Partial inner products

Reinhard Knörr ${ }^{*}$

Institut für Mathematik, Universität Rostock

June 29, 2005

Abstract

A 'partial' inner product with respect to a given subset of $\operatorname{Irr}(G)$ is introduced and its basic properties are studied. As applications, a weak second orthogonality is shown in a Clifford setting and a version of the Burnside-Brauer theorem is given. Key Words: group representation, ordinary character theory, Clifford theory Mathematics Subject Classification: 20C15

Throughout this paper, G is a finite group. Characters and class functions are over \mathbb{C} and $\chi \mapsto \bar{\chi}$ denotes complex conjugation (of numbers or class functions).

Definition Partial inner product
Let $S \subseteq \operatorname{Irr}(G)$ be any subset.
(1) For class functions α and β of G, call

$$
(\alpha, \beta)_{G}^{S}:=\sum_{\sigma \in S}(\alpha, \sigma)_{G}(\sigma, \beta)_{G}
$$

the S-partial inner product of α and β.
Closely related is the projection

$$
\alpha_{S}:=\sum_{\sigma \in S}(\alpha, \sigma)_{G} \sigma,
$$

because clearly $(\alpha, \beta)_{G}^{S}=\left(\alpha_{S}, \beta\right)_{G}=\left(\alpha, \beta_{S}\right)_{G}=\left(\alpha_{S}, \beta_{S}\right)_{G}$ for any α and β.

[^0](2) For $g \in G$, denote
$$
\rho_{S}^{g}=\sum_{\sigma \in S} \overline{\sigma(g)} \sigma
$$

Remark 1

(i) Clearly, ρ_{S}^{g} depends only on the conjugacy class of g.
(ii) There is a symmetry: $\rho_{S}^{g}(h)=\overline{\rho_{S}^{h}(g)}$ for all $g, h \in G$.
(iii) By its very definition, $\rho_{S}^{g} \in\langle S\rangle$, the subspace of all class functions spanned by S. In fact, $\langle S\rangle$ is generated by the ρ_{S}^{g} 's, because for $\tau \in S$, we have

$$
\sum_{g \in G} \frac{\tau(g)}{|G|} \rho_{S}^{g}=\sum_{g \in G} \frac{\tau(g)}{|G|} \sum_{\sigma \in S} \overline{\sigma(g)} \sigma=\sum_{\sigma \in S}\left(\frac{1}{|G|} \sum_{g \in G} \tau(g) \overline{\sigma(g)}\right) \sigma=\sum_{\sigma \in S}(\tau, \sigma)_{G} \sigma=\tau
$$

(iv) The most prominent member of the family $\left\{\rho_{S}^{g}\right\}$ is of course the regular character $\rho=\rho_{\operatorname{Irr}(G)}^{1}$, and as with the regular character, one can calculate inner products as values: $\left(\alpha, \rho_{S}^{g}\right)_{G}=\alpha_{S}(g)$ for every class function α.

Example

If $S=\operatorname{Irr}(G / N)$ for some $N \triangleleft G$, then $\alpha_{S}(g)=\frac{1}{|N|} \sum_{n \in N} \alpha(g n)$ for any $g \in G$.

Proposition 1 Associativity for partial inner products

Let $S \subseteq \operatorname{Irr}(G)$ and a class function η of G be given and denote $T=\operatorname{Irr}(G) \backslash S$. For $c \in \mathbb{C}$, let $G(c)=G(c, \eta)=\{g \in G \mid \eta(g)=c\}$. Then the following are equivalent:
(i) For all class functions α and β of G, one has $(\alpha \eta, \beta)_{G}^{S}=(\alpha, \bar{\eta} \beta)_{G}^{S}$.
(ii) If $0 \neq \sum_{\sigma \in S} \sigma(g) \overline{\sigma(h)}$ for elements $g, h \in G$, then $\eta(g)=\eta(h)$.
(iii) Every $0 \neq \rho_{S}^{g}$ is an eigenvector for η.
(iv) $\langle S\rangle$ is closed under multiplication with η.
(v) $\sum_{g \in G(c)} \sigma(g) \overline{\tau(g)}=0$ for every $c \in \mathbb{C}, \sigma \in S, \tau \in T$
(vi) $\langle S\rangle$ is closed under multiplication with $\bar{\eta}$.
(vii) $<S>$ and $<T\rangle$ are closed under multiplication with η.
(viii) $(\alpha \eta)_{S}=\alpha_{S} \eta$ for every α.

