A note on permutation groups

Reinhard Knörr*
Institut für Mathematik, Universität Rostock

September 19, 2005

Abstract

A k-transitive group of degree $n>k$ is generated by all the the elements fixing precisely i points if $i \leq k-3$. The cases $i=k-2$, $i=k-1$ and $i=k$ are also considered. Key Words: permutation groups, ordinary character theory Mathematics Subject Classification: 20B20, $20 C 15$

Throughout, G is a finite group and X a finite G-set, say $|X|=n$. The permutation character of G on X is denoted by π. For $0 \leq i \leq n$, we set

$$
N_{i}=N_{i}(G, X)=\langle g \in G \mid \pi(g)=i\rangle
$$

It is clear that N_{i} is normal in G, since its generating set is closed under conjugation. There are good general reasons why normal subgroups of multiply transitive groups tend to be large. Here, only the N_{i} 's are considered .

Theorem

(i) Assume G transitive. Then N_{0} is transitive and $N_{i} \leq N_{0}$ for every $i \neq 1$; also $N_{0}=G$ or $N_{1}=G$.
(ii) Assume G 2-transitive. Then $1+\left|G: N_{0}\right|=(\pi, \pi)_{N_{0}}$; also N_{0} is 2-transitive if and only if $N_{0}=G$.

[^0](iii) Let G be k-transitive for some $0<k<n$. Then N_{i} is $(i+1)$-transitive for every $i<k$.
(iv) Let G be k-transitive for some $1<k<n$. Then $N_{0}=N_{1}=\cdots=N_{k-3}=G$; also, $N_{k-1}=G$ or $N_{k-2}=N_{k}=G$.

Proof:

(i) Since G is transitive, we have $|G|=|G|(\pi, \mathbf{1})_{G}=\sum_{g \in G} \pi(g)$ (see [1], Proposition 16.9). Clearly, $\left|N_{0}\right| \leq\left|N_{0}\right|(\pi, \mathbf{1})_{N_{0}}=\sum_{n \in N_{0}} \pi(n)$ with equality if and only if N_{0} is transitive. All elements outside N_{0} fix at least one point by construction of N_{0}, so

$$
\left|G \backslash N_{0}\right| \leq \sum_{g \in G \backslash N_{0}} \pi(g)
$$

with equality if and only if $\pi(g)=1$ for all such g. Combining the inequalities, we have

$$
|G|=\left|N_{0}\right|+\left|G \backslash N_{0}\right| \leq \sum_{n \in N_{0}} \pi(n)+\sum_{g \in G \backslash N} \pi(g)=\sum_{g \in G} \pi(g)=|G|
$$

so we must have equality throughout. This proves transitivity of N_{0}; also all elements outside N_{0} fix exactly one point, so belong to N_{1}. Therefore $G=N_{0} \cup N_{1}$, but no group is a union of two proper subgroups. For $i \neq 1$, the generating elements of N_{i} belong to N_{0}, so $N_{i} \leq N_{0}$.
(ii) $2=(\pi, \pi)_{G}$ since G is 2-transitive (see again [1], Proposition 16.9). Therefore

$$
2|G|=\sum_{g \in G} \pi(g)^{2}=\sum_{n \in N_{0}} \pi(n)^{2}+\sum_{g \in G \backslash N_{0}} \pi(g)^{2}=\left|N_{0}\right|(\pi, \pi)_{N_{0}}+\left|G \backslash N_{0}\right|
$$

using (i), so

$$
(\pi, \pi)_{N_{0}}=\frac{2|G|-\left|G \backslash N_{0}\right|}{\left|N_{0}\right|}=\left|G: N_{0}\right|+1
$$

By the result just quoted, N_{0} is 2 -transitive if and only if this value is 2 , i.e. if and only if $G=N_{0}$.
(iii) By (i), we may assume $i>0$, so $k>1$. Pick i different points $x_{1}, \ldots, x_{i} \in X$; since G is (at least) $(i+1)$-transitive by assumption, their stabilizer $H:=G_{x_{1}, \ldots, x_{i}}$ acts transitively on $X^{\prime}:=X \backslash\left\{x_{1}, \ldots, x_{i}\right\}$. Let $M_{r}=N_{r}\left(H, X^{\prime}\right)$, so

