On Natural Monomial Characters of S_n

Reinhard Knörr*

Institut für Mathematik, Universität Rostock

February 24, 2005

Abstract

A class of natural linear characters for the centralizers of elements in the symmetric group is introduced. The character values of the corresponding monomial characters are calculated. They have a surprising combinatorial interpretation.

Key Words: group representation, ordinary character theory, symmetric groups, finite fields

Mathematics Subject Classification: 20C30; 20C15; 20C40

For any $0 < m \in \mathbb{N}$, let

$$f_m(x) = \sum_{d|m} \mu(d) x^{m/d}$$

where μ is the Möbius function, so f_m is a monic polynomial of degree m over \mathbb{Z} . For $\tau = (\tau_1, \ldots, \tau_n) \in \mathbb{N}_0^n$, let

$$p_{\tau}(x) = \prod_{m=1}^{n} \prod_{j=0}^{\tau_m - 1} (f_m(x) + jm) ;$$

so if τ is a partition of n, i.e. $n = \sum_{m} m \tau_{m}$, then p_{τ} has degree n. Note that for $n \neq 0$ (which we assume throughout), the constant term of p_{τ} is 0, since this is true for every

^{*}Correspondence: Reinhard Knörr, Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany; E-mail: reinhard.knoerr@uni-rostock.de

 f_m . We expand

$$p_{\tau}(x) = \sum_{t=1}^{n} \chi_t(\tau) x^t ,$$

so this produces class functions χ_1, \ldots, χ_n of the symmetric group S_n , where of course $\chi_t(g) = \chi_t(\tau)$ if $g \in S_n$ is of type τ , i.e. g has exactly τ_i orbits of length i (in its natural action on $\underline{n} = \{1, \ldots, n\}$). The aim of this note is to show that the χ_t 's are characters of S_n . More precisely, Corollary 1 states that the χ_t 's are sums of certain canonical monomial characters.

Notation

(i) For $k \in \mathbb{N}$, let $S_{n,k} = \{g \in S_n \mid g \text{ has exactly } k \text{ orbits on } \underline{n} \}$, so $S_{n,k}$ is a union of conjugacy classes K_β of S_n , namely the ones of type β with $k = |\beta| := \sum_i \beta_i$. Clearly, $S_{n,k} = \emptyset$ if k > n; also, $S_{n,0} = \emptyset$ (since n > 0).

(ii) For $m \in \mathbb{N}$, let

$$\varepsilon_m = e^{\frac{2\pi i}{m}} \in \mathbb{C}$$

so ε_m is a primitive *m*-th root of unity. Note that $(\varepsilon_m)^d = \varepsilon_{m/d}$ for every d|m.

$Lemma \ 1$

$$\prod_{k=0}^{n-1} (x+k) = \sum_{k=0}^{n} |S_{n,k}| x^k$$

Proof: Given an element $g \in S_{n,k-1}$, we define $\tilde{g} \in S_{n+1,k}$ by $\tilde{g}(n+1) = n+1$ and $\tilde{g} = g$ on \underline{n} . Given $g \in S_{n,k}$ and $1 \leq i \leq n$, we define $\tilde{g}_i \in S_{n+1,k}$ by

$$\widetilde{g}_i(j) = \begin{cases} n+1 & \text{if } j=i \\ g(i) & \text{if } j=n+1 \\ g(j) & \text{otherwise.} \end{cases}$$

Then \sim is a bijection between $S_{n,k-1} \cup S_{n,k} \times \underline{n}$ and $S_{n+1,k}$; in particular $|S_{n+1,k}| = |S_{n,k-1}| + |S_{n,k}|n$. From this, the assertion follows easily by induction.

