Partial inner products

Reinhard Knörr*

Institut für Mathematik, Universität Rostock

June 29, 2005

Abstract

A 'partial' inner product with respect to a given subset of Irr(G) is introduced and its basic properties are studied. As applications, a weak second orthogonality is shown in a Clifford setting and a version of the Burnside-Brauer theorem is given. Key Words: group representation, ordinary character theory, Clifford theory Mathematics Subject Classification: 20C15

Throughout this paper, G is a finite group. Characters and class functions are over \mathbb{C} and $\chi \mapsto \overline{\chi}$ denotes complex conjugation (of numbers or class functions).

Definition Partial inner product Let $S \subseteq Irr(G)$ be any subset.

(1) For class functions α and β of G, call

$$(\alpha,\beta)_G^S := \sum_{\sigma \in S} (\alpha,\sigma)_G (\sigma,\beta)_G$$

the <u>S</u>-partial inner product of α and β . Closely related is the projection

$$\alpha_S := \sum_{\sigma \in S} \, (\alpha, \sigma)_G \, \sigma \, \, ,$$

because clearly $(\alpha, \beta)_G^S = (\alpha_S, \beta)_G = (\alpha, \beta_S)_G = (\alpha_S, \beta_S)_G$ for any α and β .

^{*}Correspondence: Reinhard Knörr, Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany; E-mail: reinhard.knoerr@uni-rostock.de

(2) For $g \in G$, denote

$$\rho^g_S = \sum_{\sigma \in S} \overline{\sigma(g)} \, \sigma \quad .$$

Remark 1

- (i) Clearly, ρ_S^g depends only on the conjugacy class of g.
- (ii) There is a symmetry: $\rho_S^g(h) = \overline{\rho_S^h(g)}$ for all $g, h \in G$.
- (iii) By its very definition, $\rho_S^g \in \langle S \rangle$, the subspace of all class functions spanned by S. In fact, $\langle S \rangle$ is generated by the ρ_S^g 's, because for $\tau \in S$, we have

$$\sum_{g \in G} \frac{\tau(g)}{|G|} \rho_S^g = \sum_{g \in G} \frac{\tau(g)}{|G|} \sum_{\sigma \in S} \overline{\sigma(g)} \sigma = \sum_{\sigma \in S} \left(\frac{1}{|G|} \sum_{g \in G} \tau(g) \overline{\sigma(g)} \right) \sigma = \sum_{\sigma \in S} (\tau, \sigma)_G \sigma = \tau \quad .$$

(iv) The most prominent member of the family $\{\rho_S^g\}$ is of course the regular character $\rho = \rho_{\operatorname{Irr}(G)}^1$, and as with the regular character, one can calculate inner products as values: $(\alpha, \rho_S^g)_G = \alpha_S(g)$ for every class function α .

Example

If $S = \operatorname{Irr}(G/N)$ for some $N \triangleleft G$, then $\alpha_S(g) = \frac{1}{|N|} \sum_{n \in N} \alpha(gn)$ for any $g \in G$.

Proposition 1 Associativity for partial inner products

Let $S \subseteq \operatorname{Irr}(G)$ and a class function η of G be given and denote $T = \operatorname{Irr}(G) \setminus S$. For $c \in \mathbb{C}$, let $G(c) = G(c, \eta) = \{g \in G \mid \eta(g) = c\}$. Then the following are equivalent:

(i) For all class functions α and β of G, one has $(\alpha \eta, \beta)_G^S = (\alpha, \overline{\eta}\beta)_G^S$.

(ii) If
$$0 \neq \sum_{\sigma \in S} \sigma(g) \overline{\sigma(h)}$$
 for elements $g, h \in G$, then $\eta(g) = \eta(h)$

- (iii) Every $0 \neq \rho_S^g$ is an eigenvector for η .
- (iv) $\langle S \rangle$ is closed under multiplication with η .
- (v) $\sum_{g \in G(c)} \sigma(g) \overline{\tau(g)} = 0$ for every $c \in \mathbb{C}, \sigma \in S, \tau \in T$
- (vi) $\langle S \rangle$ is closed under multiplication with $\overline{\eta}$.
- (vii) $\langle S \rangle$ and $\langle T \rangle$ are closed under multiplication with η .
- (viii) $(\alpha \eta)_S = \alpha_S \eta$ for every α .

