On Natural Monomial Characters of S_n

Reinhard Knörr*

Institut für Mathematik, Universität Rostock

February 24, 2005

Abstract

A class of natural linear characters for the centralizers of elements in the symmetric group is introduced. The character values of the corresponding monomial characters are calculated. They have a surprising combinatorial interpretation.

Key Words: group representation, ordinary character theory, symmetric groups, finite fields

Mathematics Subject Classification: 20C30; 20C15; 20C40

For any $0 < m \in \mathbb{N}$, let

$$f_m(x) = \sum_{d|m} \mu(d) x^{m/d},$$

where μ is the Möbius function, so f_m is a monic polynomial of degree m over \mathbb{Z}. For $\tau = (\tau_1, \ldots, \tau_n) \in \mathbb{N}_0^n$, let

$$p_\tau(x) = \prod_{m=1}^n \prod_{j=0}^{\tau_m-1} (f_m(x) + jm);$$

so if τ is a partition of n, i.e. $n = \sum_m m \tau_m$, then p_τ has degree n. Note that for $n \neq 0$ (which we assume throughout), the constant term of p_τ is 0, since this is true for every

*Correspondence: Reinhard Knörr, Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany; E-mail: reinhard.knoerr@uni-rostock.de
We expand
\[p_\tau(x) = \sum_{t=1}^{n} \chi_t(\tau) x^t, \]
so this produces class functions \(\chi_1, \ldots, \chi_n \) of the symmetric group \(S_n \), where of course \(\chi_t(g) = \chi_t(\tau) \) if \(g \in S_n \) is of type \(\tau \), i.e., \(g \) has exactly \(\tau \) orbits of length \(i \) (in its natural action on \(\{1, \ldots, n\} \)). The aim of this note is to show that the \(\chi_t \)'s are characters of \(S_n \). More precisely, Corollary 1 states that the \(\chi_t \)'s are sums of certain canonical monomial characters.

Notation

(i) For \(k \in \mathbb{N} \), let \(S_{n,k} = \{ g \in S_n \mid g \text{ has exactly } k \text{ orbits on } n \} \), so \(S_{n,k} \) is a union of conjugacy classes \(K_\beta \) of \(S_n \), namely the ones of type \(\beta \) with \(k = |\beta| := \sum_i \beta_i \). Clearly, \(S_{n,k} = \emptyset \) if \(k > n \); also, \(S_{n,0} = \emptyset \) (since \(n > 0 \)).

(ii) For \(m \in \mathbb{N} \), let
\[
\varepsilon_m = e^{\frac{2\pi i}{m}} \in \mathbb{C},
\]
so \(\varepsilon_m \) is a primitive \(m \)-th root of unity. Note that \((\varepsilon_m)^d = \varepsilon_{m/d} \) for every \(d|m \).

Lemma 1

\[
\prod_{k=0}^{n-1} (x + k) = \sum_{k=0}^{n} |S_{n,k}| x^k
\]

Proof: Given an element \(g \in S_{n,k-1} \), we define \(\tilde{g} \in S_{n+1,k} \) by \(\tilde{g}(n+1) = n+1 \) and \(\tilde{g} = g \) on \(n \). Given \(g \in S_{n,k} \) and \(1 \leq i \leq n \), we define \(\tilde{g}_i \in S_{n+1,k} \) by
\[
\tilde{g}_i(j) = \begin{cases}
 n+1 & \text{if } j = i \\
 g(i) & \text{if } j = n+1 \\
 g(j) & \text{otherwise}.
\end{cases}
\]

Then \(\tilde{g} \) is a bijection between \(S_{n,k-1} \cup S_{n,k} \times n \) and \(S_{n+1,k} \); in particular \(|S_{n+1,k}| = |S_{n,k-1}| + |S_{n,k}| n \). From this, the assertion follows easily by induction.

