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Abstract

The minimum number of blocks having maximum size precisely four that
are required to cover, exactly λ times, all pairs of elements from a set of
cardinality v is denoted by g

(4)
λ (v) (or g(4)(v) when λ = 1). All values of

g
(4)
λ (v) are known except for λ = 1 and v = 17 or 18. It is known that

30 ≤ g(4)(17) ≤ 31 and 32 ≤ g(4)(18) ≤ 33. In this paper we show that
g(4)(17) 6= 30 and g(4)(18) 6= 32, thus finalising the determination of g

(4)
λ (v)

for all λ and v.
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Introduction

Let K be a set of positive integers. A pairwise balanced design PBD(v, K) (denoted
by P ) of order v with block sizes from K is a pair P = (V,B), where V is a finite
set (the point set) of cardinality v and B is a family of subsets (called blocks) of V
which satisfy the following properties:

(i) every pair of distinct elements of V occurs in exactly one block of B;

(ii) if B ∈ B, then |B| ∈ K.

A partial PBD(v, K) is defined similarly, with the difference that (V,B) satisfies
instead of property (i) the property:

(i’) every pair of distinct elements of V occurs in at most one block of B.

The value g
(4)
λ (v) (or g(4)(v) if λ = 1) has been investigated in a number of papers

including those in the reference list. The papers [1, 2, 3, 5] provide new results or
a survey of known results. From [8] it is known that 30 ≤ g(4)(17) ≤ 31. In [7] an
upper bound for g(4)(18) is established by constructing a PBD on 18 points with
33 blocks. Independently, [4] and [6] proved that 32 ≤ g(4)(18). In this paper, we
show that g(4)(17) = 31 by showing that there does not exist a PBD(17, {2, 3, 4})
with exactly 30 blocks, and that g(4)(18) = 33 by showing that there does not exist
a PBD(18, {2, 3, 4}) with exactly 32 blocks. The proofs involve showing that no
partial design can be completed to be a PBD(v, {2, 3, 4}) with exactly b blocks for
(v, b) = (17, 30) or (18, 32).

This has been achieved by case analysis and computational techniques improved by
some preliminary analysis. The reason for the reliance on computer searches is that
the analytic arguments became quite detailed and long as the number of subcases
increased. The results in this paper, combined with other papers referenced, means
that g

(4)
λ (v) is now known for all cases.

1 Preliminaries

We begin by introducing some terminology and notation. In this section the pair
(v, b) = (17, 30) or (18, 32). Let gi be the number of blocks of size i for i = 2, 3, 4.
Then counting pairs of points in two ways gives

g2 + 3g3 + 6g4 =

(
v

2

)
.
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Also, g2 + g3 + g4 = b. There are three integer solutions to these two equations
for (v, b) = (17, 30), namely (g2, g3, g4) = (1, 13, 16), (4, 8, 18) and (7, 3, 20). For
(v, b) = (18, 32) the integer solutions are (g2, g3, g4) = (0, 13, 19), (3, 8, 21) and
(6, 3, 23).

Let B′ be a subset of the block set B. The volume of B′ is V (B′) =
∑

B∈B′ |B|. If
two distinct points occur in the same block then it is said that they are a pair or
are paired.

A point x has point type P (x) = 2α23α34α4 or (α2, α3, α4) if x is contained in exactly
α2 blocks of size 2 (doubles), α3 blocks of size 3 (triples) and α4 blocks of size 4
(quads). Each each point type must satisfy

α2 + 2α3 + 3α4 = v − 1 and αk ≤ gk. (1)

The point type distribution of a collection of points is a collection of values expressed
in the form d× 2α23α34α4 which indicates that there are d points which each occur
in α2 blocks of size 2, α3 blocks of size 3, and α4 blocks of size 4.

Let dj × 2α2,j3α3,j4α4,j with 1 ≤ j ≤ t be the point type distribution of some PBD.
Then the following equations are used implicitly throughout this paper.

t∑
j=1

dj = v and
t∑

j=1

djαk,j = kgk for each k ∈ {2, 3, 4}. (2)

2 Case (v, b) = (17, 30)

Given the relations in (1) with v = 17 it is easily checked that in a PBD with
(g2, g3, g4) = (1, 13, 16) then the only possible point types are

2145, 3244, 213343, 3542, 213641, 38;

with (g2, g3, g4) = (4, 8, 18) then the only possible point types are

2145, 223144, 3244, 2444, 213343, 233243, 3542, 223442, 243342, 213641, 233541, 38, 2237, 2436;

and with (g2, g3, g4) = (7, 3, 20) then the only possible point types are

2145, 223144, 3244, 2444, 213343, 233243, 253143, 2743, 243342, 263242, 273341.

