On Natural Monomial Characters of S_{n}

Reinhard Knörr*

Institut für Mathematik, Universität Rostock

February 24, 2005

Abstract

A class of natural linear characters for the centralizers of elements in the symmetric group is introduced. The character values of the corresponding monomial characters are calculated. They have a surprising combinatorial interpretation. Key Words: group representation, ordinary character theory, symmetric groups, finite fields Mathematics Subject Classification: 20C30; 20C15; 20C40

For any $0<m \in \mathbb{N}$, let

$$
f_{m}(x)=\sum_{d \mid m} \mu(d) x^{m / d}
$$

where μ is the Möbius function, so f_{m} is a monic polynomial of degree m over \mathbb{Z}. For $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{N}_{0}^{n}$, let

$$
p_{\tau}(x)=\prod_{m=1}^{n} \prod_{j=0}^{\tau_{m}-1}\left(f_{m}(x)+j m\right) ;
$$

so if τ is a partition of n, i.e. $n=\sum_{m} m \tau_{m}$, then p_{τ} has degree n. Note that for $n \neq 0$ (which we assume throughout), the constant term of p_{τ} is 0 , since this is true for every

[^0]f_{m}. We expand
$$
p_{\tau}(x)=\sum_{t=1}^{n} \chi_{t}(\tau) x^{t}
$$
so this produces class functions $\chi_{1}, \ldots, \chi_{n}$ of the symmetric group S_{n}, where of course $\chi_{t}(g)=\chi_{t}(\tau)$ if $g \in S_{n}$ is of type τ, i.e. g has exactly τ_{i} orbits of length i (in its natural action on $\underline{n}=\{1, \ldots, n\}$). The aim of this note is to show that the χ_{t} 's are characters of S_{n}. More precisely, Corollary 1 states that the χ_{t} 's are sums of certain canonical monomial characters.

Notation

(i) For $k \in \mathbb{N}$, let $S_{n, k}=\left\{g \in S_{n} \mid g\right.$ has exactly k orbits on $\left.\underline{n}\right\}$, so $S_{n, k}$ is a union of conjugacy classes K_{β} of S_{n}, namely the ones of type β with $k=|\beta|:=\sum_{i} \beta_{i}$. Clearly, $S_{n, k}=\emptyset$ if $k>n$; also, $S_{n, 0}=\emptyset($ since $n>0)$.
(ii) For $m \in \mathbb{N}$, let

$$
\varepsilon_{m}=e^{\frac{2 \pi i}{m}} \in \mathbb{C}
$$

so ε_{m} is a primitive m-th root of unity. Note that $\left(\varepsilon_{m}\right)^{d}=\varepsilon_{m / d}$ for every $d \mid m$.

Lemma 1

$$
\prod_{k=0}^{n-1}(x+k)=\sum_{k=0}^{n}\left|S_{n, k}\right| x^{k}
$$

Proof: \quad Given an element $g \in S_{n, k-1}$, we define $\widetilde{g} \in S_{n+1, k}$ by $\widetilde{g}(n+1)=n+1$ and $\widetilde{g}=g$ on \underline{n}. Given $g \in S_{n, k}$ and $1 \leq i \leq n$, we define $\widetilde{g}_{i} \in S_{n+1, k}$ by

$$
\widetilde{g}_{i}(j)= \begin{cases}n+1 & \text { if } j=i \\ g(i) & \text { if } j=n+1 \\ g(j) & \text { otherwise }\end{cases}
$$

Then \sim is a bijection between $S_{n, k-1} \cup S_{n, k} \times \underline{n}$ and $S_{n+1, k}$; in particular $\left|S_{n+1, k}\right|=$ $\left|S_{n, k-1}\right|+\left|S_{n, k}\right| n$. From this, the assertion follows easily by induction.

Remark 1 For any $0<m \in \mathbb{N}$, there is a natural action of S_{n} on the set $\underline{m}^{\underline{n}}$ of all maps $\underline{n} \rightarrow \underline{m}$. Such a map f is fixed by $g \in S_{n}$ if and only if f is constant on the orbits of g, so the number of fixed points of g is $m^{b(g)}$, where $b: S_{n} \rightarrow \mathbb{N}$ counts the orbits. Calculating the multiplicity of the trivial character in the permutation character π_{m} gives

$$
\left(\pi_{m}, \mathbf{1}\right)=\frac{1}{n!} \sum_{g \in S_{n}} \pi_{m}(g)=\frac{1}{n!} \sum_{t}\left|S_{n, t}\right| m^{t}=\frac{1}{n!} \prod_{k=0}^{n-1}(m+k)=\binom{n+m-1}{n}
$$