Remark 1 For any \(0 < m \in \mathbb{N} \), there is a natural action of \(S_n \) on the set \(\mathbb{N}^m \) of all maps \(\mathbb{N} \to m \). Such a map \(f \) is fixed by \(g \in S_n \) if and only if \(f \) is constant on the orbits of \(g \), so the number of fixed points of \(g \) is \(n^{b(g)} \), where \(b : S_n \to \mathbb{N} \) counts the orbits. Calculating the multiplicity of the trivial character in the permutation character \(\pi_m \) gives
\[
(\pi_m, 1) = \frac{1}{n!} \sum_{g \in S_n} \pi_m(g) = \frac{1}{n!} \sum_{t} |S_{n,t}| m^t = \frac{1}{n!} \prod_{k=0}^{n-1} (m+k) = \binom{n+m-1}{n},
\]
where the third equality follows from the lemma. By Burnside’s lemma ([1], Corollary 5.15), this gives the number of orbits of \(S_n \) on \(\mathbb{N}^m \), hence the number of choices with repetitions of \(n \) objects from \(m \). So get a well known formula from basic combinatorics. A similar argument allows us to calculate the multiplicity of the sign character \(sgn \): using that \(\pi_{-m} = (-1)^n sgn \cdot \pi_m \), one gets
\[
(\pi_m, sgn) = \binom{m}{n}.
\]
Lemma 2

\[\prod_{k=0}^{t-1} (f_m(x) + km) = \sum_{\beta \vdash t} |K_\beta| m^{t-|\beta|} f_m(x)^{|\beta|} \]

Proof:

\[\prod_{k=0}^{t-1} (f_m(x) + km) = m^t \prod_{k=0}^{t-1} \left(\frac{1}{m} f_m(x) + k \right) \]

\[= m^t \sum_{k=0}^{t} |S_{t,k}| \left(\frac{1}{m} f_m(x) \right)^k \quad \text{(using Lemma 1)} \]

\[= \sum_{k=0}^{t} \left| S_{t,k} \right| m^{t-k} f_m(x)^k \]

\[= \sum_{\beta \vdash t} |K_\beta| m^{t-|\beta|} f_m(x)^{|\beta|}. \]

Lemma 3

\[\mu(m) = \sum_{\varepsilon \text{ primitive } m\text{-}th \ root \ of \ unity} \varepsilon \]

Proof:

\[\sum_{d|m} \sum_{\varepsilon \text{ primitive } d\text{-}th \ root \ of \ unity} \varepsilon = \sum_{\varepsilon \text{ root of unity}} \varepsilon = \begin{cases} 1 & \text{if } m = 1 \\ 0 & \text{otherwise} \end{cases} = \sum_{d|m} \mu(d), \]

hence the assertion.

Definition, Remark 2

(i) Let \(G \) be a finite group acting on the finite set \(X \). Fix some conjugacy class \(K \) of \(G \) and consider the set

\[M = \{(a, B) \mid a \in K, B \text{ an orbit of } <a> \text{ on } X \}. \]

It is clear that \(M \) is a \(G \)-set by \((a, B)g = (a^g, Bg)\) and that \(\alpha : M \ni (a, B) \mapsto a \in K \) is a \(G \)-map. For every point \((a, B) \in M\), we define a linear character \((a, B)\theta\) of the stabilizer \(G_{(a,B)} \) by

\[(a, B)\theta(g) = \varepsilon_{|B|}^j \] if \(xg = xa^j \) for some \(x \in B \).

Since \(g \in G_{(a,B)} \) commutes with \(a \), the choice of \(x \) is irrelevant. Also \(j \) is unique modulo the length \(|B|\) of the orbit. Therefore \((a, B)\theta\) is well-defined and clearly multiplicative. Obviously \((a, B)\theta^g = (a^g, Bg)\theta\), so \(\theta : (a, B) \mapsto (a, B)\theta \) is an inductible map; it follows that \(\gamma = \theta^a \) is a character of \(G \), in fact a monomial character induced from a linear character \(\lambda_a \) of \(C_G(a) \) for \(a \in K \) (compare [3] for the notation and simple facts concerning inductible maps and their induction). This character depends on \(X \) and \(K \), so \(\gamma = \gamma(X, K) \).

