H ′(−U,−V )
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has total degree at most 2p− 5 and its coefficient belonging to ε1ε2 · . . . · ε2p−5 is

= (p− 1)!(p− 4)!(y2 + y)µ+
p−1 − 2(p− 2)!(p− 3)!yµ+

p−2 + 2(p− 3)!(p− 2)!µ+
p−3

= −(p− 2)!(p− 4)!{(y2 + y)µ+
p−1 − 6yµ+

p−2 + 6µ+
p−3}.

Thus if our claim was wrong, then by the Combinatorial Nullstellensatz there existed values

ε1, ε2, . . . , ε2p−5 ∈ {0, 1} for which Q′ 6= 0. Then U ∈ {−1, 0, 1} and V ∈ {0,−1,−y,−(y+1)}
but as

H ′(1, y) = H ′(1, y + 1) = H ′(0, 0) = H ′(0, y + 1) = H ′(−1, 0) = H ′(−1, 1) = 0

there are on the whole only six possibilities left for the pair (U, V ) and stipulating

I = {i ∈ [2p− 5] | εi = 1}

as well as

J = {A} {A,B} {B} {A,C} {C} {B,C}
if (U, V ) = (−1, 0) (−1,−1) (0,−1) (0,−y) (1,−y) (1,−y − 1)

we find
∑
J +

∑
i∈I
Pi = 0, which contradicts the suspiciousness of (A,B,C, P1, . . . , P2p−5).

This finishes the discussion of the second case.

Third Case: x 6= ±1 and y 6= ±1.

Recalling that also x 6= 0 and y 6= 0 we can argue as before, using this time the polynomial

Q′′ =
∏

m∈Fp−{0,1,x,x+1}

(U +m) ·
∏

n∈Fp−{0,1,y,y+1}

(V + n) ·H ′′(−U,−V ),

where

H ′′(ξ, η) = (y3 − y)ξ(ξ − x)(ξ − x− 1)

+ (x− 1)(y − 1)ξη(yξ + xη − 2xy − x− y)

+ (x3 − x)η(η − y)(η − y − 1).

Noting that

H ′′(0, 0) = H ′′(0, y) = H ′′(0, y + 1) = H ′′(1, y) = H ′′(1, y + 1) = H ′′(x, 0)

=H ′′(x, 1) = H ′′(x+ 1, 0) = H ′′(x+ 1, 1) = H ′′(x+ 1, y + 1) = 0,

we can replace the above table by defining

J = {B} {A} {A,B} {C} {B,C} {A,C}
for (U, V ) = (0,−1) (−1, 0) (−1,−1) (−x,−y) (−x,−y − 1) (−x− 1,−y)

and the rest carries over. �
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5. Excluding three collinear points.

Now we come to the first substantial partial results towards (�) and to motivate them,

suppose you are given some cloudy sequence and want to investigate it. As it certainly

cannot contain p equal points, the box principle entails that at least three distinct points

have to be present. Now if you already knew that the sequence under consideration was

simple, then this told you that such three points could not form an arbitrary configuration:

Rather, they either have to be collinear or together with the origin they have to be the

vertices of some trapezoid. Let us call triples of distinct points falling under either of these

two categories clean for the following lines. Now obviously it would be very useful if we

devised some argument establishing that any triple of distinct points occurring in a cloudy

sequence had to be clean, and in fact it could be shown that this statement then yielded

property B by an elementary argument not relying on anything developed in sections 3 or 4.

With some likelihood, however, the assertion we are speaking about is highly difficult to

justify. So what we shall do instead in the following two sections is that we start with a

cloudy sequence about which we already assume that it involves at least one clean triple and

then prove the corresponding reconstruction hypotheses stating that the remaining 2p − 4

points have to attach to the three preselected ones in the expected way. The first of these is

given by

Proposition 5.1. Every cloudy sequence including three distinct but collinear points is sim-

ple.

Proof. We may suppose p > 5. Take a cloudy sequence (A,B,C, P1, . . . , P2p−4) in which the

three distinct points A, B and C are lying on a common line. By Corollary 2.5 this line

cannot pass through the origin, so there are points X, Y satisfying [XY ] 6= 0 together with

three distinct numbers a, b, c ∈ Fp such that A = X + aY , B = X + bY and C = X + cY .

Setting

µ∗i (U, V,W ) = µ(U, V,W, P1, . . . , Pi−1, Pi+1, . . . , P2p−4)

for any U, V,W ∈ F2
p and i ∈ [2p− 4], the strategic equations tell us that

[BC]µ∗i (A,A,A) + [CA]µ∗i (B,B,B) + [AB]µ∗i (C,C,C)

+ 3{[BC] + [CA] + [AB]}µ∗i (A,B,C) = 0

holds for all i ∈ [2p− 4]. Taking the trilinearity of µ∗i into account, this simplifies to

[XY ](a− b)(b− c)(c− a){3µ∗i (X, Y, Y ) + (a+ b+ c)µ∗i (Y, Y, Y )} = 0,



14 CHRISTIAN REIHER

and writing Z = 3X + (a+ b+ c)Y we obtain µ∗i (Y, Y, Z) = 0 for all i ∈ [2p− 4]. Noting that

Z = A+B + C 6= 0, we infer from Proposition 3.3 that some p+ 1 among the points

Y, Y, Z, P1, . . . , P2p−4

are pairwise linearly dependent. Therefore the sequence we started with certainly contains p−
1 pairwise linearly dependent points and thus has to be simple in view of Observation 2.6. �

6. Excluding a trapezoid.

In this section, we intend to prove a similar result for constellations of three points that

taken together with the origin form a trapezoid. This turns out to be somewhat easier if the

trapezoid under consideration is not a parallelogram, so we commence with this case.