Proof:

(i) \Rightarrow (ii) Let $K=g^{G}$ and $L=h^{G}$, and let χ_{K} and χ_{L} be the characteristic functions for these conjugacy classes. Then it is easily seen that

$$
\left(\chi_{K} \eta, \chi_{L}\right)_{G}^{S}=\eta(g) \frac{|K||L|}{|G|^{2}} \sum_{\sigma \in S} \overline{\sigma(g)} \sigma(h),
$$

while

$$
\left(\chi_{K}, \bar{\eta} \chi_{L}\right)_{G}^{S}=\eta(h) \frac{|K||L|}{|G|^{2}} \sum_{\sigma \in S} \overline{\sigma(g)} \sigma(h) .
$$

Since these two values are equal by assumption, (ii) follows.
(ii) \Rightarrow (iii) If $0 \neq \rho_{S}^{g}(h)=\sum_{\sigma \in S} \overline{\sigma(g)} \sigma(h)$, then $\eta(g)=\eta(h)$, so $\eta(h) \rho_{S}^{g}(h)=\eta(g) \rho_{S}^{g}(h)$ for every h. This means $\eta \rho_{S}^{g}=\eta(g) \rho_{S}^{g}$, so ρ_{S}^{g} is an eigenvector for η with eigenvalue $\eta(g)$. (iii) \Rightarrow (iv) This clear since $\langle S\rangle$ is spanned by the ρ_{S}^{g} 's.
(iv) \Rightarrow (v) Take $\sigma \in S$ and $\tau \in T$; let $c_{1}, \ldots, c_{m} \in \mathbb{C}$ be all the different values of η. Define $a_{i}(\sigma, \tau)=\sum_{g \in G\left(c_{i}\right)} \sigma(g) \overline{\tau(g)}$. For fixed i, let $\pi=\pi(i)=\prod_{j \neq i}\left(\eta-c_{j} \mathbf{1}\right)$. Then π vanishes on $G \backslash G\left(c_{i}\right)$ and is a non-zero constant d, say, on $G\left(c_{i}\right)$. Since π is a polynomial in η, it leaves $\langle S\rangle$ invariant, so

$$
0=(\pi \sigma, \tau)_{G}=\frac{d}{|G|} a_{i}(\sigma, \tau),
$$

which implies $a_{i}(\sigma, \tau)=0$. This proves the statement if c is one of the c_{i} 's. If not, $G(c)$ is empty and the assertion holds trivially.
$(\mathrm{v}) \Rightarrow(\mathrm{vi})$ Keep the notation and let γ be any class function which is constant, say equal to γ_{i}, on every $G\left(c_{i}\right)$; then

$$
(\gamma \sigma, \tau)_{G}=\frac{1}{|G|} \sum_{i=1}^{m} \gamma_{i} a_{i}(\sigma, \tau)=0
$$

for every $\sigma \in S, \tau \in T$. This implies $\gamma \sigma \in\langle S>$. The argument applies in particular to $\gamma=\bar{\eta}$, proving (vi).
(vi) \Rightarrow (vii) Using (iv) \Rightarrow (vi) with $\bar{\eta}$ instead of η, one finds that $<S>$ is closed under multiplication with η. Let $\tau \in T$. If $\eta \tau \notin<T>$, there is some $\sigma \in S$ with $0 \neq(\sigma, \eta \tau)_{G}=$ $(\sigma \bar{\eta}, \tau)_{G}$, a contradiction, since $\sigma \bar{\eta} \in<S>$ by assumption.
(vii) \Rightarrow (viii) Let $\alpha=\alpha_{S}+\alpha_{T}$ be given. Then in $\alpha \eta=\alpha_{S} \eta+\alpha_{T} \eta$, the first summand belongs to $\langle S\rangle$, the second to $\langle T\rangle$, by hypothesis. Therefore $(\alpha \eta)_{S}=\alpha_{S} \eta$.
(viii) \Rightarrow (i)

$$
(\alpha \eta, \beta)_{G}^{S}=\left((\alpha \eta)_{S}, \beta\right)_{G}=\left(\alpha_{S} \eta, \beta\right)_{G}=\left(\alpha_{S}, \bar{\eta} \beta\right)_{G}=(\alpha, \bar{\eta} \beta)_{G}^{S},
$$

where the second equality holds by assumption.