Proof:
(i)
$$\Rightarrow$$
(ii) Let $K = g^G$ and $L = h^G$, and let χ_K and χ_L be the characteristic functions for these conjugacy classes. Then it is easily seen that

$$(\chi_K \eta, \chi_L)_G^S = \eta(g) \frac{|K||L|}{|G|^2} \sum_{\sigma \in S} \overline{\sigma(g)} \sigma(h) ,$$

while

$$(\chi_K, \overline{\eta}\chi_L)_G^S = \eta(h) \frac{|K||L|}{|G|^2} \sum_{\sigma \in S} \overline{\sigma(g)} \sigma(h)$$

Since these two values are equal by assumption, (ii) follows.

(ii) \Rightarrow (iii) If $0 \neq \rho_S^g(h) = \sum_{\sigma \in S} \overline{\sigma(g)} \sigma(h)$, then $\eta(g) = \eta(h)$, so $\eta(h) \rho_S^g(h) = \eta(g) \rho_S^g(h)$ for every *h*. This means $\eta \rho_S^g = \eta(g) \rho_S^g$, so ρ_S^g is an eigenvector for η with eigenvalue $\eta(g)$.

(iii) \Rightarrow (iv) This clear since $\langle S \rangle$ is spanned by the ρ_S^g 's.

 $(iv) \Rightarrow (v)$ Take $\sigma \in S$ and $\tau \in T$; let $c_1, \ldots, c_m \in \mathbb{C}$ be all the different values of η . Define $a_i(\sigma, \tau) = \sum_{g \in G(c_i)} \sigma(g)\overline{\tau(g)}$. For fixed i, let $\pi = \pi(i) = \prod_{j \neq i} (\eta - c_j \mathbf{1})$. Then π vanishes on $G \setminus G(c_i)$ and is a non-zero constant d, say, on $G(c_i)$. Since π is a polynomial in η , it leaves $\langle S \rangle$ invariant, so

$$0 = (\pi\sigma, \tau)_G = \frac{d}{|G|} a_i(\sigma, \tau) ,$$

which implies $a_i(\sigma, \tau) = 0$. This proves the statement if c is one of the c_i 's. If not, G(c) is empty and the assertion holds trivially.

 $(v) \Rightarrow (vi)$ Keep the notation and let γ be any class function which is constant, say equal to γ_i , on every $G(c_i)$; then

$$(\gamma\sigma,\tau)_G = \frac{1}{|G|} \sum_{i=1}^m \gamma_i a_i(\sigma,\tau) = 0$$

for every $\sigma \in S$, $\tau \in T$. This implies $\gamma \sigma \in \langle S \rangle$. The argument applies in particular to $\gamma = \overline{\eta}$, proving (vi).

(vi) \Rightarrow (vii) Using (iv) \Rightarrow (vi) with $\overline{\eta}$ instead of η , one finds that $\langle S \rangle$ is closed under multiplication with η . Let $\tau \in T$. If $\eta \tau \notin \langle T \rangle$, there is some $\sigma \in S$ with $0 \neq (\sigma, \eta \tau)_G = (\sigma \overline{\eta}, \tau)_G$, a contradiction, since $\sigma \overline{\eta} \in \langle S \rangle$ by assumption.

(vii) \Rightarrow (viii) Let $\alpha = \alpha_S + \alpha_T$ be given. Then in $\alpha \eta = \alpha_S \eta + \alpha_T \eta$, the first summand belongs to $\langle S \rangle$, the second to $\langle T \rangle$, by hypothesis. Therefore $(\alpha \eta)_S = \alpha_S \eta$. (viii) \Rightarrow (i)

$$(\alpha\eta,\beta)_G^S = ((\alpha\eta)_S,\beta)_G = (\alpha_S\eta,\beta)_G = (\alpha_S,\overline{\eta}\beta)_G = (\alpha,\overline{\eta}\beta)_G^S ,$$

where the second equality holds by assumption.