Remark 1 For any $0 < m \in \mathbb{N}$, there is a natural action of S_n on the set $\underline{m}^{\underline{n}}$ of all maps $\underline{n} \to \underline{m}$. Such a map f is fixed by $g \in S_n$ if and only if f is constant on the orbits of g, so the number of fixed points of g is $m^{b(g)}$, where $b: S_n \to \mathbb{N}$ counts the orbits. Calculating the multiplicity of the trivial character in the permutation character π_m gives

$$(\pi_m, \mathbf{1}) = \frac{1}{n!} \sum_{g \in S_n} \pi_m(g) = \frac{1}{n!} \sum_t |S_{n,t}| m^t = \frac{1}{n!} \prod_{k=0}^{n-1} (m+k) = \binom{n+m-1}{n},$$

where the third equality follows from the lemma. By Burnside's lemma ([1], Corollary 5.15), this gives the number of orbits of S_n on $\underline{m}^{\underline{n}}$, hence the number of choices with repetitions of n objects from m. So get a well known formula from basic combinatorics. A similar argument allows us to calculate the multiplicity of the sign character sgn: using that $\pi_{-m} = (-1)^n sgn \cdot \pi_m$, one gets

$$(\pi_m, sgn) = \binom{m}{n}$$

Lemma 2

$$\prod_{k=0}^{t-1} (f_m(x) + km) = \sum_{\beta \vdash t} |K_\beta| \, m^{t-|\beta|} f_m(x)^{|\beta|}$$

Proof:

$$\prod_{k=0}^{t-1} (f_m(x) + km) = m^t \prod_{k=0}^{t-1} (\frac{1}{m} f_m(x) + k)$$

= $m^t \sum_{k=0}^t |S_{t,k}| (\frac{1}{m} f_m(x))^k$ (using Lemma 1)
= $\sum_{k=0}^t |S_{t,k}| m^{t-k} f_m(x)^k$
= $\sum_{\beta \vdash t} |K_\beta| m^{t-|\beta|} f_m(x)^{|\beta|}$.

Lemma 3

$$\mu(m) = \sum_{\substack{\varepsilon \text{ primitive} \\ m\text{-th root} \\ \text{of unity}}} \varepsilon$$

Proof:

$$\sum_{d|m} \sum_{\substack{\varepsilon \text{ primitive} \\ d-\text{th root} \\ \text{of unity}}} \varepsilon = \sum_{\substack{\varepsilon \text{ m-th} \\ \text{root of} \\ \text{unity}}} \varepsilon = \begin{cases} 1 & \text{if } m = 1 \\ 0 & \text{otherwise} \end{cases} = \sum_{d|m} \mu(d) ,$$

hence the assertion.

Definition, Remark 2

(i) Let G be a finite group acting on the finite set X. Fix some conjugacy class K of G and consider the set

$$M = \{ (a, \mathcal{B}) \mid a \in K, \ \mathcal{B} \text{ an orbit of } on X \} .$$

It is clear that M is a G-set by $(a, \mathcal{B})g = (a^g, \mathcal{B}g)$ and that $\alpha : M \ni (a, \mathcal{B}) \mapsto a \in K$ is a G-map. For every point $(a, \mathcal{B}) \in M$, we define a linear character $(a, \mathcal{B})\theta$ of the stabilizer $G_{(a,\mathcal{B})}$ by

$$(a, \mathcal{B})\theta(g) = \varepsilon_{|\mathcal{B}|}^{j}$$
 if $xg = xa^{j}$ for some $x \in \mathcal{B}$

Since $g \in G_{(a,\mathcal{B})}$ commutes with a, the choice of x is irrelevant. Also j is unique modulo the length $|\mathcal{B}|$ of the orbit. Therefore $(a, \mathcal{B})\theta$ is well-defined and clearly multiplicative. Obviously $(a, \mathcal{B})\theta^g = (a^g, \mathcal{B}g)\theta$, so $\theta : (a, \mathcal{B}) \mapsto (a, \mathcal{B})\theta$ is an inductible map; it follows that $\gamma = \theta^{\alpha}$ is a character of G, in fact a monomial character induced from a linear character λ_a of $C_G(a)$ for $a \in K$ (compare [3] for the notation and simple facts concerning inductible maps and their induction). This character depends on X and K, so $\gamma = \gamma(X, K)$.

(ii) In the following, $G = S_n$ and $X = \underline{n}$, so it remains to specify the conjugacy class. As the classes are naturally labelled by the partitions σ of n, we use the partitions also as labels for the γ 's and write $\gamma_{\sigma} := \gamma(\underline{n}, K_{\sigma})$.

