
Optimization of Dual-Threshold Circuits

Konrad Engel Thomas Kalinowski Roger Labahn
Institut für Mathematik, Universität Rostock, 18051 Rostock, Germany

{konrad.engel, thomas.kalinowski, roger.labahn}@uni-rostock.de

Frank Sill Dirk Timmermann
Institut für Angewandte Mikroelektronik und Datentechnik, Universität Rostock,

Richard-Wagner Straße 31, 18119 Rostock-Warnemünde, Germany
{frank.sill, dirk.timmermann}@uni-rostock.de

May 04, 2005

Abstract

In this paper, we consider an optimization problem on directed acyclic graphs
which is motivated by a standard task in low power VLSI design. With each
vertex v of a directed acyclic graph, we associate two delay values d0(v) ≤
d1(v) and two leakage values c0(v) ≥ c1(v). The objective is to choose one of
the indices 0 or 1 for each vertex, such that in first instance the corresponding
total delay along any directed path is minimal, and in second instance the
total leakage is minimized. We prove that a very restricted special case
of this problem already is NP-hard, and we present four different heuristic
approaches to the problem. Further, we test our algorithms on ISCAS85
benchmark circuits.

MSC: 90C35, 06A07, 94C15

Keywords: directed acyclic graphs, Sperner family, cutset, low-power de-
sign, leakage power, threshold voltage, timing constraints, VLSI CAD

1 Introduction

Small mobile applications are the current driving power for the chip industry.
But the freedom from cables requires integrated circuits with small running
times and low power dissipation. Furthermore, high integration density and
high performance are desired. This resulted in an aggressive downscaling
per each technology generation, and lowering of the supply voltage. To meet
the performance requirements, the transistor threshold voltage has to be
scaled down. Unfortunately, such scaling increases the sub-threshold leakage
current, thereby increasing leakage power. Thus, in current technologies up
to 50% of the power dissipation is due to leakage currents [9].

There are several ways to handle the leakage power problem in high per-
formance applications. Kao et al. [6] propose to use additional sleep transis-
tors, which can disconnect the supply from the circuit in idle modes. Several
authors [1, 3, 15, 19, 20] considered the usage of multiple supply voltages. The
dynamic scaling of supply voltage adjusted to required performance was pro-
posed Maken et al. [12]. Another approach is the application of two device
types, which vary in their threshold voltages. This Dual Threshold CMOS
(DTCMOS) design technique uses fast low threshold voltage (LTV) and slow
high threshold voltage (HTV) devices. The advantage of HTV devices is their
small leakage current. Thus, the aim of DTCMOS is to maximize the gain
in leakage at the HTV devices without worsening the performance of the
circuit. The problem of choosing adequate values for the two threshold volt-
ages is adressed in [5, 11]. We assume these values are fixed, so our task is to
assign one of two given threshold voltages to each gate. Li et al. [10] have
shown that already very special problems of assigning dual threshold voltages
to devices are NP-complete. Several heuristics for this problem have been
proposed in the literature. Li et al. [10] replace step by step LTV devices
by HTV devices using different score functions for choosing the gate that
is replaced. Sundararajan and Parhi [18] consider the set of gates that can
potentially be implemented as HTV devices and determine an adequate sub-
set by solving an integer linear programming problem (ILP). In the heuristic
variant of their algorithm solving of the ILP is replaced by a sequence of
solvings of an LP-relaxation. The algorithm of Wei et al. [21, 22] starts with
all gates at low threshold voltage, visits the gates in a breadth first order,
and switches a gate to high threshold voltage if this does not violate the tim-
ing constraint. Sill et al. [16] present a simple algorithm, which sequentially
scans the circuit and transfers every device in critical paths into an LTV
device. Several authors [7, 8, 13, 17, 23] propose combinations of threshold
voltage assignment and device sizing.