Remark 2

- (i) The values c_1, \ldots, c_m of η come in no particular order. However, it is reasonable to agree that $c_1 = \eta(1)$. Note that this means $G(c_1) = \text{Ker}(\eta)$ if η is a character; also, all the $G(c_i)$'s are then unions of cosets of $G(c_1)$.
- (ii) The class function $\pi(i)$ constructed in the above proof will in fact be a generalized character if η is and if c_i is rational (for instance i = 1). This follows by observing that then the c_j 's are algebraic integers permuted by the Galois group.
- (iii) The functions constant on all $G(c_i)$ are precisely the polynomials in η (of degree < m), as the usual interpolation argument shows.
- (iv) Statements (ii) and (v) are versions of the orthogonality relations: Condition (iv) is trivially satisfied for every S if one takes $\eta = \mathbf{1}$. Then G(1) = G, so (v) reduces to $(\sigma, \tau)_G = 0$ for $\sigma \neq \tau \in \text{Irr}(G)$ (taking $S = \{\sigma\}$).

Again, condition (iv) is trivially satisfied for every η if one takes S = Irr(G). Since we may choose η such that $\eta(\underline{g}) \neq \eta(h)$ if g, h are not conjugate, we conclude from (ii) that then $0 = \sum_{\sigma \in \text{Irr}(G)} \sigma(g)\sigma(h)$. This can be generalized:

Corollary 1

Let φ be an irreducible character of some normal subgroup N of G and let $g, h \in G$. If \overline{g} and \overline{h} are not conjugate in $\overline{G} = G/N$ then

$$0 = \sum_{\chi \in \operatorname{Irr}(G|\varphi)} \chi(g) \overline{\chi(h)} \ .$$

Proof: It is clear that $\langle \operatorname{Irr} (G|\varphi) \rangle$ is invariant under multiplication with any class function of \overline{G} . Since there is such a class function η with $\eta(g) \neq \eta(h)$, the statement follows from (iv) \Rightarrow (ii) above.

Remark 3

- (i) Trivially, there are class functions which take different values on all conjugacy classes of G. It is not hard to prove that there is a *character* (in general reducible) with that property.
- (ii) The question naturally arises what the value of $\sum_{\chi \in \operatorname{Irr}(G|\varphi)} \chi(g)\overline{\chi(h)}$ is if \overline{g} and \overline{h} are

conjugate in \overline{G} . This will be investigated in a separate paper [2].

Corollary 2

Assume that η takes only non–negative real values. Then the conditions of the proposition are equivalent to $(\alpha \eta, \alpha)_G^S \ge 0$ for every α .

Proof: Assume that condition (viii) holds. Then

$$(\alpha\eta,\alpha)_G^S = ((\alpha\eta)_S,\alpha_S)_G = (\alpha_S\eta,\alpha_S)_G \ge 0$$

Conversely, assume that $(\alpha \eta, \alpha)_G^S \geq 0$ for every α . It is enough to show that $\langle S \rangle$ is closed under multiplication with $\overline{\eta} \ (= \eta)$. If not, there is $\sigma \in S$ and $\tau \in T = \operatorname{Irr}(G) \setminus S$ such that $(\tau, \overline{\eta}\sigma)_G \neq 0$. Choose $c \in \mathbb{C}$ such that $c \cdot (\tau, \overline{\eta}\sigma)_G = -(\sigma, \overline{\eta}\sigma)_G - 1$ and let $\alpha = \sigma + c\tau$, so $\alpha_S = \sigma$. It follows that

$$0 \le (\alpha\eta, \alpha)_G^S = (\alpha\eta, \alpha_S)_G = (\alpha\eta, \sigma)_G = (\sigma + c\tau, \overline{\eta}\sigma)_G = (\sigma, \overline{\eta}\sigma)_G + c \cdot (\tau, \overline{\eta}\sigma)_G = -1 \quad ,$$

a contradiction.

Corollary 3

Let $S \subseteq \operatorname{Irr}(G)$. Define a graph $\Delta = \Delta(S)$ with vertices all the conjugacy classes of Gand an edge between two classes K and L if and only if $0 \neq \sum_{\sigma \in S} \sigma(g)\overline{\sigma(h)}$, where $g \in K$ and $h \in L$. The class functions η which are constant on the connected components of Δ are then precisely the ones satisfying the conditions of the proposition.

Proof: Clear from condition (ii) of the proposition.

Corollary 4

Let η be a class function of G taking exactly m values c_1, \ldots, c_m . Define a graph $\Gamma = \Gamma(\eta)$ with vertices all the irreducible characters of G and an edge between σ and τ if and only if $0 \neq \sum_{x \in G(c_i)} \sigma(x)\overline{\tau(x)}$ for some i; here again $G(c_i) = \{g \in G \mid \eta(g) = c_i\}$. The unions of connected components of Γ are then precisely the sets S satisfying the conditions of the

connected components of 1° are then precisely the sets S satisfying the conditions of the proposition.