Lemma 6.1. Cloudy sequences containing three distinct points forming together with the

origin a trapezoid that is not a parallelogram are simple.

Proof. Let p > 5 and take a cloudy sequence (A,B,C, P1, . . . , P2p−4) as described in the

hypothesis of our lemma. We may suppose that [AB] 6= 0 and C = B + rA for some

r 6∈ {−1, 0, 1}. Using µ∗i for i = 1, 2, . . . , 2p− 4 in the same meaning as in the previous proof,

the strategic equations this time tell us [AB](r3− r)µ∗i (A,A,A)=0 for all i ∈ [2p− 4]. Hence

Proposition 3.3 is applicable to the sequence (A,A,A, P1, . . . , P2p−4) and the argument may

be completed as before. �

More generally, we claim

Proposition 6.2. Every cloudy sequence involving three distinct points that taken together

with the origin form a trapezoid is simple.

Proof. In the light of the foregoing lemma, it suffices to treat cloudy sequences containing two

distinct points A and B together with their sum A+B. If the sequence under consideration

includes no point distinct from A, B and A + B, then it follows from the circumstance that

the sum of all involved points has to vanish that A or B occurs at least p− 1 times, whereby

the sequence is in particular simple. Thus we may restrict our attention to cloudy sequences

(A,B,A + B,C, P1, . . . , P2p−5) in which [AB] 6= 0 and C 6= A,B,A + B. Choosing r, s ∈ Fp
such that C = rA+ sB and writing

µ∗(X, Y, Z) = µ(X, Y, Z, P1, . . . , P2p−5)
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for all X, Y, Z ∈ F2
p, the conditional equations with A, B, A+B and C omitted tell us

rµ∗(A,A,B) + (r + s)µ∗(A,B,B) + sµ∗(B,B,B) = 1,

rµ∗(A,A,A) + (r + s) µ∗(A,A,B) + sµ∗(A,B,B) = 1,

rµ∗(A,A,B) + sµ∗(A,B,B) = 1,

as well as µ∗(A,A,B) + µ∗(A,B,B) = 1.

Further we know

(r3 − r)µ∗(A,A,A) + 3r(r − 1)(s− 1)µ∗(A,A,B)

+ 3(r − 1)s(s− 1)µ∗(A,B,B) + (s3 − s)µ∗(B,B,B) = 0

for strategical reasons. Multiplying the last five equations in this order by 1 − s2, 1 − r2,

(r − s)2 + 3(r + s)− 4, −(r + s), 1 and adding up what this yields, we deduce

−2(r − 1)(s− 1) = 0.

Therefore we have r = 1 or s = 1. If r = 1, then the three distinct points A, A + B and C

are collinear and we may invoke Proposition 5.1 to conclude that the sequence we consider is

indeed simple and if s = 1, then using the triple (B,A+B,C) we can argue similarly. �

7. Obtaining a fourth point.

In order to say something about a general cloudy sequences going beyond what we have proved

so far, it appears advantageous to hypothesize it to involve at least four distinct points. Thus

to prevent our whole investigation from inconclusiveness, it seems advisable to dispose at

some point of those cases, that cannot be analyzed in this way and to work this out is the

objective of the present section. This in turn is prepared by the following

Observation 7.1. Suppose that A, B and C are three pairwise linearly independent points

from F2
p and that α, β and γ denote three non–negative integers, the sum of which equals

2p− 2. Then calculating in Fp we have

[BC]α[CA]β[AB]γµ(A, . . . , A︸ ︷︷ ︸
α

, B, . . . , B︸ ︷︷ ︸
β

, C, . . . , C︸ ︷︷ ︸
γ

) = α!β!γ!.

Proof. By symmetry, we may suppose α > β, γ. Note that by Observation 2.2 and Fermat’s

Theorem it suffices to consider the case A = (1, 0), B = (0, 1) and C = (x, y), where xy 6= 0.

If α > p, then both sides of the equation under discussion are easily seen to vanish and for

this reason we shall suppose α, β, γ 6 p− 1 from now on. Thus we need to show

(−x)α(−y)β
(

γ

p− 1− α

)
xp−1−αyp−1−β = α!β!γ!
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and by Fermat’s Theorem again, this is equivalent to

(−1)α+β = α!(p− 1− α)! · β!(p− 1− β)!.

Using Wilson’s Theorem, one finds α!(p − 1 − α)! = (−1)α(p − 1)! = (−1)α+1, similarly

β!(p− 1− β)! = (−1)β+1, and the desired conclusion follows. �

Lemma 7.2. Every cloudy sequence involving at most three distinct points is simple.

Proof. Let p be odd and take a cloudy sequence P in which the three distinct points A, B

and C occur with multiplicities α, β and γ respectively, where α + β + γ = 2p − 1. Clearly

α, β, γ 6 p − 1 and if we have, e.g., α 6 2, then β + γ > 2p − 3, hence p − 1 ∈ {β, γ} and

the simplicity of P follows from Observation 2.6. Thus we may suppose α, β, γ > 3. Writing

µ(a, b, c) in place of

µ(A, . . . , A︸ ︷︷ ︸
a

, B, . . . , B︸ ︷︷ ︸
b

, C, . . . , C︸ ︷︷ ︸
c

)

whenever a, b and c denote some non–negative integers the sum of which equals 2p− 2, the

strategic equation with (A,B,C) singled out and a further copy of C omitted discloses

[BC]µ(α + 2, β − 1, γ − 2) + [CA]µ(α− 1, β + 2, γ − 2) + [AB]µ(α− 1, β − 1, γ + 1)

+ 3{[BC] + [CA] + [AB]}µ(α, β, γ − 1) = 0.