(iii) There is an alternative – and more familiar – description of the linear character λ_a of $C_{S_n}(a)$ from which γ_{σ} is induced. As is well known, corresponding to the decomposition of a (of type σ) in products of cycles of equal length, there is a direct product decomposition of $C_{S_n}(a)$. The factor $C^{(m)}$ corresponding to the cycles a_1, \ldots, a_s (say) of length m in this direct product is in turn a semi-direct product of an abelian normal subgroup $A = \langle a_1, \ldots, a_s \rangle \cong C_m \times \cdots \times C_m$ with a symmetric group S_s which acts by permuting the cycles. Therefore, there are m linear characters of A which are stable under S_s , hence extendable to $C^{(m)}$, so we can choose a linear character λ_m of $C^{(m)}$ which has order m and is trivial on S_s . This character is determined only up to algebraic conjugation, but we can avoid ambiguity by specifying that $\lambda_m(a_i) = \varepsilon_m$.

The product of these characters λ_m gives a character λ_a of $C_{S_n}(a)$. In fact, $\lambda_a = \vartheta_a^{\alpha}$, as is easily seen by calculating the values of these two linear characters on a cycle of a and on an element only permuting the cycles.

Incidentally, the choice of λ_m is irrelevant for $\gamma_{\sigma} = \lambda_a^{S_n}$: induce first to the Young subgroup $S_{1\sigma_1} \times \ldots \times S_{n\sigma_n}$ and use that all characters of a symmetric group are rational.

(iv) To summarize, for every $\sigma \vdash n$, we have a monomial character γ_{σ} of S_n with values given by

$$\gamma_{\sigma}(g) = \sum_{\substack{a \in K_{\sigma} \\ ga = ag}} \lambda_a(g) ,$$

where

$$\lambda_a(g) = \prod_i (a, \mathcal{B}_i) \theta(g^{e_i})$$

for a set \mathcal{B}_i of representatives of the orbits of $\langle g \rangle$ on the orbits of $\langle a \rangle$ and $e_i = |\langle g \rangle : \langle g \rangle_{\mathcal{B}_i} |$.

(v) For bookkeeping, it is useful to introduce $X^{\sigma} := \prod_{i=1}^{n} x_i^{\sigma_i}$, a monomial in *n* variables of total degree $|\sigma|$, and

$$h_g(x_1, \dots, x_n) = \sum_{\sigma \vdash n} \gamma_\sigma(g) X^\sigma \in \mathbb{Z}[x_1, \dots, x_n]$$

a polynomial that collects the character values of the γ_{σ} 's at an element $g \in S_n$; of course, $h_g = h_{\tau}$ depends only on the conjugacy class K_{τ} of g.

(vi) It is clear that

$$h_g = \sum_{\sigma \vdash n} \gamma_{\sigma}(g) X^{\sigma} = \sum_{\sigma \vdash n} \sum_{\substack{a \in K_{\sigma} \\ ag = ga}} \lambda_a(g) X^{\sigma} = \sum_{a \in C} \lambda_a(g) X^{\sigma(a)} \quad ,$$

where $C = C_{S_n}(g)$ and $\sigma(a)$ is the type of a.

Lemma 4 Let g_m be the product of all cycles of length m of $g \in S_n$, viewed as an element of $S_{m\tau_m}$, where τ is the type of g. Then

$$h_g = \prod_m h_{g_m}$$

Proof: Let $T_m \subseteq \underline{n}$ be the union of all orbits of length m of g and $H_m = S_{T_m}$, the symmetric group on T_m ; also denote $C_m = C_{H_m}(g_m)$. Then

$$h_{g_m} = \sum_{a_m \in C_m} \lambda_{a_m}(g_m) X^{\sigma(a_m)}$$

 \mathbf{SO}

$$\prod_{m} h_{g_m} = \sum_{\substack{(a_1,\dots,a_n)\\a_m \in C_m}} \lambda_{a_1}(g_1) \dots \lambda_{a_n}(g_n) X^{\sigma(a_1)} \dots X^{\sigma(a_n)}$$

Now $C_1 \times \cdots \times C_n \ni (a_1, \ldots, a_n) \mapsto a := a_1 \cdots a_n$ is a bijection $C_1 \times \cdots \times C_n \to C := C_{S_n}(g)$; clearly, $\sigma(a) = \sigma(a_1) + \cdots + \sigma(a_n)$ and by definition $\lambda_a(g) = \lambda_{a_1}(g_1) \ldots \lambda_{a_n}(g_n)$. Therefore, the sum on the right simplifies to

$$\sum_{a \in C} \lambda_a(g) X^{\sigma(a)} = h_g$$

as claimed.