Proof: Clear from condition (v) of the proposition.

Corollary 5

Let η be a faithful class function of G, i.e. $\eta(g) \neq \eta(1)$ for $g \neq 1$. Then S = Irr(G) and $S = \emptyset$ are the only subsets of Irr(G) such that the conditions of the proposition are satisfied.

Proof: Taking $c_1 = \eta(1)$, we have $G(c_1) = \{1\}$, so $\sum_{x \in G(c_1)} \sigma(x)\overline{\tau(x)} = \sigma(1)\tau(1) \neq 0$

for every $\sigma, \tau \in Irr(G)$. Therefore the graph Γ of the last corollary is connected (even complete).

Corollary 5 can be read as a version of the Burnside-Brauer theorem (compare [1], Theorem 4.3), because $\eta < S > \leq < S >$ is certainly true if η is a character and $S = \{\sigma \in \operatorname{Irr} (G) \mid (\sigma, \eta^i)_G \neq 0 \text{ for some } i\}$.

Even if η is not faithful, an idea in the proof of Proposition 1 can be used to predict, for a given character γ , which irreducibles of G will show up as constituents of some $\gamma \eta^i$:

Poposition 2 Burnside-Brauer

Let γ and η be characters of G and let $K = \text{Ker}(\eta)$; further let m be the number of different values of η . Then for any $\chi \in \text{Irr}(G)$, the following are equivalent:

- (i) $(\chi, \gamma)_K \neq 0$
- (ii) $(\chi, \gamma \eta^i)_G \neq 0$ for some $m > i \ge 0$
- (iii) $(\chi, \gamma \eta^i)_G \neq 0$ for some $i \ge 0$.

Proof:

(i) \Rightarrow (ii) Let $\eta(1) = c_1, \ldots, c_m$ be the values of η and let $\pi = \prod_{i>1} (\eta - c_i \mathbf{1})$. Then π vanishes off K and is a non-zero constant on K, so $\pi = c \cdot \mathbf{1}_K^G$ for some $c \neq 0$. Therefore $(\chi, \gamma \pi)_G = \overline{c} \cdot (\chi, \gamma \mathbf{1}_K^G)_G = \overline{c} \cdot (\chi, \gamma)_K \neq 0$. Since π is a polynomial of degree m - 1 in η , it follows that χ is a constituent of $\gamma \eta^i$ for some i < m. (ii) \Rightarrow (iii) Trivial.

(iii) \Rightarrow (i) Since $(\chi, \gamma \eta^i)_G \neq 0$ for some *i*, a fortiori $0 \neq (\chi, \gamma \eta^i)_K = \eta^i (1)(\chi, \gamma)_K$.

Remark 4

- (i) Note that the first condition depends on η only via its kernel.
- (ii) Clearly, one gets the classical result for $\gamma = 1$ and η faithful, since then K = 1.

- (iii) As the proof of (i) \Rightarrow (ii) shows, the assumption that γ and η are characters can be weakened for this implication: γ may be any class function; for η , we need only assume that $K = \{g \in G \mid \eta(g) = \eta(1)\}$ is a (normal) subgroup; there are many class functions besides the characters satisfying this condition.
- (iv) However, here are two simple examples showing that the condition that γ and η are characters is essential for the implication (iii) \Rightarrow (i). In both examples, one of γ, η is a character, the other a generalized character. The group is C_4 and λ is a faithful linear character. First, take $\gamma = \mathbf{1} - \lambda^2$ and $\eta = \mathbf{1} + \lambda^2$, so $K = C_2$. Then $\mathbf{1}$ is a constituent of $\gamma \eta^0$ but $(\mathbf{1}, \gamma)_K = 0$.

Second, take $\gamma = \mathbf{1}$ and $\eta = \lambda(\mathbf{1} - \lambda^2)$, so again $K = C_2$ (even though η is not a character). Then λ is a constituent of $\gamma \eta^1$ but $(\lambda, \gamma)_K = 0$.

References

- I.M. Isaacs, Character theory of finite groups, Academic Press, New York 1976
- [2] R. Knörr, Isaacs' bilinear form and the second orthogonality relation. In preparation.