Remark 2

(i) The values c_{1}, \ldots, c_{m} of η come in no particular order. However, it is reasonable to agree that $c_{1}=\eta(1)$. Note that this means $G\left(c_{1}\right)=\operatorname{Ker}(\eta)$ if η is a character; also, all the $G\left(c_{i}\right)$'s are then unions of cosets of $G\left(c_{1}\right)$.
(ii) The class function $\pi(i)$ constructed in the above proof will in fact be a generalized character if η is and if c_{i} is rational (for instance $i=1$). This follows by observing that then the c_{j} 's are algebraic integers permuted by the Galois group.
(iii) The functions constant on all $G\left(c_{i}\right)$ are precisely the polynomials in η (of degree $<m)$, as the usual interpolation argument shows.
(iv) Statements (ii) and (v) are versions of the orthogonality relations: Condition (iv) is trivially satisfied for every S if one takes $\eta=1$. Then $G(1)=G$, so (v) reduces to $(\sigma, \tau)_{G}=0$ for $\sigma \neq \tau \in \operatorname{Irr}(G)$ (taking $S=\{\sigma\}$).

Again, condition (iv) is trivially satisfied for every η if one takes $S=\operatorname{Irr}(G)$. Since we may choose η such that $\eta(g) \neq \eta(h)$ if g, h are not conjugate, we conclude from
(ii) that then $0=\sum_{\sigma \in \operatorname{Irr}(G)} \sigma(g) \overline{\sigma(h)}$. This can be generalized:

Corollary 1

Let φ be an irreducible character of some normal subgroup N of G and let $g, h \in G$. If \bar{g} and \bar{h} are not conjugate in $\bar{G}=G / N$ then

$$
0=\sum_{\chi \in \operatorname{Irr}(G \mid \varphi)} \chi(g) \overline{\chi(h)}
$$

Proof: It is clear that $<\operatorname{Irr}(G \mid \varphi)>$ is invariant under multiplication with any class function of \bar{G}. Since there is such a class function η with $\eta(g) \neq \eta(h)$, the statement follows from (iv) \Rightarrow (ii) above.

Remark 3

(i) Trivially, there are class functions which take different values on all conjugacy classes of G. It is not hard to prove that there is a character (in general reducible) with that property.
(ii) The question naturally arises what the value of $\sum_{\chi \in \operatorname{Irr}(G \mid \varphi)} \chi(g) \overline{\chi(h)}$ is if \bar{g} and \bar{h} are conjugate in \bar{G}. This will be investigated in a separate paper [2].

Corollary 2

Assume that η takes only non-negative real values. Then the conditions of the proposition are equivalent to $(\alpha \eta, \alpha)_{G}^{S} \geq 0$ for every α.
Proof: Assume that condition (viii) holds. Then

$$
(\alpha \eta, \alpha)_{G}^{S}=\left((\alpha \eta)_{S}, \alpha_{S}\right)_{G}=\left(\alpha_{S} \eta, \alpha_{S}\right)_{G} \geq 0 .
$$

Conversely, assume that $(\alpha \eta, \alpha)_{G}^{S} \geq 0$ for every α. It is enough to show that $<S>$ is closed under multiplication with $\bar{\eta}(=\eta)$. If not, there is $\sigma \in S$ and $\tau \in T=\operatorname{Irr}(G) \backslash S$ such that $(\tau, \bar{\eta} \sigma)_{G} \neq 0$. Choose $c \in \mathbb{C}$ such that $c \cdot(\tau, \bar{\eta} \sigma)_{G}=-(\sigma, \bar{\eta} \sigma)_{G}-1$ and let $\alpha=\sigma+c \tau$, so $\alpha_{S}=\sigma$. It follows that

$$
0 \leq(\alpha \eta, \alpha)_{G}^{S}=\left(\alpha \eta, \alpha_{S}\right)_{G}=(\alpha \eta, \sigma)_{G}=(\sigma+c \tau, \bar{\eta} \sigma)_{G}=(\sigma, \bar{\eta} \sigma)_{G}+c \cdot(\tau, \bar{\eta} \sigma)_{G}=-1,
$$

a contradiction.

Corollary 3

Let $S \subseteq \operatorname{Irr}(G)$. Define a graph $\Delta=\Delta(S)$ with vertices all the conjugacy classes of G and an edge between two classes K and L if and only if $0 \neq \sum_{\sigma \in S} \sigma(g) \overline{\sigma(h)}$, where $g \in K$ and $h \in L$. The class functions η which are constant on the connected components of Δ are then precisely the ones satisfying the conditions of the proposition.

Proof: Clear from condition (ii) of the proposition.

Corollary 4

Let η be a class function of G taking exactly m values c_{1}, \ldots, c_{m}. Define a graph $\Gamma=\Gamma(\eta)$ with vertices all the irreducible characters of G and an edge between σ and τ if and only if $0 \neq \sum_{x \in G\left(c_{i}\right)} \sigma(x) \overline{\tau(x)}$ for some i; here again $G\left(c_{i}\right)=\left\{g \in G \mid \eta(g)=c_{i}\right\}$. The unions of connected components of Γ are then precisely the sets S satisfying the conditions of the proposition.

Proof: Clear from condition (v) of the proposition.