where the third equality follows from the lemma. By Burnside's lemma ([1], Corollary 5.15), this gives the number of orbits of S_{n} on $\underline{m}^{\underline{n}}$, hence the number of choices with repetitions of n objects from m. So get a well known formula from basic combinatorics. A similar argument allows us to calculate the multiplicity of the sign character sgn: using that $\pi_{-m}=(-1)^{n} \operatorname{sgn} \cdot \pi_{m}$, one gets

$$
\left(\pi_{m}, \operatorname{sgn}\right)=\binom{m}{n}
$$

Lemma 2

$$
\prod_{k=0}^{t-1}\left(f_{m}(x)+k m\right)=\sum_{\beta \vdash t}\left|K_{\beta}\right| m^{t-|\beta|} f_{m}(x)^{|\beta|}
$$

Proof:

$$
\begin{aligned}
\prod_{k=0}^{t-1}\left(f_{m}(x)+k m\right) & =m^{t} \prod_{k=0}^{t-1}\left(\frac{1}{m} f_{m}(x)+k\right) \\
& =m^{t} \sum_{k=0}^{t}\left|S_{t, k}\right|\left(\frac{1}{m} f_{m}(x)\right)^{k} \quad(\text { using Lemma 1) } \\
& =\sum_{k=0}^{t}\left|S_{t, k}\right| m^{t-k} f_{m}(x)^{k} \\
& =\sum_{\beta \vdash t}\left|K_{\beta}\right| m^{t-|\beta|} f_{m}(x)^{|\beta|}
\end{aligned}
$$

Lemma 3

$$
\mu(m)=\sum_{\substack{\varepsilon \text { primitive } \\ \text { m-throot } \\ \text { of unity }}} \varepsilon
$$

Proof:

$$
\sum_{d \mid m} \sum_{\substack{\varepsilon \text { primitive } \\
d \text { d-th root } \\
\text { of unity }}} \varepsilon=\sum_{\substack{\varepsilon \\
\text { rooth of } \\
\text { root of } \\
\text { unity }}} \varepsilon=\left\{\begin{array}{ll}
1 & \text { if } m=1 \\
0 & \text { otherwise }
\end{array}=\sum_{d \mid m} \mu(d),\right.
$$

hence the assertion.

Definition, Remark 2

(i) Let G be a finite group acting on the finite set X. Fix some conjugacy class K of G and consider the set

$$
M=\{(a, \mathcal{B}) \mid a \in K, \mathcal{B} \text { an orbit of }\langle a\rangle \text { on } X\}
$$

It is clear that M is a G-set by $(a, \mathcal{B}) g=\left(a^{g}, \mathcal{B} g\right)$ and that $\alpha: M \ni(a, \mathcal{B}) \mapsto a \in K$ is a G-map. For every point $(a, \mathcal{B}) \in M$, we define a linear character $(a, \mathcal{B}) \theta$ of the stabilizer $G_{(a, \mathcal{B})}$ by

$$
(a, \mathcal{B}) \theta(g)=\varepsilon_{|\mathcal{B}|}^{j} \text { if } x g=x a^{j} \text { for some } x \in \mathcal{B}
$$

Since $g \in G_{(a, \mathcal{B})}$ commutes with a, the choice of x is irrelevant. Also j is unique modulo the length $|\mathcal{B}|$ of the orbit. Therefore $(a, \mathcal{B}) \theta$ is well-defined and clearly multiplicative. Obviously $(a, \mathcal{B}) \theta^{g}=\left(a^{g}, \mathcal{B} g\right) \theta$, so $\theta:(a, \mathcal{B}) \mapsto(a, \mathcal{B}) \theta$ is an inductible map; it follows that $\gamma=\theta^{\alpha}$ is a character of G, in fact a monomial character induced from a linear character λ_{a} of $C_{G}(a)$ for $a \in K$ (compare [3] for the notation and simple facts concerning inductible maps and their induction). This character depends on X and K, so $\gamma=\gamma(X, K)$.
(ii) In the following, $G=S_{n}$ and $X=\underline{n}$, so it remains to specify the conjugacy class. As the classes are naturally labelled by the partitions σ of n, we use the partitions also as labels for the γ 's and write $\gamma_{\sigma}:=\gamma\left(\underline{n}, K_{\sigma}\right)$.
(iii) There is an alternative - and more familiar - description of the linear character λ_{a} of $C_{S_{n}}(a)$ from which γ_{σ} is induced. As is well known, corresponding to the decomposition of a (of type σ) in products of cycles of equal length, there is a direct product decomposition of $C_{S_{n}}(a)$. The factor $C^{(m)}$ corresponding to the cycles a_{1}, \ldots, a_{s} (say) of length m in this direct product is in turn a semi-direct product of an abelian normal subgroup $A=<a_{1}, \ldots, a_{s}>\cong C_{m} \times \cdots \times C_{m}$ with a symmetric group S_{s} which acts by permuting the cycles. Therefore, there are m linear characters of A which are stable under S_{s}, hence extendable to $C^{(m)}$, so we can choose a linear character λ_{m} of $C^{(m)}$ which has order m and is trivial on S_{s}. This character is determined only up to algebraic conjugation, but we can avoid ambiguity by specifying that $\lambda_{m}\left(a_{i}\right)=\varepsilon_{m}$.
The product of these characters λ_{m} gives a character λ_{a} of $C_{S_{n}}(a)$. In fact, $\lambda_{a}=\vartheta_{a}^{\alpha}$, as is easily seen by calculating the values of these two linear characters on a cycle of a and on an element only permuting the cycles.
Incidentally, the choice of λ_{m} is irrelevant for $\gamma_{\sigma}=\lambda_{a}^{S_{n}}$: induce first to the Young subgroup $S_{1 \sigma_{1}} \times \ldots \times S_{n \sigma_{n}}$ and use that all characters of a symmetric group are rational.
(iv) To summarize, for every $\sigma \vdash n$, we have a monomial character γ_{σ} of S_{n} with values given by