2.1 Subcase (g2, g3, g4) = (1, 13, 16)

Assume that there is a point x with point type 38. Then 16 points occur once each
in the triples which include x. By consideration of the possible point types it can
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be seen that there is no point which occurs in exactly one triple. So each of the 16
points occur in a triple without x. This is a contradiction as there are 5 remaining
triples. Note that as g2 = 1 there are at most 2 points of type 2145.

Beginning with a given number of points of point type 2145 it is easily checked using
(2) that the only possible point type distributions are:

17.1: 14× 3244, 2× 213343, 1× 3542;

17.2: 15× 3244, 1× 213343, 1× 213641;

17.3: 1× 2145, 13× 3244, 1× 213343, 2× 3542;

17.4: 1× 2145, 14× 3244, 1× 3542, 1× 213641; and

17.5: 2× 2145, 12× 3244, 3× 3542.

The only feasible point types are: 2145, 3244, 213343, 3542, 213641.

2.2 Subcase (g2, g3, g4) = (4, 8, 18)

Given that there is only one possible point type involving 5 quads, namely a point
of type 2145, and given that g2 = 4, α4 ≤ 5 and the volume of the quads is 72, there
are between 4 and 8 occurrences of the point type 2145. This means that a point x
of point type 38 is not possible as if there is more than one point of type 2145 then
there are not 16 distinct points available to complete the triples containing x.

If there are 8 points of type 2145 then there are 9 points which have point types
3244 or 3542, which are the only point types which do not include doubles. The only
possible choice for the 9 points is that they have point type distribution 7×3244, 2×
3542. Then the five triples containing one of the points with point type 3542 cannot
be completed using the remaining eight points.

If there are 7 points of type 2145 then there is a point of type 213343 or 213641 to fill
the doubles and there are 9 points which have point types 3244 or 3542. The point
type 213641 cannot occur as the 6 triples cannot be completed with 9 points. If the
point type 213343 occurs then the remaining 9 points have point type distribution
8×3244, 1×3542. Again, if there are five triples containing the point type 3542, then
these cannot be completed using the remaining eight points.

With at most 6 points of type 2145 and the volume of the quads being 72,
each of the remaining points occur in at least two quads, so the point types
213641, 233541, 2237, 2436 cannot occur.

Beginning with a given number of points of point type 2145 it is easily checked that
the only possible point type distributions are:
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17.6: 4× 2145, 11× 3244, 2× 223144;

17.7: 4× 2145, 12× 3244, 1× 2444;

17.8: 5× 2145, 10× 3244, 1× 223144, 1× 213343;

17.9: 5× 2145, 11× 3244, 1× 233243;

17.10: 6× 2145, 9× 3244, 2× 213343;

17.11: 6× 2145, 9× 3244, 1× 223144, 1× 3542; and

17.12: 6× 2145, 10× 3244, 1× 223442.

The only feasible point types are: 2145, 223144, 3244, 2444, 213343, 233243, 3542, 223442.

Point type distribution 17.11 can be excluded by considering pairings of points of
type 2145. At least two pairs of the six points of type 2145 occur in doubles. So
that all points are paired, there are six pairs of points of type 2145 in quads which
also contain a point of type 3542. Therefore the remaining 16 quads contain 24
occurrences of points of type 2145, resulting in at least 8 pairs of this point type in
these quads. So there are at least 16 pairings of points of type 2145 and this exceeds
the required 15 pairs of this point type.

2.3 Subcase (g2, g3, g4) = (7, 3, 20)

Given that g4 = 20 and g3 = 3 there is one possible point type distribution: 12 ×
2145, 4× 3244, 1× 223144. This leads to a contradiction as each of 4 points occur in
two of the three triples, and thus one pair of the points must occur in two triples.
So there is no PBD(17, {2, 3, 4}) with the configuration (g2, g3, g4) = (7, 3, 20).

3 Case (v, b) = (18, 32)

Given the relations in (1) with v = 18 it is easily checked that in a PBD with
(g2, g3, g4) = (0, 13, 19) then the only possible point types are

3145, 3443, 3741;

and with (g2, g3, g4) = (3, 8, 21) then the only possible point types are

3145, 2245, 213244, 233144, 3443, 223343, 213542, 233442, 3741, 223641, 213840, 233740.