Lemma 5 Let g be homocyclic, say g is the product of t cycles of length m. Then

$$h_g = \sum_{\beta \vdash t} |K_\beta| \, m^{t-|\beta|} \prod_i \left(\sum_{d \mid m} \mu(d) \, x_{i \cdot d}^{m/d} \right)^{\beta_i}$$

Proof: Let $n = m \cdot t$ and $C = C_{S_n}(g)$. Since

$$h_g = \sum_{a \in C} \lambda_a(g) X^{\sigma(a)} \quad ,$$

we have to calculate the contribution of $a \in C$ to this sum.

Since C is a semi-direct product of S_t and an abelian normal subgroup $N = \langle g_1, \ldots, g_t \rangle$, where $g = g_1 \cdot \ldots \cdot g_t$ is the cycle decomposition, every element $a \in C$ can be written as $a = a_0 \cdot g_1^{e_1} \cdot \ldots \cdot g_t^{e_t}$ with $a_0 \in S_t$. We consider first the case that a_0 is a long cycle, so a_0 has order t. Denote $A = \langle a \rangle$ and $D := \langle g, a \rangle$; so D is an abelian transitive subgroup of S_n . Let l be the order of a. Then clearly t|l; since $a^t = g^e$, where $e = \sum_i e_i$ and since the order of g^e is $d := m/\gcd(e, m)$, we find that $l = t \cdot d$. This is then the length of every orbit of A, so A has $m \cdot t/l = m/d$ orbits. The corresponding monomial is therefore $x_{t\cdot d}^{m/d}$. To calculate the coefficient, note that $g^{m/d}$ and a^t generate the same subgroup (of order d), so $g^{m/d} = a^{t \cdot u}$ for some u prime to d. Therefore $\lambda_a(g) = \varepsilon_l^{t \cdot u} = \varepsilon_d^u$ is a primitive d-th root of unity. Now take $a' = a_0 \cdot g_1^{e'_1} \cdot \ldots \cdot g_t^{e'_t}$ and let $e' = \sum_i e'_i$. For any $0 \leq s < m$, there are m^{t-1} solutions $(e'_1, \ldots e'_t)$ for $e' \equiv s \mod(m)$ with $0 \leq e'_i < m$ for all i. If we collect those for which $\gcd(e', m) = m/d$ for some fixed divisor d of m, the monomial is always $x_{t\cdot d}^{m/d}$ and each primitive d-th root of unity appears m^{t-1} times as a coefficient. By Lemma 3, we get $m^{t-1}\mu(d) x_{t\cdot d}^{m/d}$ for fixed d and

$$\sum_{d|m} m^{t-1} \mu(d) \, x_{t \cdot d}^{m/d} = m^{t-1} \sum_{d|m} \mu(d) \, x_{t \cdot d}^{m/d}$$

as contribution of $a_0 N$ to h_g .

A general element a_0 of S_t will have several cycles, say β_i cycles of length *i* for some $\beta \vdash t$. Then the above analysis can be done for each of these cycles, replacing *t* by *i*. The contribution of a_0N to h_g is then

$$\begin{split} \prod_{i} \left(m^{i-1} \sum_{d|m} \mu(d) \, x_{i\cdot d}^{m/d} \right)^{\beta_i} &= m^{\sum_{i} (i-1)\beta_i} \prod_{i} \left(\sum_{d|m} \mu(d) \, x_{i\cdot d}^{m/d} \right)^{\beta_i} \\ &= m^{t-|\beta|} \prod_{i} \left(\sum_{d|m} \mu(d) \, x_{i\cdot d}^{m/d} \right)^{\beta_i} \, . \end{split}$$

Summing over all elements of S_t yields the result.

Combining the last two lemmas, we get

Theorem For $g \in S_n$ of type τ , one has

$$h_g = \prod_m \left[\sum_{\beta \vdash \tau_m} |K_\beta| \, m^{\tau_m - |\beta|} \prod_i \left(\sum_{d \mid m} \mu(d) \, x_{i \cdot d}^{m/d} \right)^{\beta_i} \right] \quad .$$

Proof: Clear.