Multiplying this by [BC]α+1[CA]β+1[AB]γ and dividing thereafter by (α− 1)!(β− 1)!(γ− 2)!

we infer in view of Corollary 2.5 and Observation 7.1, that

[CA]2[AB]2α(α + 1)(α + 2) + [BC]2[AB]2β(β + 1)(β + 2) + [BC]2[CA]2(γ − 1)γ(γ + 1)

+ 3[BC][CA][AB]{[BC] + [CA] + [AB]}αβ(γ − 1) = 0.

Now recall αA+ βB + γC = [BC]A+ [CA]B + [AB]C = 0, from which it easily follows that

for some k ∈ F×p we have [BC] = kα, [CA] = kβ and [AB] = kγ. Substituting this into the

previous equation and dividing what we get by k4αβγ, we conclude

βγ(α + 1)(α + 2) + αγ(β + 1)(β + 2) + αβ(γ − 1)(γ + 1) + 3(α + β + γ)αβ(γ − 1) = 0,

i.e.

2(α + 1)(β + 1)(γ + 1) + (4αβγ − 3αβ − 2)(α + β + γ + 1) = 0.

But as in Fp we have α+ β + γ + 1 = 0, this entails p− 1 ∈ {α, β, γ} and by Observation 2.6

the simplicity of P follows. �

Remark 7.3. The previous Lemma also follows from one of the main results of [11], see

Theorem 1 there. A slight generalization that demands considerably more work has recently

been obtained in [3], see Theorem 1(4). The proof given above is, however, genuinely different

from the more elementary approaches pursued in these two papers, and it has been included
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here in order to illustrate a certain point we wish to make, namely that the method we have

developed is fully appropriate to handle all cases one might find oneself confronted with when

thinking about property B.

8. Excluding two further configurations.

We now embark on a systematic study of cloudy sequences containing at least four distinct

points. Intuitively, the presence of four points A, B, C and D is the more useful the more of

the sums that can be formed by adding some of them are distinct. Two important possibilities

for such sums to be equal are that either one of these points equals the sum of the three other

ones, e.g. D = A + B + C, or that they form the vertices of some parallelogram, e.g.

A + C = B + D. These two special cases, however, can be treated directly and to facilitate

our later arguments we shall do so in the present section.

Proposition 8.1. Cloudy sequences including four distinct points that either form the vertices

of some parallelogram or that are such that one of them coincides with the sum of the three

others are simple.

Proof. Let p be odd and take a cloudy sequence (A,B,C,D, P1, . . . , P2p−5) in which A,B,C

and D are distinct and D = A + ηB + C for some η ∈ Fp satisfying η2 = 1. Following the

proof of Proposition 6.2, we set

µ∗(X, Y, Z) = µ(X, Y, Z, P1, . . . , P2p−5)

for all X, Y, Z ∈ F2
p. Write C = xA + yB with x, y ∈ Fp. The conditional equations with A,

B, C and D removed read

x(x+ 1)µ∗(A,A,B) + (2xy + ηx+ y)µ∗(A,B,B) + y(y + η)µ∗(B,B,B) = 1,

x(x+ 1)µ∗(A,A,A) + (2xy + ηx+ y)µ∗(A,A,B) + y(y + η)µ∗(A,B,B) = 1,

(x+ 1)µ∗(A,A,B) + (y + η)µ∗(A,B,B) = 1,

as well as xµ∗(A,A,B) + yµ∗(A,B,B) = 1

respectively. Multiplying them by y− η, x− 1, ηx+ y, (3 + η)(1− x)− 4y and adding up the

results, we deduce

(x3 − x)µ∗(A,A,A) + 3x(x− 1)(y − 1)µ∗(A,A,B)

+ 3(x− 1)y(y − 1)µ∗(A,B,B) + (y3 − y)µ∗(B,B,B) = 2(1− x− y).

Comparing this with the strategic equation, where the triple (A,B,C) is accentuated and D

is omitted, we obtain

2(1− x− y) = 0.
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For this reason, the points A, B and C are collinear and an application of Proposition 5.1

concludes the argument. �

Example 8.2. Utilizing the theory developed so far, we can now give an extremely quick

proof that 5 possesses property B. To see this, suppose that (A,B, P1, . . . , P7) was a cloudy

sequence but not a simple one, where A = (1, 0) and B = (0, 1). We call a point distinct

from A and B excluded, if it does not appear among P1, . . . , P7 and present otherwise. Also,

two points are said to be incompatible, if not both of them are present. By 2.5, 5.1 and 6.2

all points except for (2, 2), (3, 4), (4, 3), (4, 4) are excluded. Also, (4, 4) is excluded as added

together with A and B it sums up to zero. The three points that remain to be discussed are

mutually incompatible by 5.1 and 8.1, hence at most one of them can be present and we get

a contradiction by 7.2.

9. Conics, quartics and inferring general position.

In this section, we work over an arbitrary field K whose characteristic is different from 2 and

what we are interested in are the various possibilities that there are for quadruples of distinct

points from the affine plane K2. The classification we describe is neither particularly natural

nor hard to obtain; but it perfectly fits to the general argument yielding (�) that shall be

given later.—

By a conic section, we mean the set Γ of solutions (x, y) ∈ K2 of an equation looking like

ax2 + bxy + cy2 + dx+ ey + f = 0

for some a, b, c, d, e, f ∈ K. Note that according to this definition also K2 itself is regarded

as a conic section. If a = b = c = 0 is not the case, then Γ is called a proper conic section.

We say that Γ passes through a point P ∈ K2 if it contains P .

Observation 9.1. If a proper conic section passes through seven distinct points of the form

0, X, Y, Z, Y + Z,Z +X,X + Y,

then there is a line passing through the origin and at least two of the three points X, Y and Z.

Proof. Since the property of X, Y and Z we are talking about is evidently invariant under

invertible linear transformations from K2 to itself, there is no loss of generality in assuming

X = (1, 0) and Y = (0, 1). Setting Z = (r, s) we have to show that either r = 0 or s = 0.