A PBD with (g2, g3, g4) = (6, 3, 23) is not possible as the volume of the quads is 92,
requiring a point to occur in at least 6 quads, which means that it is paired with
another point at least twice in the quads.
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3.1 Subcase (g2, g3, g4) = (0, 13, 19)

Since α4 ≤ 5 for all point types, as there are no partial point types 42 or 44, and as
the volume of the quads is 76, there are at least 11 occurrences of the point type
3145.

The following two point type distributions are possible:

18.1: 11× 3145, 7× 3443 or
18.2: 12× 3145, 5× 3443, 1× 3741.

Here, point type distribution 18.2 can immediately be eliminated as follows. Suppose
that there are two points x, y of type 3443 which are not paired in a triple, then
there are eight distinct triples containing x, y. There are at least five more triples
containing the point z of type 3741. Each other point of type 3443 is contained in
at least one triple which contains none of the three points x, y, z. So all together we
need at least 14 distinct triples for 18.2, a contradiction to g3 = 13.

Thus all points of type 3443 are paired within the triples. All of these points are
paired in a triple with the 3741 point as otherwise we would need 14 triples to include
all of the points of type 3443 without a duplicate pair. So the remaining 6 triples
contain 15 occurrences of points of type 3443. This means that there are at least 12
pairs of points of type 3443, which exceeds the required number of 10 pairs.

3.2 Subcase (g2, g3, g4) = (3, 8, 21)

To reduce the number of combinations to be considered it is useful to reduce the
number of occurrences of a given point type and the number of occurrences of
different point types.

Since α4 ≤ 5 for all point types and the volume of the quads is 84, the point types
3145 and 2245 occur between 12 and 16 times in each possible PBD and there can
be at most one point type including the partial point types 40 or 41. The point type
2245 can occur at most 3 times as g2 = 3. Therefore the point type 3145 occurs at
least 9 times.

If the point type 213840 or 233740 occurs then there must be 16 of the point types
3145 or 2245, and one of the point types 213244 or 233144. It is easy to check that
there is a duplicated pair in either the doubles or triples for each combination of the
point types which satisfy the volume constraints on the collection of blocks of each
given size.

If the partial point type 41 occurs exactly once then there must be 16 points with
the partial point type 45 and one with partial point type 43, or 15 points with the
partial point type 45 and two points with the partial point type 44. Hence, if the
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point type 3741 or 223641 occurs exactly once and there are 16 of the point types
3145 or 2245, then there must be one of the point type 223343 as the point of type
3443 would cause a duplicate pair in the triples. There is now a duplicate pair in
the doubles or triples for each volume-feasible combination of the point types. In
the case of a point of type 3741 or 223641 and 15 points with partial point type 45

the only possible point type distributions are 13× 3145, 2× 2245, 2× 213244, 1× 3741

or 14× 3145, 1× 2245, 2× 213244, 1× 223641.

The point type 3145 cannot occur exactly 16 times as the two remaining points
cannot fill the doubles. If the point type 3145 occurs exactly 15 times then the
remaining three points must have point type 223343. Then there must be two points
which are paired in both a double and a triple, so this is not possible.

By considering the number of times that the point type 3145 can occur (between 12
and 14 inclusive), it is easy to check that the following 16 point type distributions
are possible (including the 2 reproduced from above):

18.3: 12× 3145, 6× 213244;
18.4: 12× 3145, 1× 2245, 4× 213244, 1× 3443;
18.5: 12× 3145, 2× 2245, 2× 213244, 2× 3443;
18.6: 13× 3145, 3× 213244, 1× 233144, 1× 3443;
18.7: 13× 3145, 4× 213244, 1× 223343;
18.8: 13× 3145, 1× 2245, 2× 213244, 1× 3443, 1× 213343;
18.9: 13× 3145, 1× 2245, 3× 213244, 1× 213542;
18.10: 13× 3145, 2× 2245, 2× 3443, 1× 223343;
18.11: 13× 3145, 2× 2245, 1× 213244, 1× 3443, 1× 213542;
18.12: 13× 3145, 2× 2245, 2× 213244, 1× 3741;
18.13: 14× 3145, 2× 213244, 2× 223343;
18.14: 14× 3145, 2× 213244, 1× 233144, 1× 213542;
18.15: 14× 3145, 3× 213244, 1× 233442;
18.16: 14× 3145, 1× 2245, 1× 3443, 2× 223343;
18.17: 14× 3145, 1× 2245, 1× 213244, 1× 223343, 1× 213542;
18.18: 14× 3145, 1× 2245, 2× 213244, 1× 223641.

The only feasible point types are: 3145, 2245, 213244, 3443, 223343, 213542, 233442, 223641.