(ii) In the following, \(G = S_n \) and \(X = \mathbb{N} \), so it remains to specify the conjugacy class. As the classes are naturally labelled by the partitions \(\sigma \) of \(n \), we use the partitions also as labels for the \(\gamma \)'s and write \(\gamma_\sigma := \gamma(n, K_\sigma) \).
(iii) There is an alternative – and more familiar – description of the linear character \(\lambda_a \) of \(C_{S_n}(a) \) from which \(\gamma_\sigma \) is induced. As is well known, corresponding to the decomposition of \(a \) (of type \(\sigma \)) in products of cycles of equal length, there is a direct product decomposition of \(C_{S_n}(a) \). The factor \(C^{(m)} \) corresponding to the cycles \(a_1, \ldots, a_s \) (say) of length \(m \) in this direct product is in turn a semi-direct product of an abelian normal subgroup \(A = \langle a_1, \ldots, a_s \rangle \cong C_m \times \cdots \times C_m \) with a symmetric group \(S_s \) which acts by permuting the cycles. Therefore, there are \(m \) linear characters of \(A \) which are stable under \(S_s \), hence extendable to \(C_{S_n}(a) \), so we can choose a linear character \(\lambda_m \) of \(C_m \) which has order \(m \) and is trivial on \(S_s \). This character is determined only up to algebraic conjugation, but we can avoid ambiguity by specifying that \(\lambda_m(a_i) = \varepsilon_m \).

The product of these characters \(\lambda_m \) gives a character \(\lambda_a \) of \(C_{S_n}(a) \). In fact, \(\lambda_a = \varphi_a^\sigma \), as is easily seen by calculating the values of these two linear characters on a cycle of \(a \) and on an element only permuting the cycles.

Incidentally, the choice of \(\lambda_m \) is irrelevant for \(\gamma_\sigma = \lambda_{S_n}(a) \): induce first to the Young subgroup \(S_{1\sigma_1} \times \cdots \times S_{n\sigma_n} \) and use that all characters of a symmetric group are rational.

(iv) To summarize, for every \(\sigma \vdash n \), we have a monomial character \(\gamma_\sigma \) of \(S_n \) with values given by

\[
\gamma_\sigma(g) = \sum_{a \in K_\sigma} \lambda_a(g),
\]

where

\[
\lambda_a(g) = \prod_i (a, B_i) \theta(g^{e_i})
\]

for a set \(B_i \) of representatives of the orbits of \(\langle g \rangle \) on the orbits of \(\langle a \rangle \) and \(e_i = | \langle g \rangle : \langle a \rangle \rangle \).

(v) For bookkeeping, it is useful to introduce \(X^\sigma := \prod_{i=1}^n x_i^{\sigma_i} \), a monomial in \(n \) variables of total degree \(|\sigma| \), and

\[
h_g(x_1, \ldots, x_n) = \sum_{\sigma \vdash n} \gamma_\sigma(g) X^\sigma \in \mathbb{Z}[x_1, \ldots, x_n],
\]

a polynomial that collects the character values of the \(\gamma_\sigma \)'s at an element \(g \in S_n \); of course, \(h_g = h_\tau \) depends only on the conjugacy class \(K_\tau \) of \(g \).

(vi) It is clear that

\[
h_g = \sum_{\sigma \vdash n} \gamma_\sigma(g) X^\sigma = \sum_{\sigma \vdash n} \sum_{a \in K_\sigma} \lambda_a(g) X^\sigma = \sum_{a \in C} \lambda_a(g) X^{\sigma(a)},
\]

where \(C = C_{S_n}(g) \) and \(\sigma(a) \) is the type of \(a \).