$$
\gamma_{\sigma}(g)=\sum_{\substack{a \in K_{\sigma} \\ g a=a g}} \lambda_{a}(g),
$$

where

$$
\lambda_{a}(g)=\prod_{i}\left(a, \mathcal{B}_{i}\right) \theta\left(g^{e_{i}}\right)
$$

for a set \mathcal{B}_{i} of representatives of the orbits of $\langle g\rangle$ on the orbits of $\langle a\rangle$ and $e_{i}=$ $\left|\langle g\rangle:\langle g\rangle_{\mathcal{B}_{i}}\right|$.
(v) For bookkeeping, it is useful to introduce $X^{\sigma}:=\prod_{i=1}^{n} x_{i}^{\sigma_{i}}$, a monomial in n variables of total degree $|\sigma|$, and

$$
h_{g}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \vdash n} \gamma_{\sigma}(g) X^{\sigma} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]
$$

a polynomial that collects the character values of the γ_{σ} 's at an element $g \in S_{n}$; of course, $h_{g}=h_{\tau}$ depends only on the conjugacy class K_{τ} of g.
(vi) It is clear that

$$
h_{g}=\sum_{\sigma \vdash n} \gamma_{\sigma}(g) X^{\sigma}=\sum_{\sigma \vdash n} \sum_{\substack{a \in K_{\sigma} \\ a g=g a}} \lambda_{a}(g) X^{\sigma}=\sum_{a \in C} \lambda_{a}(g) X^{\sigma(a)},
$$

where $C=C_{S_{n}}(g)$ and $\sigma(a)$ is the type of a.
Lemma 4 Let g_{m} be the product of all cycles of length m of $g \in S_{n}$, viewed as an element of $S_{m \tau_{m}}$, where τ is the type of g. Then

$$
h_{g}=\prod_{m} h_{g_{m}}
$$

Proof: Let $T_{m} \subseteq \underline{n}$ be the union of all orbits of length m of g and $H_{m}=S_{T_{m}}$, the symmetric group on T_{m}; also denote $C_{m}=C_{H_{m}}\left(g_{m}\right)$. Then

$$
h_{g_{m}}=\sum_{a_{m} \in C_{m}} \lambda_{a_{m}}\left(g_{m}\right) X^{\sigma\left(a_{m}\right)}
$$

so

$$
\prod_{m} h_{g_{m}}=\sum_{\substack{\left(a_{1}, \ldots, a_{n}\right) \\ a_{m} \in C_{m}}} \lambda_{a_{1}}\left(g_{1}\right) \ldots \lambda_{a_{n}}\left(g_{n}\right) X^{\sigma\left(a_{1}\right)} \ldots X^{\sigma\left(a_{n}\right)}
$$

Now $C_{1} \times \cdots \times C_{n} \ni\left(a_{1}, \ldots, a_{n}\right) \mapsto a:=a_{1} \cdots a_{n}$ is a bijection $C_{1} \times \cdots \times C_{n} \rightarrow C:=$ $C_{S_{n}}(g)$; clearly, $\sigma(a)=\sigma\left(a_{1}\right)+\cdots+\sigma\left(a_{n}\right)$ and by definition $\lambda_{a}(g)=\lambda_{a_{1}}\left(g_{1}\right) \ldots \lambda_{a_{n}}\left(g_{n}\right)$. Therefore, the sum on the right simplifies to

$$
\sum_{a \in C} \lambda_{a}(g) X^{\sigma(a)}=h_{g}
$$

as claimed.