Corollary 1

$$\chi_t = \sum_{\substack{\sigma \vdash n \\ |\sigma| = t}} \gamma_\sigma$$

Proof: Again for g of type τ , we get by substitution

$$h_g(x,\ldots,x) = \sum_{\sigma \vdash n} \gamma_\sigma(g) x^{|\sigma|} = \sum_{t=1}^n \left(\sum_{\substack{\sigma \vdash n \\ |\sigma| = t}} \gamma_\sigma(g) \right) x^t \quad .$$

On the other hand, we get from the theorem and Lemma 2 that

$$h_g(x, \dots, x) = \prod_m \left[\sum_{\beta \vdash \tau_m} |K_\beta| \, m^{\tau_m - |\beta|} \prod_i \left(\sum_{d \mid m} \mu(d) \, x^{m/d} \right)^{\beta_i} \right]$$
$$= \prod_m \left[\sum_{\beta \vdash \tau_m} |K_\beta| \, m^{\tau_m - |\beta|} f_m(x)^{|\beta|} \right]$$
$$= \prod_m \prod_{j=0}^{\tau_m - 1} (f_m(x) + jm)$$
$$= p_\tau(x) = \sum_{t=1}^n \chi_t(g) x^t .$$

Now compare coefficients to get

$$\chi_t(g) = \sum_{\substack{\sigma \vdash n \\ |\sigma| = t}} \gamma_\sigma(g) \;\; ;$$

this holds for every g, hence the assertion.

Remark 3

(i) By the theorem, the character values of the γ_{σ} 's can be calculated in the polynomial ring $\mathbb{Z}[x_1, \ldots, x_n]$. This is tedious, but purely mechanical work; note that the sizes of the conjugacy classes (the only information needed from the group) are given by a straightforward formula. For instance, let $g \in S_8$ be of type $\tau = (2, 3, 0, 0, 0, 0, 0, 0)$. For m = 1, there are two partitions of $\tau_1 = 2$, namely (2, 0) and (0, 1); the corresponding classes have both size 1, so the first factor in h_g is

$$1 \cdot 1^{2-2} \cdot \left(\mu(1) x_{1 \cdot 1}^{1/1}\right)^2 + 1 \cdot 1^{2-1} \cdot \left(\mu(1) x_{2 \cdot 1}^{1/1}\right)^1 = x_1^2 + x_2$$

For m = 2, there are three partitions of $\tau_2 = 3$, namely (3, 0, 0), (1, 1, 0) and (0, 0, 1); the corresponding classes have size 1, 3 and 2 respectively, so the second factor in h_g is

$$\begin{split} 1 \cdot 2^{3-3} \cdot \left(\mu(1) \, x_{1\cdot 1}^{2/1} + \mu(2) \, x_{1\cdot 2}^{2/2}\right)^3 \\ &+ 3 \cdot 2^{3-2} \cdot \left(\mu(1) \, x_{1\cdot 1}^{2/1} + \mu(2) \, x_{1\cdot 2}^{2/2}\right)^1 \cdot \left(\mu(1) \, x_{2\cdot 1}^{2/1} + \mu(2) \, x_{2\cdot 2}^{2/2}\right)^1 \\ &+ 2 \cdot 2^{3-1} \cdot \left(\mu(1) \, x_{3\cdot 1}^{2/1} + \mu(2) \, x_{3\cdot 2}^{2/2}\right)^1 \\ &= (x_1^2 - x_2)^3 + 6 \, (x_1^2 - x_2)(x_2^2 - x_4) + 8 \, (x_3^2 - x_6) \\ &= x_1^6 - 3 \, x_1^4 x_2 + 9 \, x_1^2 x_2^2 - 6 \, x_1^2 x_4 - 7 \, x_2^3 + 6 \, x_2 x_4 + 8 \, x_3^2 - 8 \, x_6 \end{split}$$

All other $\tau_m = 0$, so the corresponding factors of h_g are 1. Therefore

$$h_g = (x_1^2 + x_2)(x_1^6 - 3x_1^4x_2 + 9x_1^2x_2^2 - 6x_1^2x_4 - 7x_2^3 + 6x_2x_4 + 8x_3^2 - 8x_6)$$

= $x_1^8 - 2x_1^6x_2 + 6x_1^4x_2^2 - 6x_1^4x_4 + 2x_1^2x_2^3 + 8x_1^2x_3^2 - 8x_1^2x_6 - 7x_2^4$
 $+ 6x_2^2x_4 + 8x_2x_3^2 - 8x_2x_6$.