Lemma 4 Let \(g_m \) be the product of all cycles of length \(m \) of \(g \in S_n \), viewed as an element of \(S_{m\tau_m} \), where \(\tau \) is the type of \(g \). Then

\[
h_g = \prod_m h_{g_m}.
\]
Proof: Let $T_m \subseteq n$ be the union of all orbits of length m of g and $H_m = S_{T_m}$, the symmetric group on T_m; also denote $C_m = C_{H_m}(g_m)$. Then

$$h_{g_m} = \sum_{a_m \in C_m} \lambda_{a_m}(g_m)X^{\sigma(a_m)},$$

so

$$\prod_{m} h_{g_m} = \sum_{(a_1, \ldots, a_n) \in m \in C_m} \lambda_{a_1}(g_1) \ldots \lambda_{a_n}(g_n)X^{\sigma(a_1)} \ldots X^{\sigma(a_n)}.$$

Now $C_1 \times \cdots \times C_n \ni (a_1, \ldots, a_n) \mapsto a := a_1 \cdots a_n$ is a bijection $C_1 \times \cdots \times C_n \rightarrow C := C_{S_n}(g)$; clearly, $\sigma(a) = \sigma(a_1) + \cdots + \sigma(a_n)$ and by definition $\lambda_{a}(g) = \lambda_{a_1}(g_1) \ldots \lambda_{a_n}(g_n)$. Therefore, the sum on the right simplifies to

$$\sum_{a \in C} \lambda_{a}(g)X^{\sigma(a)} = h_g$$

as claimed.

Lemma 5 Let g be homocyclic, say g is the product of t cycles of length m. Then

$$h_g = \sum_{\beta \vdash t} |K_\beta| m^{-|\beta|} \prod_i \left(\sum_{d \mid m} \mu(d) x_i^{m/d} \right)^{\beta_i}. $$

Proof: Let $n = m \cdot t$ and $C = C_{S_n}(g)$. Since

$$h_g = \sum_{a \in C} \lambda_{a}(g)X^{\sigma(a)},$$

we have to calculate the contribution of $a \in C$ to this sum. Since C is a semi-direct product of S_t and an abelian normal subgroup $N = \langle g_1, \ldots, g_t \rangle$, where $g = g_1 \cdot \ldots \cdot g_t$ is the cycle decomposition, every element $a \in C$ can be written as $a = a_0 \cdot g_1^{e_1} \cdot \ldots \cdot g_t^{e_t}$ with $a_0 \in S_t$. We consider first the case that a_0 is a long cycle, so a_0 has order t. Denote $A = \langle a \rangle$ and $D := \langle g, a \rangle$; so D is an abelian transitive subgroup of S_m. Let b be the order of a. Then clearly $t | b$; since $a^t = g^e$, where $e = \sum_i e_i$ and since the order of g^e is $d := m / \gcd(e, m)$, we find that $l = t \cdot d$. This is then the length of every orbit of A, so A has $m \cdot t / l = m / d$ orbits. The corresponding monomial is therefore $x_i^{m/d}$. To calculate the coefficient, note that $g^{m/d}$ and a^t generate the same subgroup (of order d), so $g^m = a^t$ for some u prime to d. Therefore $\lambda_{a}(g) = \varepsilon_i^{t_u} = \varepsilon_i^u$ is a primitive d-th root of unity.

Now take $a' = a_0 \cdot g_1^{e_1} \cdot \ldots \cdot g_t^{e_t}$ and let $e' = \sum_i e_i$. For any $0 \leq s < m$, there are m^{t-1} solutions (e'_1, \ldots, e'_t) for $e' \equiv s \mod(m)$ with $0 \leq e'_i < s$ for all i. If we collect those for which $\gcd(e', m) = m / d$ for some fixed divisor d of m, the monomial is always $x_i^{m/d}$ and each primitive d-th root of unity appears m^{t-1} times as a coefficient. By Lemma 3, we get $m^{t-1} \mu(d) x_i^{m/d}$ for fixed d and

$$\sum_{d \mid m} m^{t-1} \mu(d) x_i^{m/d} = m^{t-1} \sum_{d \mid m} \mu(d) x_i^{m/d}.$$
as contribution of \(a_0N \) to \(h_g \).