Lemma 5 Let g be homocyclic, say g is the product of t cycles of length m. Then

$$
h_{g}=\sum_{\beta \vdash t}\left|K_{\beta}\right| m^{t-|\beta|} \prod_{i}\left(\sum_{d \mid m} \mu(d) x_{i \cdot d}^{m / d}\right)^{\beta_{i}}
$$

Proof: Let $n=m \cdot t$ and $C=C_{S_{n}}(g)$. Since

$$
h_{g}=\sum_{a \in C} \lambda_{a}(g) X^{\sigma(a)}
$$

we have to calculate the contribution of $a \in C$ to this sum.
Since C is a semi-direct product of S_{t} and an abelian normal subgroup $N=<g_{1}, \ldots, g_{t}>$, where $g=g_{1} \cdot \ldots \cdot g_{t}$ is the cycle decomposition, every element $a \in C$ can be written as $a=a_{0} \cdot g_{1}^{e_{1}} \cdot \ldots \cdot g_{t}^{e_{t}}$ with $a_{0} \in S_{t}$. We consider first the case that a_{0} is a long cycle, so a_{0} has order t. Denote $A=\langle a\rangle$ and $D:=\langle g, a\rangle$; so D is an abelian transitive subgroup of S_{n}. Let l be the order of a. Then clearly $t \mid l$; since $a^{t}=g^{e}$, where $e=\sum_{i} e_{i}$ and since the order of g^{e} is $d:=m / \operatorname{gcd}(e, m)$, we find that $l=t \cdot d$. This is then the length of every orbit of A, so A has $m \cdot t / l=m / d$ orbits. The corresponding monomial is therefore $x_{t \cdot d}^{m / d}$. To calculate the coefficient, note that $g^{m / d}$ and a^{t} generate the same subgroup (of order $d)$, so $g^{m / d}=a^{t \cdot u}$ for some u prime to d. Therefore $\lambda_{a}(g)=\varepsilon_{l}^{t \cdot u}=\varepsilon_{d}^{u}$ is a primitive d-th root of unity.
Now take $a^{\prime}=a_{0} \cdot g_{1}^{e_{1}^{\prime}} \cdot \ldots \cdot g_{t}^{e_{t}^{\prime}}$ and let $e^{\prime}=\sum_{i} e_{i}^{\prime}$. For any $0 \leq s<m$, there are m^{t-1} solutions $\left(e_{1}^{\prime}, \ldots e_{t}^{\prime}\right)$ for $e^{\prime} \equiv s \bmod (m)$ with $0 \leq e_{i}^{\prime}<m$ for all i. If we collect those for which $\operatorname{gcd}\left(e^{\prime}, m\right)=m / d$ for some fixed divisor d of m, the monomial is always $x_{t \cdot d}^{m / d}$ and each primitive d-th root of unity appears m^{t-1} times as a coefficient. By Lemma 3, we get $m^{t-1} \mu(d) x_{t \cdot d}^{m / d}$ for fixed d and

$$
\sum_{d \mid m} m^{t-1} \mu(d) x_{t \cdot d}^{m / d}=m^{t-1} \sum_{d \mid m} \mu(d) x_{t \cdot d}^{m / d}
$$

as contribution of $a_{0} N$ to h_{g}.
A general element a_{0} of S_{t} will have several cycles, say β_{i} cycles of length i for some $\beta \vdash t$. Then the above analysis can be done for each of these cycles, replacing t by i. The contribution of $a_{0} N$ to h_{g} is then

$$
\begin{aligned}
\prod_{i}\left(m^{i-1} \sum_{d \mid m} \mu(d) x_{i \cdot d}^{m / d}\right)^{\beta_{i}} & =m^{\sum_{i}^{(i-1) \beta_{i}}} \prod_{i}\left(\sum_{d \mid m} \mu(d) x_{i \cdot d}^{m / d}\right)^{\beta_{i}} \\
& =m^{t-|\beta|} \prod_{i}\left(\sum_{d \mid m} \mu(d) x_{i \cdot d}^{m / d}\right)^{\beta_{i}}
\end{aligned}
$$

Summing over all elements of S_{t} yields the result.

Combining the last two lemmas, we get
Theorem For $g \in S_{n}$ of type τ, one has

$$
h_{g}=\prod_{m}\left[\sum_{\beta \vdash \tau_{m}}\left|K_{\beta}\right| m^{\tau_{m}-|\beta|} \prod_{i}\left(\sum_{d \mid m} \mu(d) x_{i \cdot d}^{m / d}\right)^{\beta_{i}}\right] .
$$

Proof: Clear.