From this, we can read off the character values $\gamma_{\sigma}(g)$; e.g. for $\sigma = (0, 4, 0, 0, 0, 0, 0, 0)$, we look at the coefficient of x_2^4 to find $\gamma_{\sigma}(g) = -7$.

- (ii) Similarly (but much simpler), the values of χ_t can be calculated in $\mathbb{Z}[x]$.
- (iii) There are as many γ_{σ} 's as there are irreducible characters, but they do not in general span the space of class functions. Here is a list giving for a few small n the class number k of S_n and the dimension d of the subspace spanned by the γ_{σ} 's :

n	1	2	3	4	5	10	15	20	25	30
k	1	2	3	5	7	42	176	627	1958	5604
d	1	2	3	4	6	38	161	577	1816	5245

From these meager data, it looks as if the quotient d/k might tend to 1 for increasing n, but I have not even an argument for the existence of a limit. As is clear from the theory, the algorithm is reasonably fast, considering that some of the character values are quite large; in any case, it takes longer to calculate the dimension of the subspace than to compute the monomial characters.

(iv) There is a symmetry for the values of γ_{σ} : If $g_{\tau} \in K_{\tau}$ and $g_{\sigma} \in K_{\sigma}$, then

$$|K_{\tau}|\gamma_{\sigma}(g_{\tau}) = |K_{\sigma}|\gamma_{\tau}(g_{\sigma}) \quad .$$

To see this, note that

$$|K_{\tau}|\gamma_{\sigma}(g_{\tau}) = \gamma_{\sigma}(\widehat{K}_{\tau}) = \sum_{\substack{a \in K_{\sigma} \\ b \in K_{\tau} \\ ab = ba}} \lambda_{a}(b)$$

While it is not quite true that $\lambda_a(b) = \lambda_b(a)$, both are products of the same number of algebraically conjugate roots of unity. This holds in general, i.e. for an arbitrary finite group G on any finite G-set X. Here is the argument:

Denote $A = \langle a \rangle$, $B = \langle b \rangle$ and $C = \langle a, b \rangle$ for commuting elements a, b and fix an orbit xC. If |xC| = t, |xA| = r and |xB| = s then all orbits of A on xC have length r (since C is commutative). Therefore there are t/r such A-orbits on xC, transitively permuted by B. Hence $b^{t/r}$ is the smallest power of b fixing xA, say $xb^{t/r} = xa^d$, so the contribution of xC to $\lambda_a(b)$ is the factor ε_r^d . Similarly, the contribution of xC to $\lambda_b(a)$ is the factor ε_s^e , where $xa^{t/s} = xb^e$.

The last equation shows that b^e fixes xA, so e is a multiple of t/r, say e = (t/r)u and similarly d = (t/s)v. Setting $\delta = \varepsilon_t^{(t/r)(t/s)} = \varepsilon_r^{t/s}$, it follows that $\varepsilon_r^d = \delta^v \in \langle \delta \rangle$, hence $\langle \varepsilon_r^d \rangle \leq \langle \delta \rangle$. In fact, equality holds, since from

$$xa^{t/s} = xb^e = xb^{(t/r)u} = xa^{du}$$

one concludes that $t/s \equiv du \mod r$, hence $\delta = \varepsilon_r^{t/s} = \varepsilon_r^{du} \in <\varepsilon_r^d >$. Similarly, δ and ε_s^e are algebraically conjugate.

For $G = S_n$, one finds by summing (essentially as in the proof of Lemma 5) separately for the orbits of $\langle a, b \rangle$, that the contributions of each such orbit to $\gamma_{\sigma}(\hat{K}_{\tau})$ and to $\gamma_{\tau}(\hat{K}_{\sigma})$ are equal.