Corollary 5

Let η be a faithful class function of G, i.e. $\eta(g) \neq \eta(1)$ for $g \neq 1$. Then $S=\operatorname{Irr}(G)$ and $S=\emptyset$ are the only subsets of $\operatorname{Irr}(G)$ such that the conditions of the proposition are satisfied.

Proof: Taking $c_{1}=\eta(1)$, we have $G\left(c_{1}\right)=\{1\}$, so $\sum_{x \in G\left(c_{1}\right)} \sigma(x) \overline{\tau(x)}=\sigma(1) \tau(1) \neq 0$ for every $\sigma, \tau \in \operatorname{Irr}(G)$. Therefore the graph Γ of the last corollary is connected (even complete).

Corollary 5 can be read as a version of the Burnside-Brauer theorem (compare [1], Theorem 4.3), because $\eta<S>\leq<S>$ is certainly true if η is a character and $S=\left\{\sigma \in \operatorname{Irr}(G) \mid\left(\sigma, \eta^{i}\right)_{G} \neq 0\right.$ for some $\left.i\right\}$.
Even if η is not faithful, an idea in the proof of Proposition 1 can be used to predict, for a given character γ, which irreducibles of G will show up as constituents of some $\gamma \eta^{i}$:

Poposition 2 Burnside-Brauer

Let γ and η be characters of G and let $K=\operatorname{Ker}(\eta)$; further let m be the number of different values of η. Then for any $\chi \in \operatorname{Irr}(G)$, the following are equivalent:
(i) $(\chi, \gamma)_{K} \neq 0$
(ii) $\left(\chi, \gamma \eta^{i}\right)_{G} \neq 0$ for some $m>i \geq 0$
(iii) $\left(\chi, \gamma \eta^{i}\right)_{G} \neq 0$ for some $i \geq 0$.

Proof:

(i) \Rightarrow (ii) Let $\eta(1)=c_{1}, \ldots, c_{m}$ be the values of η and let $\pi=\prod_{i>1}\left(\eta-c_{i} \mathbf{1}\right)$. Then π vanishes off K and is a non-zero constant on K, so $\pi=c \cdot \mathbf{1}_{K}^{G}$ for some $c \neq 0$. Therefore $(\chi, \gamma \pi)_{G}=\bar{c} \cdot\left(\chi, \gamma \mathbf{1}_{K}^{G}\right)_{G}=\bar{c} \cdot(\chi, \gamma)_{K} \neq 0$. Since π is a polynomial of degree $m-1$ in η, it follows that χ is a constituent of $\gamma \eta^{i}$ for some $i<m$.
(ii) \Rightarrow (iii) Trivial.
(iii) $\Rightarrow\left(\right.$ i) Since $\left(\chi, \gamma \eta^{i}\right)_{G} \neq 0$ for some i, a fortiori $0 \neq\left(\chi, \gamma \eta^{i}\right)_{K}=\eta^{i}(1)(\chi, \gamma)_{K}$.

Remark 4

(i) Note that the first condition depends on η only via its kernel.
(ii) Clearly, one gets the classical result for $\gamma=\mathbf{1}$ and η faithful, since then $K=1$.
(iii) As the proof of (i) \Rightarrow (ii) shows, the assumption that γ and η are characters can be weakened for this implication: γ may be any class function; for η, we need only assume that $K=\{g \in G \mid \eta(g)=\eta(1)\}$ is a (normal) subgroup; there are many class functions besides the characters satisfying this condition.
(iv) However, here are two simple examples showing that the condition that γ and η are characters is essential for the implication (iii) $\Rightarrow(\mathrm{i})$. In both examples, one of γ, η is a character, the other a generalized character. The group is C_{4} and λ is a faithful linear character.
First, take $\gamma=\mathbf{1}-\lambda^{2}$ and $\eta=\mathbf{1}+\lambda^{2}$, so $K=C_{2}$. Then $\mathbf{1}$ is a constituent of $\gamma \eta^{0}$ but $(\mathbf{1}, \gamma)_{K}=0$.
Second, take $\gamma=\mathbf{1}$ and $\eta=\lambda\left(\mathbf{1}-\lambda^{2}\right.$), so again $K=C_{2}$ (even though η is not a character). Then λ is a constituent of $\gamma \eta^{1}$ but $(\lambda, \gamma)_{K}=0$.

References

[1] I.M. Isaacs, Character theory of finite groups, Academic Press, New York 1976
[2] R. Knörr, Isaacs' bilinear form and the second orthogonality relation. In preparation.

[^0]: *Correspondence: Reinhard Knörr, Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany; E-mail: reinhard.knoerr@uni-rostock.de