Corollary 1

$$
\chi_{t}=\sum_{\substack{\sigma \vdash n \\|\sigma|=t}} \gamma_{\sigma}
$$

Proof: Again for g of type τ, we get by substitution

$$
h_{g}(x, \ldots, x)=\sum_{\sigma \vdash n} \gamma_{\sigma}(g) x^{|\sigma|}=\sum_{t=1}^{n}\left(\sum_{\substack{\sigma \vdash n \\|\sigma|=t}} \gamma_{\sigma}(g)\right) x^{t} .
$$

On the other hand, we get from the theorem and Lemma 2 that

$$
\begin{aligned}
h_{g}(x, \ldots, x) & =\prod_{m}\left[\sum_{\beta \vdash \tau_{m}}\left|K_{\beta}\right| m^{\tau_{m}-|\beta|} \prod_{i}\left(\sum_{d \mid m} \mu(d) x^{m / d}\right)^{\beta_{i}}\right] \\
& =\prod_{m}\left[\sum_{\beta \vdash \tau_{m}}\left|K_{\beta}\right| m^{\tau_{m}-|\beta|} f_{m}(x)^{|\beta|}\right] \\
& =\prod_{m} \prod_{j=0}^{\tau_{m}-1}\left(f_{m}(x)+j m\right) \\
& =p_{\tau}(x)=\sum_{t=1}^{n} \chi_{t}(g) x^{t} .
\end{aligned}
$$

Now compare coefficients to get

$$
\chi_{t}(g)=\sum_{\substack{\sigma \vdash n \\|\sigma|=t}} \gamma_{\sigma}(g) ;
$$

this holds for every g, hence the assertion.

Remark 3

(i) By the theorem, the character values of the γ_{σ} 's can be calculated in the polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. This is tedious, but purely mechanical work; note that the sizes of the conjugacy classes (the only information needed from the group) are given by a straightforward formula. For instance, let $g \in S_{8}$ be of type $\tau=(2,3,0,0,0,0,0,0)$. For $m=1$, there are two partitions of $\tau_{1}=2$, namely $(2,0)$ and $(0,1)$; the corresponding classes have both size 1 , so the first factor in h_{g} is

$$
1 \cdot 1^{2-2} \cdot\left(\mu(1) x_{1 \cdot 1}^{1 / 1}\right)^{2}+1 \cdot 1^{2-1} \cdot\left(\mu(1) x_{2 \cdot 1}^{1 / 1}\right)^{1}=x_{1}^{2}+x_{2}
$$

For $m=2$, there are three partitions of $\tau_{2}=3$, namely $(3,0,0),(1,1,0)$ and $(0,0,1)$; the corresponding classes have size 1,3 and 2 respectively, so the second factor in h_{g} is

$$
\begin{aligned}
& 1 \cdot 2^{3-3} \cdot\left(\mu(1) x_{1 \cdot 1}^{2 / 1}+\mu(2) x_{1 \cdot 2}^{2 / 2}\right)^{3} \\
& +3 \cdot 2^{3-2} \cdot\left(\mu(1) x_{1 \cdot 1}^{2 / 1}+\mu(2) x_{1 \cdot 2}^{2 / 2}\right)^{1} \cdot\left(\mu(1) x_{2 \cdot 1}^{2 / 1}+\mu(2) x_{2 \cdot 2}^{2 / 2}\right)^{1} \\
& +2 \cdot 2^{3-1} \cdot\left(\mu(1) x_{3 \cdot 1}^{2 / 1}+\mu(2) x_{3 \cdot 2}^{2 / 2}\right)^{1} \\
& \quad=\left(x_{1}^{2}-x_{2}\right)^{3}+6\left(x_{1}^{2}-x_{2}\right)\left(x_{2}^{2}-x_{4}\right)+8\left(x_{3}^{2}-x_{6}\right) \\
& \quad=x_{1}^{6}-3 x_{1}^{4} x_{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{4}-7 x_{2}^{3}+6 x_{2} x_{4}+8 x_{3}^{2}-8 x_{6} .
\end{aligned}
$$

All other $\tau_{m}=0$, so the corresponding factors of h_{g} are 1 . Therefore

$$
\begin{aligned}
h_{g}= & \left(x_{1}^{2}+x_{2}\right)\left(x_{1}^{6}-3 x_{1}^{4} x_{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{4}-7 x_{2}^{3}+6 x_{2} x_{4}+8 x_{3}^{2}-8 x_{6}\right) \\
= & x_{1}^{8}-2 x_{1}^{6} x_{2}+6 x_{1}^{4} x_{2}^{2}-6 x_{1}^{4} x_{4}+2 x_{1}^{2} x_{2}^{3}+8 x_{1}^{2} x_{3}^{2}-8 x_{1}^{2} x_{6}-7 x_{2}^{4} \\
& +6 x_{2}^{2} x_{4}+8 x_{2} x_{3}^{2}-8 x_{2} x_{6} .
\end{aligned}
$$