As usual, also in this paper the circuit is modeled as a directed acyclic

1

graph (dag), where for each vertex we have to decide wether it operates on
high or on low threshold voltage. The objective is to make this decision in
such a way that the performance of the circuit is optimal and the leakage
is minimized. The paper is organized as follows. In Section 2, we formally
state the problem as an optimization problem on a dag, and we give a proof
of the NP-completeness of a rather restricted version of it. In Sections 3-5,
we propose four heuristic algorithms for the selection of the HTV devices,
and finally in Section 6, we present some test results on benchmark circuits.

2 Mathematical formulation of the problem

Let G = (V, E) be a dag and let di, ci : V → R+ (i = 0, 1) be weight
functions on the vertex set such that for all v ∈ V , d0(v) ≤ d1(v) and
c0(v) ≥ c1(v). d0(v) and d1(v) can be interpreted as the delays of vertex v,
where v is of LTV and HTV type, respectively. Similarly, c0(v) and c1(v)
are the corresponding leakage values of vertex v. In the following we use
graph theoretic terminology and speak of length and cost instead of delay
and leakage. Throughout we assume that G has a unique source q and a
unique sink s with d0(v) = d1(v) = c0(v) = c1(v) = 0 for v ∈ {q, s}. This
can always be done without loss of generality by adding vertices q and s,
connecting q to all sources of G (primary inputs) and connecting all sinks of
G (primary outputs) to s. Let x : V → {0, 1} be a decision function. The
pair (G, x) is called a realization. The cost of the realization is given by

c(G, x) :=
∑
v∈V

cx(v)(v).

For a path P = (v0, . . . , vk) in G and a realization (G, x), the length of P is
defined by

d(P, x) :=
∑
v∈P

dx(v)(v).

The length of the realization (G, x) is given by

d(G, x) := max{d(P, x) : P is a q-s-path}.

Let x0 be the zero function, i.e. x0(v) = 0 for all v ∈ V . Clearly, (G, x0)
realizes the minimum length dmin(G) := d(G, x0). The dual-threshold com-
plementary metaloxid semiconductor problem is the following:

DTCMOS: Find a decision function x : V → {0, 1} such that d(G, x) =
dmin(G) and c(G, x) is minimum.

2

Let c∗(G) =
∑

v∈V c1(v). If we replace the cost functions c0, c1 by new
functions c′0, c′1 defined by c′0(v) := c0(v)− c1(v) and c′1(v) := c1(v)− c1(v) =
0, then the new cost is given by c′(G, x) = c(G, x) − c∗(G), and c′(G, x)
is minimum iff c(G, x) is minimum. Hence we may assume w.l.o.g. that
c1(v) = 0 for all v ∈ V . For brevity we set c(v) := c0(v) and obtain

c(G, x) =
∑

v∈V :x(v)=0

c(v).

Theorem 1. DTCMOS is NP-hard.

Proof. We prove the theorem by reduction from 0-1-knapsack. Consider an
arbitrary instance ((a1, . . . , an), (c1, . . . , cn), B) of 0-1-knapsack, i.e. ai, ci

(i = 1, . . . , n) and B are positive integers, and the task is to determine an
optimal solution x = (x1, . . . , xn) ∈ {0, 1}n of the problem

n∑
i=1

aixi ≤ B,
n∑

i=1

cixi → max . (1)

Now we define a dag G = (V, E) with (see Figure 1)

V = {v0 = q, v1, . . . , vn, vn+1 = s, vn+2},
E = {v0v1, v1v2, . . . , vnvn+1, v0vn+2, vn+2vn+1}.

b

b b b

b

b

v0 = q

v1 v2 vn

vn+2

vn+1 = s

Figure 1: The dag G = (V, E) for the reduction of 0-1-knapsack.

Let

d0(vi) =

{
0 if 0 ≤ i ≤ n + 1,
B if i = n + 2,

d1(vi) =

ai if 1 ≤ i ≤ n,
0 if i ∈ {0, n + 1},
B + 1 if i = n + 2,

c(vi) =

{
ci if 1 ≤ i ≤ n,
0 otherwise.

3

Obviously, dmin(G) = B and x : V → {0, 1} is a solution of DTCMOS iff
xi = x(vi) (i = 1, . . . , n) gives an optimal 0-1-solution of the problem

n∑
i=1

aixi ≤ B,

n∑
i=1

ci(1− xi) → min,

which is equivalent to (1).