(v) This symmetry can be used as a check or as a shortcut in calculations. For instance, let $\tau = (0, \ldots, 0, 1)$ be the partition corresponding to the long cycles. From the theorem, we get then simply

$$h_{\tau} = \sum_{d|n} \mu(d) \, x_d^{n/d} \quad ,$$

 \mathbf{SO}

$$\gamma_{\sigma}(g_{\tau}) = \begin{cases} \mu(d) & \text{if } \sigma \text{ is homocyclic with cycle length } d \\ 0 & \text{otherwise} \end{cases}.$$

Therefore

$$\begin{aligned} \gamma_{\tau}(g_{\sigma}) &= \frac{|K_{\tau}|}{|K_{\sigma}|} \gamma_{\sigma}(g_{\tau}) \\ &= \begin{cases} \mu(d) \frac{|K_{\tau}|}{|K_{\sigma}|} & \text{if } \sigma \text{ is homocyclic with cycle length } d \\ 0 & \text{otherwise} \end{cases} \\ &= \begin{cases} \mu(d) d^{m-1}(m-1)! & \text{if } \sigma \text{ is homocyclic with } m \text{ cycles of length } d \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

(It is easy to check this directly from the definition of γ_{τ} .)

(vi) Here is a more theoretical application: Let π_z be the class function defined by $\pi_z(\sigma) = z^{|\sigma|}$, where $z \in \mathbb{Z}$. Using the symmetry $|K_\tau|\gamma_\sigma(\tau) = |K_\sigma|\gamma_\tau(\sigma)$, one calculates the inner product

$$(\gamma_{\tau}, \pi_z) = \frac{1}{n!} \sum_{\sigma} |K_{\sigma}| \gamma_{\tau}(\sigma) z^{|\sigma|} = \frac{1}{n!} \sum_{\sigma} |K_{\tau}| \gamma_{\sigma}(\tau) z^{|\sigma|} = \frac{|K_{\tau}|}{n!} \sum_{t=1}^n \left(\sum_{\substack{\sigma \vdash n \\ |\sigma| = t}} \gamma_{\sigma}(\tau) \right) z^t \quad ,$$

hence by Corollary 1

$$(\gamma_{\tau}, \pi_z) = \frac{1}{|C_{\tau}|} \sum_t \chi_t(\tau) z^t = \frac{1}{|C_{\tau}|} p_{\tau}(z) ,$$

where $|C_{\tau}|$ is the order of the centralizer in S_n of an element of type τ . In particular, $|C_{\tau}|$ divides $p_{\tau}(z)$ for every $z \in \mathbb{Z}$, since π_z is a generalized character.

Corollary 2 Let n > 1; denote $l = \left[\frac{n}{2}\right]$,

$$\gamma_e = \sum_{\substack{\sigma \vdash n \\ |\sigma| \equiv 0 \mod(2)}} \gamma_{\sigma} \text{ and } \gamma_o = \sum_{\substack{\sigma \vdash n \\ |\sigma| \equiv 1 \mod(2)}} \gamma_{\sigma}.$$

Then

(i)

$$\gamma_e(1) = \gamma_o(1) = \frac{n!}{2}$$

(ii)

$$\gamma_e(g) = -\gamma_o(g) = (-1)^n \, 2^{l-1} \, l!$$

if g is a 'long involution', i.e. g has l orbits of length 2.

(iii)

$$\gamma_e(g) = \gamma_o(g) = 0$$

for all other $g \in S_n$.

Proof: Since

$$f_m(1) = \begin{cases} 1 & \text{if } m = 1 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad f_m(-1) = \begin{cases} -1 & \text{if } m = 1 \\ 2 & \text{if } m = 2 \\ 0 & \text{otherwise,} \end{cases}$$

we can – for g of type τ – calculate that

$$\begin{aligned} \gamma_e(g) + \gamma_o(g) &= \sum_{\substack{\sigma \vdash n \\ k}} \gamma_\sigma(g) \\ &= \sum_k \chi_k(g) \quad \text{by Cor.1} \\ &= p_\tau(1) \\ &= \prod_{m=1}^n \prod_{j=0}^{\tau_m - 1} (f_m(1) + jm) \\ &= \begin{cases} n! & \text{if } \tau = (n, 0, \dots, 0) \\ 0 & \text{otherwise,} \end{cases} \end{aligned}$$