From this, we can read off the character values $\gamma_{\sigma}(g)$; e.g. for $\sigma=(0,4,0,0,0,0,0,0)$, we look at the coefficient of x_{2}^{4} to find $\gamma_{\sigma}(g)=-7$.
(ii) Similarly (but much simpler), the values of χ_{t} can be calculated in $\mathbb{Z}[x]$.
(iii) There are as many γ_{σ} 's as there are irreducible characters, but they do not in general span the space of class functions. Here is a list giving - for a few small n - the class number k of S_{n} and the dimension d of the subspace spanned by the γ_{σ} 's :

n	1	2	3	4	5	10	15	20	25	30
k	1	2	3	5	7	42	176	627	1958	5604
d	1	2	3	4	6	38	161	577	1816	5245

From these meager data, it looks as if the quotient d / k might tend to 1 for increasing n, but I have not even an argument for the existence of a limit. As is clear from the theory, the algorithm is reasonably fast, considering that some of the character values are quite large; in any case, it takes longer to calculate the dimension of the subspace than to compute the monomial characters.
(iv) There is a symmetry for the values of γ_{σ} : If $g_{\tau} \in K_{\tau}$ and $g_{\sigma} \in K_{\sigma}$, then

$$
\left|K_{\tau}\right| \gamma_{\sigma}\left(g_{\tau}\right)=\left|K_{\sigma}\right| \gamma_{\tau}\left(g_{\sigma}\right)
$$

To see this, note that

$$
\left|K_{\tau}\right| \gamma_{\sigma}\left(g_{\tau}\right)=\gamma_{\sigma}\left(\widehat{K}_{\tau}\right)=\sum_{\substack{a \in K_{\sigma} \\ b \in K_{\tau} \\ a b=b a}} \lambda_{a}(b)
$$

While it is not quite true that $\lambda_{a}(b)=\lambda_{b}(a)$, both are products of the same number of algebraically conjugate roots of unity. This holds in general, i.e. for an arbitrary finite group G on any finite G-set X. Here is the argument:
Denote $A=\langle a\rangle, B=\langle b\rangle$ and $C=\langle a, b\rangle$ for commuting elements a, b and fix an orbit $x C$. If $|x C|=t,|x A|=r$ and $|x B|=s$ then all orbits of A on $x C$ have length r (since C is commutative). Therefore there are t / r such A-orbits on $x C$, transitively permuted by B. Hence $b^{t / r}$ is the smallest power of b fixing $x A$, say $x b^{t / r}=x a^{d}$, so the contribution of $x C$ to $\lambda_{a}(b)$ is the factor ε_{r}^{d}. Similarly, the contribution of $x C$ to $\lambda_{b}(a)$ is the factor ε_{s}^{e}, where $x a^{t / s}=x b^{e}$.
The last equation shows that b^{e} fixes $x A$, so e is a multiple of t / r, say $e=(t / r) u$ and similarly $d=(t / s) v$. Setting $\delta=\varepsilon_{t}^{(t / r)(t / s)}=\varepsilon_{r}^{t / s}$, it follows that $\varepsilon_{r}^{d}=\delta^{v} \in\langle\delta\rangle$, hence $\left\langle\varepsilon_{r}^{d}\right\rangle \leq\langle\delta\rangle$. In fact, equality holds, since from

$$
x a^{t / s}=x b^{e}=x b^{(t / r) u}=x a^{d u}
$$

one concludes that $t / s \equiv d u \bmod r$, hence $\delta=\varepsilon_{r}^{t / s}=\varepsilon_{r}^{d u} \in<\varepsilon_{r}^{d}>$. Similarly, δ and ε_{s}^{e} are algebraically conjugate.
For $G=S_{n}$, one finds by summing (essentially as in the proof of Lemma 5) separately for the orbits of $\langle a, b\rangle$, that the contributions of each such orbit to $\gamma_{\sigma}\left(\widehat{K}_{\tau}\right)$ and to $\gamma_{\tau}\left(\widehat{K}_{\sigma}\right)$ are equal.
(v) This symmetry can be used as a check or as a shortcut in calculations. For instance, let $\tau=(0, \ldots, 0,1)$ be the partition corresponding to the long cycles. From the theorem, we get then simply

$$
h_{\tau}=\sum_{d \mid n} \mu(d) x_{d}^{n / d}
$$

so

$$
\gamma_{\sigma}\left(g_{\tau}\right)= \begin{cases}\mu(d) & \text { if } \sigma \text { is homocyclic with cycle length } d \\ 0 & \text { otherwise }\end{cases}
$$