A general element \(a_0 \) of \(S_t \) will have several cycles, say \(\beta_i \) cycles of length \(i \) for some \(\beta \vdash t \). Then the above analysis can be done for each of these cycles, replacing \(t \) by \(i \). The contribution of \(a_0N \) to \(h_g \) is then

\[
\prod_i \left(m^{i-1} \sum_{d|m} \mu(d) x_i^{m/d} \right)^{\beta_i} = m^{(i-1)\beta_i} \prod_i \left(\sum_{d|m} \mu(d) x_i^{m/d} \right)^{\beta_i} = m^{t-|\beta|} \prod_i \left(\sum_{d|m} \mu(d) x_i^{m/d} \right)^{\beta_i} \]

Summing over all elements of \(S_t \) yields the result.

Combining the last two lemmas, we get

Theorem For \(g \in S_n \) of type \(\tau \), one has

\[
h_g = \prod_m \left[\sum_{\beta \vdash \tau_m} |K_\beta| m^{\tau_m-|\beta|} \prod_i \left(\sum_{d|m} \mu(d) x_i^{m/d} \right)^{\beta_i} \right].
\]

Proof: Clear.

Corollary 1

\[
\chi_t = \sum_{\sigma \vdash n \atop |\sigma| = t} \gamma_\sigma
\]

Proof: Again for \(g \) of type \(\tau \), we get by substitution

\[
h_g(x, \ldots, x) = \sum_{\sigma \vdash n} \gamma_\sigma(g)x^{|\sigma|} = \sum_{t=1}^n \left(\sum_{\sigma \vdash n \atop |\sigma| = t} \gamma_\sigma(g) \right) x^t.
\]

On the other hand, we get from the theorem and Lemma 2 that

\[
h_g(x, \ldots, x) = \prod_m \left[\sum_{\beta \vdash \tau_m} |K_\beta| m^{\tau_m-|\beta|} \prod_i \left(\sum_{d|m} \mu(d) x_i^{m/d} \right)^{\beta_i} \right]
\]

\[
= \prod_m \left[\sum_{\beta \vdash \tau_m} |K_\beta| m^{\tau_m-|\beta|} f_m(x)^{|\beta|} \right]
\]

\[
= \prod_m \left[\prod_{j=0}^{\tau_m-1} (f_m(x) + jm) \right]
\]

\[
= p_\tau(x) = \sum_{t=1}^n \chi_t(g)x^t.
\]
Now compare coefficients to get
\[\chi_t(g) = \sum_{|\sigma|=t} \gamma_\sigma(g) ; \]
this holds for every \(g \), hence the assertion.

Remark 3

(i) By the theorem, the character values of the \(\gamma_\sigma \)'s can be calculated in the polynomial ring \(\mathbb{Z}[x_1, \ldots, x_n] \). This is tedious, but purely mechanical work; note that the sizes of the conjugacy classes (the only information needed from the group) are given by a straightforward formula. For instance, let \(g \in S_8 \) be of type \(\tau = (2,3,0,0,0,0,0,0) \). For \(m = 1 \), there are two partitions of \(\tau_1 = 2 \), namely \((2,0)\) and \((0,1)\); the corresponding classes have both size 1, so the first factor in \(h_g \) is
\[1 \cdot 1^2 - 2 \cdot \left(\mu(1) x_1^{2/1} + \mu(2) x_2^{2/2} \right)^3 \]
\[+ 3 \cdot 2^3 - 2 \cdot \left(\mu(1) x_1^{2/1} + \mu(2) x_2^{2/2} \right)^1 \cdot \left(\mu(1) x_2^{2/2} + \mu(2) x_2^{2/2} \right)^1 \]
\[+ 2 \cdot 2^3 - 1 \cdot \left(\mu(1) x_3^{2/4} + \mu(2) x_3^{2/2} \right)^1 \]
\[= (x_1^2 - x_2)^3 + 6 (x_1^2 - x_2)(x_2^2 - x_4) + 8 (x_3^2 - x_6) \]
\[= x_1^6 - 3 x_1^2 x_2 + 9 x_1^2 x_2 - 6 x_2^2 x_4 - 7 x_3^2 + 6 x_2 x_4 + 8 x_3^2 - 8 x_6 . \]