Again, one of these point type distributions, 18.12, can be eliminated. The two
points x, y of type 2245 need to be paired with the 3741 point in a common quad.
This leads to a contradiction as x, y must also be paired in a double.
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4 Search for the Desired PBDs

In this section, we describe the method used to search by computer for a
PBD(17, {2, 3, 4}) with 30 blocks or a PBD(18, {2, 3, 4}) with 32 blocks. There
are three basic steps. In the first step we determine for each point type distribution
from the previous section the numerical conditions which need to be satisfied when
distributing the point types to the blocks. Then, we construct with respect to these
distributions all suitable partial PBDs containing only blocks of size 2 and 3 – the
so called prestructure. In a third step it is attempted to complete the prestructures
obtained with blocks of size 4.

4.1 Distributing the Point Types to the Blocks

Given a possible point type distribution dj × 2α2,j3α3,j4α4,j where 1 ≤ j ≤ t we have
for each single block to answer the question how many points of each type occur in
that block. This leads to the following definition. The single block type of a block
is a collection of values expressed in the form s × 2α23α34α4 which indicates that
there are exactly s points in the block of point type 2α23α34α4 . If it is clear from
the context that we refer to a particular point type distribution we simply write
s = (s1, . . . , st) instead of s1 × 2α2,13α3,14α4,1 , . . . , st × 2α2,t3α3,t4α4,t . The single block
type distribution of a collection of blocks is a collection of values expressed in the
form c × (s1, . . . , st) which indicates that there are exactly c blocks of single block
type (s1, . . . , st). Again, if it is clear that we refer to single block types s1, . . . , sr we
briefly write c = (c1, . . . , cr).

In the following we study the numerical conditions which need to be satisfied by the
single block types and single block type distribution of a partial PBD(v, K) with
point type distribution dj × 2α2,j3α3,j4α4,j where 1 ≤ j ≤ t. Let s = (s1, . . . , st) be
the single block type of some block in the partial PBD. Then clearly

k(s) :=
t∑

j=1

sj is a size from K; (3)

sj ≤ dj for j = 1, . . . , t; and (4)

αk(S),j = 0 implies sj = 0 for j = 1, . . . , t. (5)

Furthermore, let c = (c1, . . . , cr) be the single block type distribution of the
partial PBD with respect to the set of distinct single block types s1, . . . , sh =
(sh,1, . . . , sh,t), . . . , sr. If we define Ik = {i ∈ {1, . . . , r} : k(si) = k} to be the
set of indices i such that si belongs to a block of size k, then∑

h∈Ik

chsh,j = djαk,j for all j ∈ {1, . . . , t} and all k ∈ K, (6)
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r∑
h=1

chsh,j(sh,j − 1) ≤ dj(dj − 1) for all j ∈ {1, . . . , t}, (7)

and

r∑
h=1

chsh,jsh,` ≤ djd` for all j, ` ∈ {1, . . . , t}, i 6= `. (8)

In (6) points of the j-th point type which are contained in blocks of size k are
counted in two ways, (7) counts pairs of points of the same point type, and in (8)
pairs of points of distinct point types are counted. Equality holds in (7) and (8) for
all j, ` ∈ {1, . . . , t} simultaneously if and only if the partial PBD is a PBD.

The task is now to determine all possible single block types for each possible point
type distribution (d1, . . . , dt) in Section 2 and Section 3. That is, determine all
vectors (s1, . . . , st) which satisfy (3), (4), and (5). Once this accomplished, we
compute for the r possible single block types s1, . . . , sr obtained all possible single
block type distributions. That is, we complete all vectors (c1, . . . , cr) which satisfy
(6), (7), and (8).

The results for (v, b) = (17, 30) and (18, 32) are quite lengthy, therefore, we
decided to include the cases 17.1–17.3 as an example in Appendix A and to
put the rest of the cases into an extra file which we provide at the web page
http://www.math.uni-rostock.de/~mgruttm/g4v17v18/index.html. All mate-
rial from that web page is also available from authors upon request.

4.2 Search for Suitable Prestructures

Our aim is to find all non-isomorphic prestructures with blocks of size 2 and 3
whose point type distribution and single block type distribution is the restriction
to blocks of size 2 and 3 of one of the possible point type distributions and single
block type distributions listed in Appendix A or our web page. This is achieved
with a backtracking algorithm. Details of the algorithm are already described in
[6]. To avoid unnecessary repetitions we refer the interested reader to that pa-
per and just mention that backtracking searches for the dual of the prestructure
are used rather than for the prestructure itself to increase the speed of the iso-
morphism testing. The number of prestructures found by the backtrack algorithm
are also given in Appendix A or at the web page. In some cases several thou-
sand non-isomorphic prestructures are found which, of course, can not be listed
here. Therefore we provide all prestructures constructed also on our web page
http://www.math.uni-rostock.de/~mgruttm/g4v17v18/index.html.