Therefore

$$
\begin{aligned}
\gamma_{\tau}\left(g_{\sigma}\right) & =\frac{\left|K_{\tau}\right|}{\left|K_{\sigma}\right|} \gamma_{\sigma}\left(g_{\tau}\right) \\
& = \begin{cases}\mu(d) \frac{\left|K_{\tau}\right|}{\left|K_{\sigma}\right|} & \text { if } \sigma \text { is homocyclic with cycle length } d \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\mu(d) d^{m-1}(m-1)! & \text { if } \sigma \text { is homocyclic with } m \text { cycles of length } d \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(It is easy to check this directly from the definition of γ_{τ}.)
(vi) Here is a more theoretical application: Let π_{z} be the class function defined by $\pi_{z}(\sigma)=z^{|\sigma|}$, where $z \in \mathbb{Z}$. Using the symmetry $\left|K_{\tau}\right| \gamma_{\sigma}(\tau)=\left|K_{\sigma}\right| \gamma_{\tau}(\sigma)$, one calculates the inner product

$$
\left(\gamma_{\tau}, \pi_{z}\right)=\frac{1}{n!} \sum_{\sigma}\left|K_{\sigma}\right| \gamma_{\tau}(\sigma) z^{|\sigma|}=\frac{1}{n!} \sum_{\sigma}\left|K_{\tau}\right| \gamma_{\sigma}(\tau) z^{|\sigma|}=\frac{\left|K_{\tau}\right|}{n!} \sum_{t=1}^{n}\left(\sum_{\substack{\sigma \vdash n \\|\sigma|=t}} \gamma_{\sigma}(\tau)\right) z^{t}
$$

hence by Corollary 1

$$
\left(\gamma_{\tau}, \pi_{z}\right)=\frac{1}{\left|C_{\tau}\right|} \sum_{t} \chi_{t}(\tau) z^{t}=\frac{1}{\left|C_{\tau}\right|} p_{\tau}(z)
$$

where $\left|C_{\tau}\right|$ is the order of the centralizer in S_{n} of an element of type τ. In particular, $\left|C_{\tau}\right|$ divides $p_{\tau}(z)$ for every $z \in \mathbb{Z}$, since π_{z} is a generalized character.
Corollary 2 Let $n>1$; denote $l=\left[\frac{n}{2}\right]$,

$$
\gamma_{e}=\sum_{\substack{\sigma \vdash n \\|\sigma| \equiv 0 \bmod (2)}} \gamma_{\sigma} \text { and } \gamma_{o}=\sum_{\substack{\sigma \vdash n \\|\sigma| \equiv 1 \bmod (2)}} \gamma_{\sigma}
$$

Then
(i)

$$
\gamma_{e}(1)=\gamma_{o}(1)=\frac{n!}{2}
$$

(ii)

$$
\gamma_{e}(g)=-\gamma_{o}(g)=(-1)^{n} 2^{l-1} l!
$$

if g is a 'long involution', i.e. g has l orbits of length 2.
(iii)

$$
\gamma_{e}(g)=\gamma_{o}(g)=0
$$

for all other $g \in S_{n}$.

Proof: Since

$$
f_{m}(1)=\left\{\begin{array}{ll}
1 & \text { if } m=1 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad f_{m}(-1)= \begin{cases}-1 & \text { if } m=1 \\
2 & \text { if } m=2 \\
0 & \text { otherwise }\end{cases}\right.
$$

we can - for g of type τ - calculate that

$$
\begin{aligned}
\gamma_{e}(g)+\gamma_{o}(g) & =\sum_{\sigma \vdash n} \gamma_{\sigma}(g) \\
& =\sum_{k} \chi_{k}(g) \quad \text { by Cor. } 1 \\
& =p_{\tau}(1) \\
& =\prod_{m=1}^{n} \prod_{j=0}^{\tau_{m}-1}\left(f_{m}(1)+j m\right) \\
& = \begin{cases}n! & \text { if } \tau=(n, 0, \ldots, 0) \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