All other \(\tau_m = 0 \), so the corresponding factors of \(h_g \) are 1. Therefore
\[h_g = (x_1^2 + x_2)(x_1^6 - 3 x_1^4 x_2 + 9 x_1^2 x_2^2 - 6 x_2^2 x_4 - 7 x_3^2 + 6 x_2 x_4 + 8 x_3^2 - 8 x_6) \]
\[= x_1^8 - 2 x_1^2 x_2^2 + 6 x_1^2 x_2^2 - 6 x_1^2 x_4 + 2 x_1^2 x_2^2 + 8 x_1^2 x_2^2 - 8 x_1^2 x_4 - 7 x_2^2 \]
\[+ 6 x_2 x_4 + 8 x_2 x_3^2 - 8 x_2 x_6 . \]

From this, we can read off the character values \(\gamma_\sigma(g) \); e.g. for \(\sigma = (0,4,0,0,0,0,0,0) \), we look at the coefficient of \(x_2^4 \) to find \(\gamma_\sigma(g) = -7 \).

(ii) Similarly (but much simpler), the values of \(\chi_t \) can be calculated in \(\mathbb{Z}[x] \).

(iii) There are as many \(\gamma_\sigma \)'s as there are irreducible characters, but they do not in general span the space of class functions. Here is a list giving — for a few small \(n \) — the class number \(k \) of \(S_n \) and the dimension \(d \) of the subspace spanned by the \(\gamma_\sigma \)'s:

\[
\begin{array}{ccccccccccccc}
 n & 1 & 2 & 3 & 4 & 5 & 10 & 15 & 20 & 25 & 30 \\
 k & 1 & 2 & 3 & 5 & 7 & 42 & 176 & 627 & 1958 & 5604 \\
 d & 1 & 2 & 3 & 4 & 6 & 38 & 161 & 577 & 1816 & 5245 \\
\end{array}
\]

From these meager data, it looks as if the quotient \(d/k \) might tend to 1 for increasing \(n \), but I have not even an argument for the existence of a limit. As is clear from the theory, the algorithm is reasonably fast, considering that some of the character values are quite large; in any case, it takes longer to calculate the dimension of the subspace than to compute the monomial characters.
(iv) There is a symmetry for the values of γ_σ: If $g_\tau \in K_\tau$ and $g_\sigma \in K_\sigma$, then

$$|K_\tau|\gamma_\sigma(g_\tau) = |K_\sigma|\gamma_\sigma(g_\sigma).$$

To see this, note that

$$|K_\tau|\gamma_\sigma(g_\tau) = \gamma_\sigma(\hat{K}_\tau) = \sum_{a \in K_\sigma \atop b \in K_\tau \atop ab = ba} \lambda_a(b).$$

While it is not quite true that $\lambda_a(b) = \lambda_b(a)$, both are products of the same number of algebraically conjugate roots of unity. This holds in general, i.e. for an arbitrary finite group G on any finite G-set X. Here is the argument:

Denote $A = \langle a \rangle$, $B = \langle b \rangle$ and $C = \langle a, b \rangle$ for commuting elements a, b and fix an orbit xC. If $|xC| = t$, $|xA| = r$ and $|xB| = s$ then all orbits of A on xC have length r (since C is commutative). Therefore there are t/r such A-orbits on xC, transitively permuted by B. Hence $b^{t/r}$ is the smallest power of b fixing xA, say $xb^{t/r} = xa^d$, so the contribution of xC to $\lambda_a(b)$ is the factor ε_r^d. Similarly, the contribution of xC to $\lambda_b(a)$ is the factor ε_s^e, where $xa^{t/s} = xb^e$.