If we replace the condition d(G, x) = dmin(G) by the weaker condition
that d(G, x) is bounded from above by some input constant, we come (with
some change of notation) to the basic circuit implementation problem which
was shown to be NP-hard by Li et al. [10]. Theorem 1 gives reason to
look for well-founded heuristics for DTCMOS. Though the problem can
be formulated as a 0-1-linear programming problem ILP-solvers are not the
adequate tool since the graph can be very large, more than 50,000 vertices in
some cases. We present four such heuristics and compare their performance
on practical examples. But first we need some more notation. For x : V →
{0, 1} and v ∈ V , we put

e(v, x) := max{d(P, x) : P is a q-v-path} − dx(v)(v),

h(v, x) := max{d(P, x) : P is a v-s-path}.

The values e(v, x) and h(v, x) can be easily obtained by a recursive version of
depth first search (DFS) in time O(|E|) (cf. Sedgewick [14], 105 ff.). Clearly,

d(G, x) = max{e(v, x) + h(v, x) : v ∈ V } = e(s, x).

Interpreting the vertices as jobs, where an edge vw indicates that job v has to
be completed before job w can be started, the value e(v, x) can be considered
as the earliest starting time for job v, while d(G, x) − h(v, x) is the latest
starting time under the timing constraint. The slack at vertex v is defined
by slack(v, x) := d(G, x)− (e(v, x) + h(v, x)). For the sake of brevity we put
dif(v) := d1(v)− d0(v).

3 The single and the multiple switch algo-

rithm

Let v be a vertex with slack(v, x) ≥ dif(v) and x(v) = 0. Our first lemma
states that one can switch x(v) to 1 without changing the length of the
realization. This lemma is implicitly contained in several papers, e.g. [2, 3,
10].

4

Lemma 1. Let v be a vertex with slack(v, x) ≥ dif(v), x(v) = 0 and let
x′ : V → {0, 1} be given by x′(v) := 1 and x′(w) := x(w) for w ∈ V \ {v}.
Then

d(G, x′) = d(G, x) and c(G, x′) ≤ c(G, x).

Proof. Since d1(v) ≥ d0(v) and c(v) ≥ 0, obviously

d(G, x′) ≥ d(G, x) and c(G, x′) ≤ c(G, x).

Let P be an arbitrary q-s-path. It remains to show that d(P, x′) ≤ d(G, x).
If P does not contain v, then clearly

d(P, x′) = d(P, x) ≤ d(G, x).

So assume v ∈ P . Then

d(P, x′) = d(P, x) + dif(v)

≤ e(v, x) + h(v, x) + dif(v)

= d(G, x)− slack(v, x) + dif(v) ≤ d(G, x).

A vertex is called a candidate vertex if its decision can be switched from
0 to 1 according to Lemma 1. The candidate set C is the set of all candidate
vertices, i.e.

C := {v ∈ V : x(v) = 0 and slack(v, x) ≥ dif(v)}.

Lemma 1 can be generalized as follows.

Lemma 2. Let S ⊆ V be a subset of vertices such that x(v) = 0 and
slack(v, x) ≥

∑
w∈S dif(w) for all v ∈ S. Moreover, let

x′(w) :=

{
1 if w ∈ S,
x(w) otherwise.

Then
d(G, x′) = d(G, x) and c(G, x′) ≤ c(G, x).

Proof. As in Lemma 1 we only have to prove that for any q-s-path P ,
d(P, x′) ≤ d(G, x). Again the remaining interesting case is that P contains

5

vertices from S. For a fixed vertex v from P ∩ S, we have

d(P, x′) = d(P, x) +
∑

w∈P∩S

dif(w)

≤ d(P, x) +
∑
w∈S

dif(w)

≤ e(v, x) + h(v, x) +
∑
w∈S

dif(w)

= d(G, x)− slack(v, x) +
∑
w∈S

dif(v) ≤ d(G, x).