As the general equation of a conic section passing through 0, X, Y and X + Y is given by
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a(x2 − x) + c(y2 − y) = 0, there are A,C ∈ K not vanishing simultaneously such that

A(r2 − r) + C(s2 − s) = 0,

A(r2 + r) + C(s2 − s) = 0,

and A(r2 − r) + C(s2 + s) = 0.

These equations entail 2Ar = 2Cs = 0. So if A 6= 0, we simply have r = 0 and if A = 0, then

C 6= 0 and hence s = 0. �

Lemma 9.2. If A, B, C and D denote four distinct points from K2, then at least one of the

following seven alternatives occurs:

(a) Some non–empty subsequence of (A,B,C,D) has sum zero.

(b) Two among them are linearly dependent.

(c) Some three of them are collinear.

(d) Some three of them form together with the origin the vertices of a trapezoid.

(e) One of them is equal to the sum of the three other ones.

(f) They are the vertices of some parallelogram.

(g) The fourteen sums that can be formed by taking one, two or three of them are distinct.

Moreover, if these fourteen sums are grouped together into the seven pairs

(A,B + C +D), (B,A+ C +D), (C,A+B +D), (D,A+B + C),

(A+B,C +D), (A+ C,B +D) and (A+D,B + C),

then it is neither possible to choose four of these pairs such that the eight points they

contain are collinear nor is it possible to select six of these pairs for which the twelve

points they consist of lie on a proper conic section.

Proof. We suppose that (g) is not valid and show that this yields one of the other six cases.

There are three possibilities for (g) to fail and we will discuss them separately.

First, if the fourteen sums under consideration are not distinct, then either (a) is satisfied

or, changing the names of A, B, C and D accordingly, one of the equations A + B = C,

A+B+C = D or A+B = C+D must hold, which in turn means that (d), (e) or (f) occurs.

Second, suppose that the fourteen relevant sums are distinct but that some line g passes

through eight of them coming from four of the pairs mentioned above. If g contains at least

three of the points A, B, C and D, we are in case (c). If g involves exactly two of them,

say A and B, then it also has to pass through A + C or B + C and in either of these cases

(b) or (d) occurs. Finally, if g contains only one of our four points, then it necessarily passes

through A+B, A+C and A+D and clearly this implies that B, C and D are collinear, i.e.

that (c) holds.
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Third, suppose again that the fourteen sums under discussion are distinct but that certain

twelve of them coming from six of the relevant pairs are lying on a common proper conic

section Γ. Then, upon relabeling A, B, C and D if required, we may suppose that Γ passes

in particular through the points A, B, A + C, B + C, A + D, B + D and A + C + D.

Translating everything by −A, we see that the points X = B−A, Y = C and Z = D satisfy

the hypothesis of Observation 10.1. Therefore there is some line h passing through A and at

least two of the points B, A+C and A+D. If h contains A+C and A+D, then C and D

satisfy (b) and if h contains, e.g., B and A+ C, then either A and B are as in (b) or we get

(d). �

For the application we have in mind possibility (g) is, of course, the most challenging one and

the remainder of this section is directed towards reformulating it in a more perspicuous way,

which requires some further concepts. By a quartic curve Σ, we mean the set of solutions

(x, y) ∈ K2 of an equation

ax4 + bx3y + cx2y2 + dxy3 + ey4 + P (x, y) = 0,

where P denotes an arbitrary polynomial whose total degree is at most three. The vector

(a, b, c, d, e) is referred to as the leading quintuple of Σ. Evidently, for every M ⊆ K2 the set

of leading quintuples of quartic curves passing through M forms a subvector space of K5.

Definition 9.3. Four points A,B,C,D ∈ K2 are said to be in general position if the fourteen

sums that can be formed by adding one, two or three of them together are distinct and if

moreover the space of leading quintuples of quartic curves passing through these fourteen

sums is at most two dimensional.

It will be shown below that any four points as described in 9.2(g) are in general position and

the verification of this is prepared by two further observations. The first of these is only going

to be used for n = 5 and n = 8, but nevertheless we state it in full generality.

Observation 9.4. Let n > 5 and suppose that P1, P2, . . . , Pn are distinct points from K2.

Then either all but one of them are collinear or the subvector space of K3 consisting of those

triples (a, b, c) for which there are d, e, f ∈ K such that the conic section defined by

ax2 + bxy + cy2 + dx+ ey + f = 0

passes through all of these points has at most dimension one.

Proof. Otherwise let n > 5 be any integer for which this is false and take a sequence

P1, P2, . . . , Pn of points exemplifying this failure. Let m ∈ {2, 3, . . . , n − 2} be the largest

number of collinear points among them and upon renumbering the indices we may suppose

that P1, . . . , Pm are lying on a common line.
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First Case: m > 3.

As the assertion we seek to establish is invariant under translations and automorphisms of K2,

we may also suppose that writing Pi = (ri, si) for all i ∈ [n] we have s1 = s2 = . . . = sm = 0.

Consider an arbitrary equation ax2 + bxy + cy2 + dx+ ey + f = 0 defining a conic section Γ

passing through P1, P2, . . . , Pn. Then there are at least three distinct values of x satisfying

ax2 + dx+ f = 0, e.g. x = r1, r2, r3, and thus we have a = d = f = 0. Hence the equation

of Γ may be rewritten as (bx+ cy + e)y = 0 and since sm+1, sm+2 6= 0 by our choice of m, it

follows that b(rm+1− rm+2) + c(sm+1− sm+2) = 0. All this means that the second alternative

mentioned in our claim occurs.

Second Case: m = 2.