Note that it might well be that although two single block type distributions are
distinct there restrictions to blocks of size 2 and 3 are the same. Hence, the corre-
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sponding prestructures are exactly the same, but they are treated differently in the
next step so they are counted repeatedly.

4.3 Search for a Completion of a Given Prestructure

By another backtracking algorithm we try to find a completion of each of the pre-
structures constructed using blocks of size 4. This approach takes into account that
we know the single block types of the missing quads and also considers the auto-
morphisms of the prestructure to speed up the search. More details are explained
in [6]. We found that none of the prestructures were completable to a PBD.

5 Conclusion

We have computed in the previous sections all non-isomorphic prestructures for a
PBD(17, {2, 3, 4}) with exactly 30 blocks or a PBD(18, {2, 3, 4}) with exactly 32
blocks and have shown that none of these prestructures is completable. Therefore,
we have established:

Theorem 5.1. There does not exist a PBD on 17 points with 30 blocks of size at
most 4 nor a PBD on 18 points with 32 blocks of size at most 4.

Corollary 5.1. g(4)(17) = 31 and g(4)(18) = 33.

A Single Block Type Distributions

Below is a list of all possible single block type distributions for each
of the point type distributions 17.1 – 17.3. All possible single block
type distributions for each of the point type distributions 17.1 – 17.10,
17.12, 18.1, 18.3 – 18.11, 18.13 – 18.18 are provided on the web page
http://www.math.uni-rostock.de/~mgruttm/g4v17v18/index.html. Each pa-
rameter set is presented in the form:

number: point type distribution

possible single block types

possible single block type distribution : number of non-isomorphic prestructures
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17.1: 1× 203542, 2× 213343, 14× 203244

(0,2,0), (1,2,0), (1,1,1), (1,0,2), (0,2,1), (0,1,2), (0,0,3), (1,2,1), (1,1,2), (1,0,3),
(0,2,2), (0,1,3), (0,0,4)

(1,0,2,3,0,4,4,0,0,2,0,6,8) : 51970
(1,0,1,4,0,5,3,0,1,1,0,5,9) : 35016
(1,0,0,5,0,6,2,0,2,0,0,4,10) : 3612

17.2: 1× 213641, 1× 213343, 15× 203244

(1,1,0), (1,1,1), (1,0,2), (0,1,2), (0,0,3), (1,1,2), (1,0,3), (0,1,3), (0,0,4)

(1,0,6,3,4,0,1,3,12) : 925

17.3: 2× 203542, 1× 213343, 13× 203244, 1× 213045

(0,1,0,1), (2,1,0,0), (2,0,1,0), (1,1,1,0), (1,0,2,0), (0,1,2,0), (0,0,3,0), (2,1,1,0),
(2,1,0,1), (2,0,2,0), (2,0,1,1), (1,1,2,0), (1,1,1,1), (1,0,3,0), (1,0,2,1), (0,1,3,0),
(0,1,2,1), (0,0,4,0), (0,0,3,1)

(1,1,0,0,8,2,2,0,0,0,0,0,0,2,2,3,0,6,3) : 1632
(1,0,1,2,6,1,3,0,0,0,0,0,0,2,2,3,0,6,3) : 12921
(1,0,1,1,7,2,2,0,0,0,0,1,0,1,2,2,0,7,3) : 9567
(1,0,0,2,8,1,2,0,0,1,0,0,0,0,2,3,0,7,3) : 2518
(1,0,1,0,8,3,1,0,0,0,0,2,0,0,2,1,0,8,3) : 874
(1,0,0,0,10,3,0,1,0,0,0,0,0,0,2,2,0,8,3) : 57
(1,0,0,2,8,1,2,0,0,0,1,0,0,2,0,3,0,6,4) : 2518
(1,0,0,1,9,2,1,0,0,0,1,1,0,1,0,2,0,7,4) : 1028
(1,0,0,0,10,3,0,0,0,0,1,2,0,0,0,1,0,8,4) : 57
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[5] M. Grüttmüller, I.T. Roberts, and R.G. Stanton. An improved lower bound for
g(4)(18). JCMCC, 48:25–31, 2004.

[6] I.T. Roberts, S. D’Arcy, J. Egan, and M. Grüttmüller. An improved bound
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