Lemmas 1 and 2 are fundamental for the two algorithms in this section. In
both algorithms, one starts with the zero function x0 and then successively
switches one or more vertices v ∈ V from x(v) = 0 to x(v) = 1 without
changing the length but decreasing the cost. The choice of such vertices
can be done in the following way: from a heuristic point of view it is wise
to take vertices with large slack (they do not have much influence on other
vertices) and with large cost (they contribute more to decrease the cost).
Let f : R2

+ → R+ be a function that is increasing in both variables, e.g.
f(x, y) = x + λy (λ ∈ R+), f(x, y) = xy or f(x, y) = x

√
y. It is used to

evaluate the vertices of the candidate set C by

weight(v) := f(slack(v, x), c(v)) or

weight(v) := f(slack(v, x)− dif(v), c(v)).

In our implementation we worked with

weight(v) = slack(v, x)− dif(v) + λc(v). (2)

Other score functions for ranking the candidate vertices have been considered
e.g. by Li et al. [10]. In the first algorithm we proceed by switching one
single vertex of maximal weight in each step.

Single Switch Algorithm (SSA)
Input: G = (V, E), c(v), di(v) (i = 1, 2, v ∈ V)
Output: decision function x : V → {0, 1}
Initialization
x := x0

Iteration
do

6

determine slack(v, x) for all v ∈ V
determine the candidate set C
if (C 6= ∅)

compute weight(v) for all v ∈ C
choose a vertex v ∈ C with maximal weight
x(v) := 1

while C 6= ∅
return x

Let n := |V |. Under the realistic assumption that the vertex degrees are
bounded by a constant each iteration step has time complexity O(n). So the
total time complexity is O(n2). In practical examples, we observed that the
number of switched vertices grows linearly with n. So for large n, it is better
to switch more than one vertex in each iteration step. For this, we order
the vertices of the candidate set C by decreasing weight and take a large
initial segment of this ordering for the set S used in Lemma 2. This initial
segment can be determined step-by-step as follows. Let C = {v1, . . . , vk} with
weight(v1) ≥ · · · ≥ weight(vk). At stage S = {v1, . . . , vl} (l < k), we can
insert vl+1 into S if slack(vi, x) ≥

∑l+1
j=1 dif(vj) is true for all i = 1, . . . , l +1.

With

suml :=
l∑

j=1

dif(vj),

gapl := min{slack(vi, x)− suml : i = 1, . . . , l}

for (l = 1, . . . , k), this is equivalent to gapl+1 ≥ 0. Obviously suml+1 =
suml+dif(vl+1) and gapl+1 = min{gapl−dif(vl+1), slack(vl+1, x)−suml+1}.
This leads to the following procedure.

Initial Segment Procedure (ISP)
Input: C = {v1, . . . , vk} with weight(v1) ≥ · · · ≥ weight(vk)
Output: set S of vertices that can be switched
Initialization
S := {v1}, gap := slack(v1, x)− dif(v1), sum := dif(v1), l := 1
Iteration
do

l := l + 1
sum := sum + dif(vl)
gap := min{gap− dif(vl), slack(vl, x)− sum}
if gap ≥ 0

S := S ∪ {vl}

7

while (gap ≥ 0 and l < k)
return S

To order the set C one needs time O(k log k). From a practical point of view,
log k can be considered constant, but moreover, one can keep C “small”, e.g.
by working only with the smaller set

C ′ = {v ∈ C : weight(v) ≥ weight},

where weight is the average weight of a vertex of C,

weight :=
1

|C|
∑
v∈C

weight(v).

This reduces the required time and appeared to be practically sufficient. The
whole algorithm reads:

Multiple Switch Algorithm (MSA)
Input: G = (V, E), c(v), di(v) (i = 1, 2, v ∈ V)
Output: decision function x : V → {0, 1}
Initialization
x := x0

Iteration
do

determine slack(v, x) for all v ∈ V
determine the candidate set C
if (C 6= ∅)

compute weight(v) for all v ∈ C

weight := 1
|C|

∑
v∈C weight(v)

C ′ := {v ∈ C : weight(v) ≥ weight}
order C ′ by decreasing weight
determine S using ISP
put x(v) := 1 for all v ∈ S

while C 6= ∅
return x

We cannot prove a time complexity better than O(n2), but in practical ex-
amples we observed an essential acceleration compared to SSA.