For simplicity let P1 = (0, 0), P2 = (1, 0) and P3 = (0, 1). The equations of conic sections

passing through these points look like a(x2 − x) + bxy + c(y2 − y) = 0 and as the space of

possible values of (a, b, c) that can occur here has at least dimension two it follows that there

are A,B ∈ K not vanishing simultaneously such that P4 and P5 solve A(x2 − x) +Bxy = 0.

The latter equation may be rewritten as (Ax+By −A)x = 0 and thus its set of solutions is

the union of two lines. Hence by the box principle some three among the points P1, . . . , P5

have to be collinear, which, however, contradicts the maximality of m. �

In the following, a quadratic surface Ω is defined to be the set of solutions (x, y, z) ∈ K3 of

an equation such as

ax2 + by2 + cz2 + dyz + ezx+ fxy + gx+ hy + iz + j = 0.

The vector (a, b, c, d, e, f) will be known as the leading sextuple of Ω.

Observation 9.5. Suppose that P1, P2, . . . , P7 are seven distinct points from K3 for which the

space of leading sextuples of quadratic surfaces containing them is at least four dimensional.

Then either four of these points are collinear or six are coplanar.

Proof. Assume that the points P1, P2, . . . , P7 constituted a counterexample. For brevity, we

call a quadratic surface nice if it passes through these points. Again the problem we are

concerned with is invariant under translations and automorphisms of K3, whence it always

will be allowed to suppose that the four points O = (0, 0, 0), L′ = (1, 0, 0), L′′ = (0, 1, 0)

and L′′′ = (0, 0, 1) occur among P1, . . . , P7. Then the general form of an equation of a nice

quadratic surface is given by

(~) a(x2 − x) + b(y2 − y) + c(z2 − z) + dyz + ezx+ fxy = 0.

We commence by showing

(∗) No five among the points P1, . . . , P7 are coplanar.
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Otherwise, we may suppose P1 = O, P2 = L′′, P3 = L′′′, P7 = L′ and that the first coordinates

of P4 and P5 vanish. Denoting the projection from K3 onto K2 given by (x, y, z) 7−→ (y, z) as

π, we know that no four among the five distinct points πP1, . . . , πP5 are collinear and hence

by Observation 9.4 the space of triples (b, c, d) coming from nice surfaces as presented in (~)

has at most dimension one. Thus also the surfaces defined by x2− x = 0, xy = 0 and xz = 0

are nice and as the point P6 is different from L′ it follows from this that its first coordinate

vanishes as well. But this means that the six points P1, . . . , P6 are coplanar and thereby (∗)
is proved.

Next, we claim

(∗∗) No three among the points P1, . . . , P7 are collinear.

For otherwise suppose that P1 = O, P2 = L′, P3 = u · L′ for some u ∈ K − {0, 1}, P6 = L′′

and P7 = L′′′. By the special form of P3, all nice surfaces have a = 0. Thus the space of

possibilities for (b, d, f) for which the surface defined by (fx+ b(y − 1) + dz) · y = 0 is nice

has at least dimension two. Since the second coordinates of P4 and P5 cannot vanish by (∗),
it follows from this that P4 − L′′ and P5 − L′′ are linearly dependent, i.e. that the line h

containing P4 and P5 also passes through L′′. Now, as the whole situation we consider is

symmetric with respect to the second and third coordinate, a similar argument reveals that

L′′′ likewise lies on h. Thus we have four collinear points, which proves (∗∗).

(�) The quadruples (P1, P2, P3, P7), (P1, P2, P4, P6) and (P1, P3, P4, P5) cannot be

coplanar at the same time.

To verify this, we may suppose P1 = O, P2 = L′, P3 = L′′, P4 = L′′′, P5 = (0, r, s),

P6 = (t, 0, u) and P7 = (v, w, 0) for some appropriate r, s, t, u, v, w ∈ K. By (∗∗), none

of these six numbers can vanish. Take a nice surface Ω, whose equation is of the form

dyz+ezx+fxy = 0, where, e.g., d 6= 0. Exploiting that Ω passes through P5, we infer rs = 0

and this contradiction establishes (�).

With these remarks in mind, we can now start deriving the eventual contradiction. For this

purpose, let P1 = O, P2 = L′, P3 = L′′ and P4 = L′′′. By (∗∗), there is a unique plane h

containing P5, P6 as well as P7 and by (∗) it is not possible for h to pass through two or more

of the points L′, L′′ and L′′′. So we may assume, e.g., that h contains neither L′ nor L′′. Take

a proper nice surface of the form (a(x− 1) + fy + ez) · x = 0. As the plane h does not pass

through L′, it cannot be determined by the equation a(x − 1) + fy + ez = 0 and hence the

first coordinate of one among the points P5, P6 and P7, say that of P5, vanishes. Similarly,

also the second coordinate of one of these points vanishes and since this cannot happen for

P5 again by (∗∗), we may suppose that it occurs for P6. Now the quadruples (P1, P3, P4, P5)

and (P1, P2, P4, P6) are coplanar, whence by (�) the third coordinate of P7 has to be different
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from zero. Thus the above argument cannot be repeated once more, but it can only be

obstructed by h passing through L′′′. Thereby the quadruples (P4, P1, P5, P3), (P4, P1, P6, P2)

and (P4, P5, P6, P7) have been discovered to be coplanar, which upon an obvious renumbering

of indices contradicts (�). This finally proves 9.5. �

Now we put these exercises to use by showing

Lemma 9.6. Any four points as described in condition 9.2(g) are in general position.

Proof. Otherwise assume (A,B,C,D) to be some counterexample. Setting

M = 1
2
(A+B + C +D),

the seven pairs listed above may be written as M ±P1, . . . ,M ±P7 for some P1, . . . , P7 ∈ K2.