so $\gamma_e + \gamma_o = \rho$, the regular character of S_n . Similarly,

$$\begin{split} \gamma_{e}(g) - \gamma_{o}(g) &= \sum_{k} (-1)^{k} \chi_{k}(g) \\ &= p_{\tau}(-1) \\ &= \prod_{m=1}^{n} \prod_{j=0}^{\tau_{m}-1} (f_{m}(-1) + jm) \\ &= \begin{cases} \prod_{j=0}^{l-1} (2 + j2) & \text{if } \tau = (0, l, 0, \dots, 0) \quad (n \text{ even}) \\ -\prod_{j=0}^{l-1} (2 + j2) & \text{if } \tau = (1, l, 0, \dots, 0) \quad (n \text{ odd}) \\ 0 & \text{otherwise,} \end{cases} \\ &= \begin{cases} (-1)^{n} 2^{l} l! & \text{if } g \text{ is a long involution} \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

The assertions follow.

Remark 4 Since $\sum_{\sigma} \gamma_{\sigma} = \rho$, the sign character is a constituent (with multiplicity 1) of exactly one γ_{σ} ; Frobenius reciprocity shows that this σ is the type of the long involutions. Alternatively, one can deduce this from Remark 3(vi), since $(-1^n)sign = \pi_{-1}$.

Remark 5 The argument used in the proof of Corollary 2 can be generalized. For instance, for an odd prime r, one has $f_r(-2) = (-2)^r - (-2) = -(2^r - 2)$, so $f_r(-2) + jr = 0$ for $j = (2^r - 2)/r$. But if $\tau_r > j$, then $f_r(x) + jr$ is a factor of $p_\tau(x)$. For such τ then

$$0 = p_{\tau}(-2) = \sum_{t} \chi_t(\tau) (-2)^t = \sum_{\sigma \vdash n} \gamma_{\sigma}(\tau) (-2)^{|\sigma|} \quad .$$

It follows from Remark 3(vi) again that $(\gamma_{\tau}, \pi_{-2}) = 0$, still under the assumption that $\tau_r > (2^r - 2)/r$ for some odd prime r. Since π_{-2} is either a character or the negative of a character, this means that π_{-2} and γ_{τ} have no common constituents. (Instead of -2, any other negative integer z will do; of course, the condition on τ depends on z.)

Remark 6 There is a combinatorial interpretation of the polynomials p_{τ} , hence of the characters χ_k : Let $F = F_q$ be the field with q elements, and let E be a field extension with |E:F| = m. Then the map $d \mapsto F(d)$, where $|F(d)| = q^d$, is a bijection between the divisors d of m and the intermediate fields $F \leq F(d) \leq E$. Denote $A_d := \{a \in E \mid F[a] = F(d)\}$; then $q^m = |E| = \sum_{d|m} |A_d|$. Möbius inversion yields

$$|A_m| = \sum_{d|m} \mu(\frac{m}{d}) q^d = f_m(q) .$$

Now every $a \in A_m$ has minimal polynomial of degree m and each of these has m different zeros, all in A_m , so the number of monic irreducible polynomial of degree m in F[x] is

$$f_m^*(q) := \frac{1}{m} f_m(q) \ .$$

Since every polynomial is (essentially uniquely) a product of irreducibles, we can define the type τ of a polynomial h by letting τ_m be the number of irreducible factors of degree m in h; so $\tau \vdash \deg(h)$. Of course, an irreducible factor may occur with a multiplicity, so the number of monic polynomials over F of a given type $\tau \vdash n$ is

$$p_{\tau}^{*}(q) = \prod_{m=1}^{n} \begin{pmatrix} f_{m}^{*}(q) + \tau_{m} - 1 \\ \tau_{m} \end{pmatrix}$$
.

Multiplication of p_{τ}^* by a suitable scalar gives a monic polynomial, more precisely $|C_{\tau}| p_{\tau}^* = p_{\tau}$; recall that the order of the centralizer $|C_{\tau}| = \prod_{m} m^{\tau_m} \tau_m!$. Using Remark 3(vi) once again, we conclude that the number of polynomials of type τ (over F_q) equals the inner product (γ_{τ}, π_q) .

References

- I.M. Isaacs, Character theory of finite groups, Academic Press, New York 1976
- [2] G.James and A.Kerber, The representation theory of the symmetric group, Addison-Wesley 1981
- [3] R.Knörr, On Frobenius and tensor induction, in preparation