$$
M_{r}=\langle h \in H \mid \pi(h)=i+r\rangle \leq N_{i+r} .
$$

By (i), M_{0} acts transitively on X^{\prime}. Since $\left|X^{\prime}\right|=n-i \geq n-(k-1)>1$, this action cannot be trivial, so N_{i} acts non-trivially on X. Since G is 2 -transitive, N_{i} is transitive by a well-known result (see e.g. [1], Propositions 3.8 and 4.4). To show $(i+1)$-transitivity of N_{i}, it is therefore enough to show that a point stabilizer $\left(N_{i}\right)_{x}=N_{i} \cap G_{x}$ is i-transitive on $X^{*}:=X \backslash x$. But $N_{i} \cap G_{x} \geq N_{i-1}\left(G_{x}, X^{*}\right)$ and this last group is i-transitive by induction.
(iv) The group H above is clearly $(k-i)$-transitive on X^{\prime}, so if $i \leq k-3$, then H is 3-transitive, so by (iii) M_{2} is 3 -transitive on X^{\prime} as well. Since $M_{2} \leq M_{0}$ by (i), we find that M_{0} is 2 -transitive, so $M_{0}=H$ by (ii) and a fortiori $N_{i} \geq H$. But by i-transitivity of N_{i}, we have $G=H N_{i}=N_{i}$.
Finally, assume $N_{k-1} \neq G$; we must show $N_{k-2}=N_{k}=G$. First, let H and X^{\prime} be as before but with $i=k-2$. Note that $G=H N_{k-2}=H N_{k-1}$ since both N_{k-2} and N_{k-1} are ($k-2$)-transitive by (iii). If $H=M_{1} \leq N_{k-1}$, we find $G=N_{k-1}$ contrary to the assumption. Since H is transitive (even 2 -transitive) on X^{\prime}, we get from (i) that $H=M_{0} \leq N_{k-2}$, so $G=N_{k-2}$.
To show $G=N_{k}$, we repeat the argument, this time with $i=k-1$. Since $N_{k-1} \neq G$, we conclude now that $H \neq M_{0}$, so $H=M_{1} \leq N_{k}$. We are done if N_{k} is $(k-1)-$ transitive, since then $G=H N_{k}=N_{k}$. Clearly, N_{k} is transitive, since it is a normal subgroup acting non-trivially (since M_{1} acts non trivially on X^{\prime}). Suppose we know already that N_{k} acts t-transitively for some $t<k-1$ and consider $L:=N_{k} \cap G_{x_{1}, \ldots, x_{t}}$. Since $L \triangleleft G_{x_{1}, \ldots, x_{t}}$ and $G_{x_{1}, \ldots, x_{t}}$ acts ($k-t$)-, so at least 2-transitively on the remaining elements, and since L acts non-trivially (because $M_{1} \leq L$), we find that L acts transitively on $X \backslash\left\{x_{1}, \ldots, x_{t}\right\}$, so N_{k} is $(t+1)$-transitive. By induction, N_{k} is ($k-1$)-transitive, as claimed.
Examples For the first three examples, assume $n \geq 4$.
(1) Let $G=S_{n}$ acting on n letters and let $k=n-1$. Since no permutation fixes exactly $n-1$ letters, we find $N_{k}=1$, so $G=N_{k-1}$ by (iv) above; this is the well known fact that S_{n} is generated by involutions. The same conclusion follows from the observation that N_{k-2} is generated by 3 -cycles, hence contained in A_{n}, so in particular $N_{k-2} \neq G$.
(2) Let $G=A_{n}$ acting on n letters and let $k=n-2$. Then A_{n} is k-transitive. Since no involution belongs to A_{n}, we find again $N_{k}=1$, so $G=N_{k-1}$ by (iv) above, that is A_{n} is generated by 3 -cycles.
(3) Take again $G=A_{n}$ and $k=n-2$. Then N_{k-2} is generated by all even permutations moving exactly 4 points, so $N_{k-2}=V_{4}<A_{4}$ if $n=4$, while $N_{k-2}=A_{n}$ if $n>4$. Of course, since A_{n} is then a simple group, $N_{i}=A_{n}$ for all $i<n-2$.
(4) If G is a Frobenius group, N_{0} is the Frobenius kernel.
(5) Every sharply 2-transitive group provides an example with N_{0} not 2-transitive.
(6) It is well known that $G=P G L(2, q)$ is sharply 3 -transitive on the projective line, so $n=q+1$. Clearly $N_{i}=1$ if $i \geq 3$.
If $q=2$, then $G=S_{3}, N_{0}=A_{3}, N_{1}=G$ and $N_{2}=1$.
If $q>2$, then N_{2} is 3-transitive by (iii), hence $N_{2}=G$; also $N_{0}=G$ by (iv) (or by (i)). Since every $g \in G$ with $\pi(g)=1$ belongs to $\operatorname{PSL}(2, q)$ (its pre-image in $G L(2, q)$ has determinant a square), it follows that $N_{1} \leq P S L(2, q)$. Since N_{1} is 2-transitive, certainly $N_{1} \neq 1$. Therefore $N_{1}=P S L(2, q)$, if this group is simple. It is easy to see that this holds in the exceptional case $q=3$ as well. Therefore $N_{1}<G$ if and only if q is odd.

References

[1] D.S. Passman, Permutation groups, W.A.Benjamin, New York 1968

[^0]: *Correspondence: Reinhard Knörr, Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany; E-mail: reinhard.knoerr@uni-rostock.de