Let Pi = (xi, yi) and Qi = (x2
i , xiyi, y

2
i ) for all i ∈ [7]. Clearly, the seven points Q1, . . . , Q7

from K3 are distinct. Applying a translation of −M to our assumption, there are three

linearly independent vectors from K5 that are leading quintuples of quartic curves passing

through the fourteen points ±P1, . . . ,±P7. Let some such vectors be (aj, bj, cj, dj, ej), where

j = 1, 2, 3. By symmetry with respect to the origin, there is for each j ∈ [3] such a quartic

curve defined by an equation looking like

ajx
4 + bjx

3y + cjx
2y2 + djxy

3 + ejy
4 + fjx

2 + gjxy + hjy
2 + ij = 0.

These give rise to four quadratic surfaces passing through Q1, . . . , Q7, namely

ajx
2 + bjxy + cjy

2 + djyz + ejz
2 + fjx+ gjy + hjz + ij = 0

for j = 1, 2, 3 as well as y2−xz = 0. As the leading sextuples of these surfaces are independent

we arrive by Observation 9.5 at one of the following two possibilities.

First Case: Certain four among the points Q1, . . . , Q7 are collinear.

If this occurs, e.g., for Q1, Q2, Q3 and Q4, then the space of triples (a, b, c) for which some

conic section of the form ax2 + bxy+ cy2 +d = 0 passes through ±P1, ±P2, ±P3 and ±P4 has

at least dimension two and thus by Observation 10.4 applied with n = 8 some seven of these

eight points have to belong to a common line h. Plainly, h has to pass through the origin and

hence contains all eight points under discussion, which contradicts the first additional clause

of 10.2(g).

Second Case: Some six among the points Q1, . . . , Q7 are coplanar.

If this happens, e.g., for Q1, . . . , Q6, then the points M ± P1, . . . ,M ± P6 lie on a common

conic section, which is again contradictory. �
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10. The general case.

Now let us have some fun.

Proposition 10.1. Every cloudy sequence including four points in general position is simple.

Proof. Let p > 7 and assume that some cloudy but not simple sequence

P = (A,B,C,D, P1, . . . , P2p−5)

in which the first four points mentioned are in general position existed. Note that 2p−5 > p,

whence at least two distinct points have to be present in P′ = (P1, . . . , P2p−5) and to facilitate

a construction to be encountered below, we may suppose as usual that the points E = (1, 0)

and F = (0, 1) occur there. By Definition 9.3, we know that the space V of leading quintuples

of quartic curves passing through the fourteen sums T1, . . . , T14 that can be formed by adding

one, two or three terms from the sequence (A,B,C,D) is at most two dimensional. Let

T` = (r`, s`) for all ` ∈ [14]. Evidently the subspace W of F5
p consisting of all of all those

vectors (a, b, c, d, e) that satisfy au + bv + cx + dy + ez = 0 for all (u, v, x, y, z) ∈ V has at

least dimension three. We now claim

(∗) If (α40, α31, α22, α13, α04) ∈ W , then there are γ1, . . . , γ14 ∈ Fp such that for all

non–negative integers m, n with m+ n 6 4 we have

∑
16`614

γ`r
m
` s

n
` =

0 if m+ n < 4,

αmn if m+ n = 4.

To see this, just apply the well–known principle from linear algebra stating that if b1, . . . , bk, z

are some vectors from a common vector space U such that for all linear forms ϕ from the

dual space of U with ϕ(b1) = . . . = ϕ(bk) = 0 we also have ϕ(z) = 0, then z can be written

as a linear combination of b1, . . . , bk to the case where U = F15
p , k = 14,

b` = (1, r`, s`, r
2
` , r`s`, s

2
` , r

3
` , r

2
`s`, r`s

2
` , s

3
` , r

4
` , r

3
`s`, r

2
`s

2
` , r`s

3
` , s

4
`)

for ` = 1, . . . , 14 and

z = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α40, α31, α22, α13, α04).

Having thereby obtained (∗), we utilize it to establish

(∗∗) If (α40, α31, α22, α13, α04) ∈ W and j ∈ [2p− 5], then

α40µ
+
p−5,j + 4α31µ

+
p−4,j + 6α22µ

+
p−3,j + 4α13µ

+
p−2,j + α40µ

+
p−1,j = 0,

where µ+
k,j serves as an abbreviation of µk(P1, . . . , Pj−1, Pj+1, . . . , P2p−5) for k ∈ {p − 5, p −

4, p− 3, p− 2, p− 1}.
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Plainly, it suffices to verify this for j = 2p− 5. Take γ1, . . . , γ14 ∈ Fp as described in (∗) and

form the polynomial

Q(x, y) =
∑

16`614

γ`
(
(r` + x)p−1 − 1

) (
(s` + y)p−1 − 1

)
For non–negative integers m and n with m+n 6 4 the coefficient accompanying xp−1−myp−1−n

here is ∑
16`614

γ`

(
p− 1

m

)(
p− 1

n

)
rm` r

n
`

and from this it follows that the total degree of Q is at most 2p− 6 and that the sum of its

terms having this degree is

= α40x
p−5yp−1 + α31x

p−4yp−2 + α22x
p−3yp−3 + α13x

p−2yp−4 + α04x
p−1yp−5

Now let Pi = (gi, hi) for i = 1, 2, . . . , 2p− 6, take 2p− 6 new variables ε1, . . . , ε2p−6, define

G =
∑

16i62p−6

εigi, H =
∑

16i62p−6

εihi

and view Q(G,H) as a member of Fp[ε1, . . . , ε2p−6]. As we have just seen, its total degree is

at most 2p− 6 and the coefficient belonging to ε1ε2 · . . . · ε2p−6 is

=
∑

m+n=4

(p− 1−m)!(p− 1− n)!αmnµ
+
p−1−m,2p−5,

i.e. 24(p− 5)!2 times the expression we have claimed to vanish. Thus if (∗∗) failed, we could

invoke the Combinatorial Nullstellensatz to obtain values ε1, . . . , ε2p−6 ∈ {0, 1} for which

Q(G,H) 6= 0. This then entailed the existence of some ` ∈ [14] such that

γ`
(
(r` +G)p−1 − 1

) (
(s` +H)p−1 − 1

)
6= 0

and hence r`+G = s`+H = 0. So defining I = {i ∈ [2p−6] | εi = 1} we had (r`, s`)+
∑
i∈I
Pi = 0,

but obviously this contradicted the cloudiness of P. Thereby (∗∗) is proved.