The last equation shows that b^e fixes xA, so e is a multiple of t/r, say $e = (t/r)u$ and similarly $d = (t/s)v$. Setting $\delta = \varepsilon_t^{(t/r)(t/s)} = \varepsilon_r^{t/s}$, it follows that $\varepsilon_r^d = \varepsilon^v \in <\delta>$, hence $<\varepsilon_r^d> \leq <\delta>$. In fact, equality holds, since from

$$xa^{t/s} = xb^e = xb^{(t/r)u} = xa^{du},$$

one concludes that $t/s \equiv du \mod r$, hence $\delta = \varepsilon_r^{t/s} = \varepsilon_r^{du} \in <\varepsilon_r^d>$. Similarly, δ and ε_s^e are algebraically conjugate.

For $G = S_n$, one finds by summing (essentially as in the proof of Lemma 5) separately for the orbits of $\langle a, b \rangle$, that the contributions of each such orbit to $\gamma_\sigma(\hat{K}_\tau)$ and to $\gamma_\tau(\hat{K}_\sigma)$ are equal.

(v) This symmetry can be used as a check or as a shortcut in calculations. For instance, let $\tau = (0, \ldots, 0, 1)$ be the partition corresponding to the long cycles. From the theorem, we get then simply

$$h_\tau = \sum_{d|n} \mu(d) x_d^{n/d},$$

so

$$\gamma_\sigma(g_\tau) = \begin{cases}
\mu(d) & \text{if } \sigma \text{ is homocyclic with cycle length } d \\
0 & \text{otherwise}.
\end{cases}$$

Therefore

$$\gamma_\tau(g_\sigma) = \frac{|K_\tau|}{|K_\sigma|} \gamma_\sigma(g_\tau)$$

$$= \begin{cases}
\mu(d) & \text{if } \sigma \text{ is homocyclic with cycle length } d \\
0 & \text{otherwise}.
\end{cases}$$

$$= \begin{cases}
\mu(d) d^{m-1}(m-1)! & \text{if } \sigma \text{ is homocyclic with } m \text{ cycles of length } d \\
0 & \text{otherwise}.
\end{cases}$$

(It is easy to check this directly from the definition of γ_τ.)
Here is a more theoretical application: Let π_z be the class function defined by $\pi_z(\sigma) = z^{\sigma}$, where $z \in \mathbb{Z}$. Using the symmetry $|K_\tau| \gamma_\sigma(\tau) = |K_\sigma| \gamma_\tau(\sigma)$, one calculates the inner product

$$(\gamma_\tau, \pi_z) = \frac{1}{n!} \sum_\sigma |K_\sigma| \gamma_\tau(\sigma) z^{\sigma} = \frac{1}{n!} \sum_\sigma |K_\tau| \gamma_\sigma(\tau) z^{\sigma} = \frac{1}{n!} \sum_{t=1}^n \left(\sum_{|\sigma| = t} \gamma_\sigma(\tau) \right) z^t,$$

hence by Corollary 1

$$\frac{1}{|C_\tau|} \sum_t \chi_t(\tau) z^t = \frac{1}{|C_\tau|} p_\tau(z),$$

where $|C_\tau|$ is the order of the centralizer in S_n of an element of type τ. In particular, $|C_\tau|$ divides $p_\tau(z)$ for every $z \in \mathbb{Z}$, since π_z is a generalized character.

Corollary 2 Let $n > 1$; denote $l = \left[\frac{n}{2} \right]$,

$$\gamma_e = \sum_{|\sigma| \equiv 0 \text{ mod}(2)} \gamma_\sigma \quad \text{and} \quad \gamma_o = \sum_{|\sigma| \equiv 1 \text{ mod}(2)} \gamma_\sigma.$$

Then

(i) $$\gamma_e(1) = \gamma_o(1) = \frac{n!}{2}$$

(ii) $$\gamma_e(g) = -\gamma_o(g) = (-1)^n 2^{l-1} l!$$

if g is a 'long involution', i.e. g has l orbits of length 2.

(iii) $$\gamma_e(g) = \gamma_o(g) = 0$$

for all other $g \in S_n$.