so $\gamma_{e}+\gamma_{o}=\rho$, the regular character of S_{n}. Similarly,

$$
\begin{aligned}
\gamma_{e}(g)-\gamma_{o}(g) & =\sum_{k}(-1)^{k} \chi_{k}(g) \\
& =p_{\tau}(-1) \\
& =\prod_{m=1}^{n} \prod_{j=0}^{\tau_{m}-1}\left(f_{m}(-1)+j m\right) \\
& =\left\{\begin{array}{cc}
\prod_{j=0}^{l-1}(2+j 2) & \text { if } \tau=(0, l, 0, \ldots, 0) \quad \text { (} n \text { even) } \\
-\prod_{j=0}^{l-1}(2+j 2) & \text { if } \tau=(1, l, 0, \ldots, 0) \quad \text { (} n \text { odd }) \\
0 & \text { otherwise },
\end{array}\right. \\
& =\left\{\begin{array}{cc}
(-1)^{n} 2^{l} l! & \text { if } g \text { is a long involution } \\
0 & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

The assertions follow.
Remark 4 Since $\sum_{\sigma} \gamma_{\sigma}=\rho$, the sign character is a constituent (with multiplicity 1) of exactly one γ_{σ}; Frobenius reciprocity shows that this σ is the type of the long involutions. Alternatively, one can deduce this from Remark $3(\mathrm{vi})$, since $\left(-1^{n}\right)$ sign $=\pi_{-1}$.

Remark 5 The argument used in the proof of Corollary 2 can be generalized. For instance, for an odd prime r, one has $f_{r}(-2)=(-2)^{r}-(-2)=-\left(2^{r}-2\right)$, so $f_{r}(-2)+j r=0$ for $j=\left(2^{r}-2\right) / r$. But if $\tau_{r}>j$, then $f_{r}(x)+j r$ is a factor of $p_{\tau}(x)$. For such τ then

$$
0=p_{\tau}(-2)=\sum_{t} \chi_{t}(\tau)(-2)^{t}=\sum_{\sigma \vdash n} \gamma_{\sigma}(\tau)(-2)^{|\sigma|} .
$$

It follows from Remark 3(vi) again that $\left(\gamma_{\tau}, \pi_{-2}\right)=0$, still under the assumption that $\tau_{r}>\left(2^{r}-2\right) / r$ for some odd prime r. Since π_{-2} is either a character or the negative of a character, this means that π_{-2} and γ_{τ} have no common constituents. (Instead of -2 , any other negative integer z will do; of course, the condition on τ depends on z.)
Remark 6 There is a combinatorial interpretation of the polynomials p_{τ}, hence of the characters χ_{k} : Let $F=F_{q}$ be the field with q elements, and let E be a field extension with $|E: F|=m$. Then the map $d \mapsto F(d)$, where $|F(d)|=q^{d}$, is a bijection between the divisors d of m and the intermediate fields $F \leq F(d) \leq E$. Denote $A_{d}:=\{a \in E \mid F[a]=$ $F(d)\}$; then $q^{m}=|E|=\sum_{d \mid m}\left|A_{d}\right|$. Möbius inversion yields

$$
\left|A_{m}\right|=\sum_{d \mid m} \mu\left(\frac{m}{d}\right) q^{d}=f_{m}(q) .
$$

Now every $a \in A_{m}$ has minimal polynomial of degree m and each of these has m different zeros, all in A_{m}, so the number of monic irreducible polynomial of degree m in $F[x]$ is

$$
f_{m}^{*}(q):=\frac{1}{m} f_{m}(q)
$$

Since every polynomial is (essentially uniquely) a product of irreducibles, we can define the type τ of a polynomial h by letting τ_{m} be the number of irreducible factors of degree
m in h; so $\tau \vdash \operatorname{deg}(h)$. Of course, an irreducible factor may occur with a multiplicity, so the number of monic polynomials over F of a given type $\tau \vdash n$ is

$$
p_{\tau}^{*}(q)=\prod_{m=1}^{n}\binom{f_{m}^{*}(q)+\tau_{m}-1}{\tau_{m}}
$$

Multiplication of p_{τ}^{*} by a suitable scalar gives a monic polynomial, more precisely $\left|C_{\tau}\right| p_{\tau}^{*}=$ p_{τ}; recall that the order of the centralizer $\left|C_{\tau}\right|=\prod_{m} m^{\tau_{m}} \tau_{m}$!. Using Remark 3(vi) once again, we conclude that the number of polynomials of type τ (over F_{q}) equals the inner product $\left(\gamma_{\tau}, \pi_{q}\right)$.

References

[1] I.M. Isaacs, Character theory of finite groups, Academic Press, New York 1976
[2] G.James and A.Kerber, The representation theory of the symmetric group, Addison-Wesley 1981
[3] R.Knörr, On Frobenius and tensor induction, in preparation

[^0]: *Correspondence: Reinhard Knörr, Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany; E-mail: reinhard.knoerr@uni-rostock.de