Exploiting that W is at least three dimensional, we find some (0, a, b, c, 0) ∈ W for which

a = b = c = 0 is not the case and then (∗∗) yields

2aµp−3(E,F, P1, . . . , Pj−1,Pj+1, P2p−5) + 3bµp−2(E,F, P1, . . . , Pj−1, Pj+1, P2p−5)

+ 2cµp−1(E,F, P1, . . . , Pj−1, Pj+1, P2p−5) = 0

for all j ∈ [2p − 5]. Recalling that E and F have been arranged to appear in the sequence

P′, we see that the hypothesis of Corollary 3.4 is satisfied. But in view of Observation 2.6,

the only possibility for its conclusion to hold is that either E or F occurs with multiplicity

p−2 in P′. It suffices to consider the former case and repeating the argument just given with

some non–zero (0, 0, a′, b′, c′) ∈ W we discover that all of the remaining p− 3 points from P′
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are necessarily equal to F . Thereby P′ has been entirely determined and the argument is not

difficult to complete. For instance, for each X ∈ {A,B,C,D} the equation X + ηE+ ξF = 0

is insoluble with η ∈ {0, 1, . . . , p− 2} and ξ ∈ {0, 1, . . . , p− 3}. Therefore, each of the points

A, B, C and D has to belong to K ∪ L ∪M ∪N , where

K = F×p × {0}, L = {0} × F×p , M = {(y, 2) ∈ F2
p | y 6= 0, 1},

and N = {(x, y) ∈ F2
p | (x− 1)(y − 1) = 0 and xy 6= 0}.

But by 2.5, 2.6 and 6.2, K and N cannot contain any of these points and each of L and M

can contain at most one of them. Thereby we have reached a contradiction. �

The following is easy by now.

Theorem 10.2. Every prime number has property B.

Proof. By our introductory remarks, it suffices to show that for all odd p every cloudy sequence

P is simple. If P involves at most three distinct points, we may invoke Lemma 7.2, so from

now on suppose that there are four distinct points A, B, C and D present in P. Applying

Lemma 9.2 to these, we get seven possible cases, the first of which is, however, excluded by

the cloudiness of P and the second of which cannot occur by Corollary 2.5. Also, if (c), (d),

(e) or (f) occurs, the desired conclusion can be drawn from one of the Propositions 5.1, 6.2

or 8.1. Hence we may assume that (g) holds, but then A, B, C and D are in general position

by Lemma 9.6 and Proposition 10.1 applies. �

11. Applications and Consequences.

Plenty of statements that have appeared in the literature roughly amount to saying that if the

prime divisors of everything relevant have property B, then something interesting happens.

Thus we are in the pleasing situation that it is fairly easy to deduce worth while corollar-

ies from our main result, for the main work has already been done by others and all that

remains to be done is cutting the redundant extra hypotheses from their existing theorems

off. For the readers convenience, we conclude this paper with some examples illustrating that

phenomenon.

1. Property C for prime numbers.

Continuing to use p to denote an arbitrary prime number, one can easily show by means of an

argument that is similar to the one given for Fact 3 above that any sequence consisting of 3p−2

points from F2
p contains a subsequence the sum of whose terms vanishes and whose length is

either p or 2p. (For a slightly different proof of this see Corollary IIa of [13].) It follows by
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applying Fact 3 itself that every sequence of length 3p− 2 also possesses a non-empty zero–

sum subsequence whose length is at most p. Thus one might wonder what those sequences of

length 3p− 3 for which this conclusion is false look like and an old conjecture essentially due

to van Emde Boas ([2]) asserts that if this occurs then the sequence under consideration

necessarily consists of only three distinct points each of which appears with multiplicity p−1.

The state of affairs that this is true for a particular value of p is usually expressed by saying

that p has property C. As explained in Theorem 10.7 of [6], property B entails property C

and thus we now know unconditionally: Every prime number has property C.

2. Property B for composite numbers.

Though the method of proof we have developed relies heavily on the field structure of Fp, the

result itself is a purely additive one and hence it makes sense to study similar questions with

F2
p replaced by Cn ⊕ Cn, the direct sum of two cyclic groups of size n, where n > 2 denotes

an arbitrary natural number. As the work of Kruyswijk and Olson reveals, Fact 3 itself

carries over as follows: Every sequence consisting of 2n− 1 elements from Cn⊕Cn contains a

non–empty subsequence whose sum equals 0. Defining the notions of suspicious and cloudy

sequences in this context as expected, it has in analogy with (�) been conjectured that every

cloudy sequence needs to contain some element with multiplicity n−1. If this holds, then n is

said to have property B. Recently, W. Gao, A. Geroldinger and D. Grynkiewicz have

obtained an extremely lengthy proof that n has property B provided that all its prime divisors

do ([7]), which means that the combination of our results yields: Every natural number has

property B.

It should be added that a complete classification of all cloudy sequences has, also quite

recently, been carried out by W. Schmid in [14]. In fact, he is doing something more general

there, namely he solves the analogous problem for arbitrary groups of rank two.