Proof: Since

$$f_m(1) = \begin{cases} 1 & \text{if } m = 1 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad f_m(-1) = \begin{cases} -1 & \text{if } m = 1 \\ 2 & \text{if } m = 2 \\ 0 & \text{otherwise} \end{cases},$$

we can – for g of type τ – calculate that

$$\gamma_e(g) + \gamma_o(g) = \sum_{|\sigma| \equiv n} \gamma_\sigma(g) \quad = \sum_k \chi_k(g) \quad \text{by Cor.1} \quad = p_\tau(1) \quad = \prod_{m=1}^n \prod_{j=0}^{\tau_m-1} (f_m(1) + jm) \quad = \begin{cases} n! & \text{if } \tau = (n, 0, \ldots, 0) \\ 0 & \text{otherwise} \end{cases},$$

9
The assertions follow.

Remark 4 Since $\sum_\sigma \gamma_\sigma = \rho$, the sign character is a constituent (with multiplicity 1) of exactly one γ_σ; Frobenius reciprocity shows that this σ is the type of the long involutions. Alternatively, one can deduce this from Remark 3(vi), since $(-1^n)\text{sign} = \pi_{-1}$.

Remark 5 The argument used in the proof of Corollary 2 can be generalized. For instance, for an odd prime r, one has $f_r(-2) = (-2)^r - (-2) = -(2^r - 2)$, so $f_r(-2) + jr = 0$ for $j = (2^r - 2)/r$. But if $\tau_r > j$, then $f_r(x) + jr$ is a factor of $p_r(x)$. For such τ then

$$0 = p_r(-2) = \sum_t \chi_t(\tau)(-2)^t = \sum_{\sigma \vdash n} \gamma_\sigma(\tau)(-2)^{|\sigma|} .$$

It follows from Remark 3(vi) again that $(\gamma_\tau, \pi_{-2}) = 0$, still under the assumption that $\tau_r > (2^r - 2)/r$ for some odd prime r. Since π_{-2} is either a character or the negative of a character, this means that π_{-2} and γ_τ have no common constituents. (Instead of -2, any other negative integer z will do; of course, the condition on τ depends on z.)

Remark 6 There is a combinatorial interpretation of the polynomials p_r, hence of the characters χ_k: Let $F = F_q$ be the field with q elements, and let E be a field extension with $|E : F| = m$. Then the map $d \mapsto F(d)$, where $|F(d)| = q^d$, is a bijection between the divisors d of m and the intermediate fields $F \leq F(d) \leq E$. Denote $A_d := \{a \in E \mid F[a] = F(d)\}$; then $q^m = |E| = \sum_{d|m} |A_d|$. Möbius inversion yields

$$|A_m| = \sum_{d|m} \mu(m/d) q^d = f_m(q) .$$

Now every $a \in A_m$ has minimal polynomial of degree m and each of these has m different zeros, all in A_m, so the number of monic irreducible polynomial of degree m in $F[x]$ is

$$f_m^*(q) := \frac{1}{m} f_m(q) .$$

Since every polynomial is (essentially uniquely) a product of irreducibles, we can define the type τ of a polynomial h by letting τ_m be the number of irreducible factors of degree
\(m \) in \(h \); so \(\tau \vdash \deg(h) \). Of course, an irreducible factor may occur with a multiplicity, so the number of monic polynomials over \(F \) of a given type \(\tau \vdash n \) is

\[
p^*_\tau(q) = \prod_{m=1}^{n} \left(\frac{f^*_m(q) + \tau_m - 1}{\tau_m} \right).
\]

Multiplication of \(p^*_\tau \) by a suitable scalar gives a monic polynomial, more precisely \(|C_\tau| p^*_\tau = p_\tau\); recall that the order of the centralizer \(|C_\tau| = \prod m^{\tau_m} \tau_m!\). Using Remark 3(vi) once again, we conclude that the number of polynomials of type \(\tau \) (over \(F_q \)) equals the inner product \((\gamma_\tau, \pi_q)\).

References