3. Property C for composite numbers.

A natural question that now presents itself asks to what extent the material mentioned in our

first application generalizes to composite numbers. Since the earliest days of combinatorial

zero–sum theory, it is known that every sequence of length 3n − 2 over Cn ⊕ Cn has a

non–empty zero–sum subsequence which is short in the sense that its length is at most n.

Also, n is said to have property C if every sequence of length 3n− 3 lacking short zero–sum

subsequences consists of three distinct elements each of which occurs with multiplicity n− 1.

It has been established in [5] (see Theorem 3.2(2)), that property C is multiplicative, i.e. that

if two natural numbers have property C, then so does their product. Hence we may conclude:

Every natural number has property C.
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4. van Emde Boas’ ν–invariant.

With some applications to the determination of the Davenport constant of more complicated

groups in mind, van Emde Boas defined ν(Cn ⊕ Cn) to be the least number ν for which

the following is true: If a sequence P containing at least ν elements from Cn ⊕ Cn has no

non–empty subsequence whose sum is zero, then there is a coset of some proper subgroup of

Cn ⊕ Cn containing all those members of that group which are not expressible as the sum of

a possibly empty subsequence of P. It has been known that ν(Cn ⊕ Cn) ∈ {2n − 2, 2n − 1}
and that the smaller of these two values is the correct one if n has property C, see Section 5

of [2].

Fourth Conclusion: For every n > 2 one has ν(Cn ⊕ Cn) = 2n− 2.

5. More Davenport constants.

In general, the Davenport constant D(G) of a finite Abelian group G is defined to be the

least natural number d for which every sequence consisting of d elements from G contains a

non–empty subsequence the sum of whose elements vanishes. The argument usually used to

establish Fact 1 from the introduction can straightforwardly be modified to show that such

a number always exists and that D(G) 6 |G|. The widest classes of groups whose Davenport

constants are currently known are cyclic groups, groups of rank two and p–groups, whereas

for the general case there is at the moment not even a plausible conjecture. Quite frequently,

when one intends to determine the Davenport constant of some group G not covered by the

cases already mentioned, one finds oneself projecting the whole situation onto a quotient

group of G and typically the more additional properties of that group are known the better

the chances for success are. For instance, it has recently been shown by G. Bhowmik,

I. Halupczok and J.–C. Schlage–Puchta [4] that if n is coprime to 6 and has property

B, then D(C3⊕C3n⊕C3n) = 6n+1. So if the reader has ever asked himself what D(C3⊕C2
1005)

might be, he can now be assured that it indeed equals 2011. It seems conceivable that similar

applications will emerge in the near future.

Acknowledgement I would heartily like to thank my advisor Dieter Gronau and Konrad

Engel for arranging that I could obtain an academic position at the University of Rostock.

Further thanks go to Alfred Geroldinger and Wolfgang Schmid who invited me to

present the proof developed here at the University of Graz and for considerable help with the

existing literature.



PROPERTY B 29

References

[1] BibliographyNoga Alon, ‘Combinatorial Nullstellensatz’, Combinatorics, Probability and Computing 8

(1999), 7–29.

[2] BibliographyP. van Emde Boas, ‘A combinatorial problem on finite Abelian groups II’, Report ZW–1969–

007, Stichting Mathematisch Centrum, Amsterdam 1969.

[3] BibliographyGautami Bhowmik, Immanuel Halupczok and Jan–Christoph Schlage–Puchta, ‘The struc-

ture of maximal zero–sum free sequences’, Acta Arithmetica 143 (2010), 21–50.

[4] BibliographyGautami Bhowmik, Immanuel Halupczok and Jan–Christoph Schlage–Puchta, ‘Inductive

methods and zero–sum free sequences’, Integers 9 (2009), 515–536.

[5] BibliographyWeidong Gao, Alfred Geroldinger and Wolfgang Schmid, ‘Inverse zero–sum problems’, Acta

Arithmetica 128 (2007), 245–279.

[6] BibliographyWeidong Gao and Alfred Geroldinger, ‘On long minimal zero sequences in finite abelian

groups’, Periodica Mathematica Hungarica 38 (1999), 179–211.

[7] BibliographyWeidong Gao, Alfred Geroldinger and David Grynkiewicz, ‘Inverse zero–sum problems III’,

Acta Arithmetica 141 (2010), 103–152.

[8] BibliographyCarl Friedrich Gauß, ‘Disquistiones Arithmeticae’, Lipsiae in commissis apud Gerh. Fleischer

Jun. 1801.

[9] BibliographyCarl Friedrich Gauß, ‘Theoria residuorum biquadraticorum. Commentatio Prima’, Commen-

tationes societatis regiae scientarum Gottingensis recentiores 16 (1825); reprinted in Werke II, 65–92.

[10] BibliographyAlfred Geroldinger and Franz Halter–Koch, ‘Non–unique Factorization. Algebraic, Combi-

natorial and Analytic Theory’, Pure and Applied mathematics, vol. 278, Chapman & Hall/CRC, 2006.

[11] BibliographyGünter Lettl and Wolfgang Schmid, ‘Minimal zero–sum sequences in Cn ⊕ Cn’, European

Journal of Combinatorics 28 (2007), 742–753.

[12] BibliographyJohn E. Olson, ‘A combinatorial problem on finite Abelian groups’, Journal of Number

Theory 1 (1969), 8–10.

[13] BibliographyChristian Reiher, ‘On Kemnitz’ Conjecture concerning lattice points in the plane’, Ramanu-

jan Journal 13 (2007), 333–337.

[14] BibliographyWolfgang Schmid, ‘Inverse zero–sum problems II’, Acta Arithmetica 143 (2010) 333–343.

Institut für Mathematik, Universität Rostock, 18051 Rostock, Germany

E-mail address: Christian.Reiher@uni-rostock.de