4 The k-family algorithm

As in the previous section we start with the zero function x0 and switch a set
of vertices from the candidate set C to x(v) = 1 keeping the length d(G, x)

8

invariant. Let
maxdif(G) := max{dif(v) : v ∈ V }.

We may assume maxdif(G) > 0, because otherwise an optimal solution is
given by x(v) = 0 for all v ∈ V . For any real number κ ≥ 0, let

k := max{bκc, 1}

and define a partially ordered set (poset) (Qκ
x,≤) by

Qκ
x :=

{
{v ∈ V : x(v) = 0 and slack(v, x) ≥ κ ·maxdif(G)} if κ > 1,
C if κ ≤ 1,

(3)

and v ≤ w :⇔ There is a v-w-path in G. (4)

A subset S ⊆ Qκ
x is called a k-family in (Qκ

x,≤) if there is no chain in (Qκ
x,≤)

containing more than k elements from S.

Lemma 3. Let S be a k-family in (Qκ
x,≤) and let

x′(w) :=

{
1 if w ∈ S,
x(w) otherwise.

Then
d(G, x′) = d(G, x) and c(G, x′) ≤ c(G, x).

Proof. The case k = 1 can be proved as Lemma 1. So let k > 1. As in the
proofs of Lemmas 1 and 2 we only have to prove that for any q-s-path P , we
have d(P, x′) ≤ d(G, x), and it is sufficient to consider a path P containing
at least one vertex v ∈ S. By definition of a k-family, P contains at most k
elements of S. We proceed as in the proof of Lemma 2 and obtain

d(P, x′) ≤ d(G, x)− slack(v, x) +
∑

w∈S∩P

dif(w)

≤ d(G, x)− slack(v, x) + k ·maxdif(G)

≤ d(G, x)− slack(v, x) + κ ·maxdif(G) ≤ d(G, x).

Switching the elements of a k-family S reduces the cost by
∑

v∈S c(s),
hence it is wise to choose a k-family of maximum cost. For the same reason
as in Section 3 it is helpful to replace c(v) by a weight weight(v), where e.g.

weight(v) = 1 + maxdif(G)− dif(v) + λc(v). (5)

9

So we have reduced the original problem to the task of finding a k-family of
maximum weight. A min-cost-flow algorithm for this problem is described
in Chapter 4 of [4]. If |Qκ

x| ≤ k, clearly the whole set Qκ
x can be chosen. It

remains to describe the choice of κ. In order to keep the computing time
small it is desirable to work with a reasonably small poset Qκ

x. This can be
achieved by prescribing some bound B, e.g. B = 100, and requiring that
the cardinality of Qκ

x is not much greater than B. Let C = {v1, . . . , vl} with
slack(v1, x) ≥ · · · ≥ slack(vl, x) and let j = min{B, l}. Now for

κ :=
slack(vj, x)

maxdif(G)

by (3) it follows that {v1, . . . , vj} ⊆ Qκ
x and for k > 1 only those vertices vi

with i > j belong to Qκ
x for which slack(vi, x) = slack(vj, x). This leads to

the following algorithm.

k-Family Algorithm (k-FA)
Input: G = (V, E), c(v), di(v) (i = 1, 2, v ∈ V), bound B
Output: decision function x : V → {0, 1}
Initialization
x := x0

Iteration
do

determine slack(v, x) for all v ∈ V
determine the candidate set C
if (C 6= ∅)

order C by decreasing values of slack(v, x)
pick w as the element at position min{B, |C|} in C

κ := slack(w,x)
maxdif(G)

k := max{bκc, 1}
determine Qκ

x according to (3)
compute weight(v) for all v ∈ Qκ

x

determine a k-family S of maximum weight in (Qκ
x,≤)

put x(v) := 1 for all v ∈ S
while C 6= ∅
return x

By Lemma 3 the length d(G, x) is always equal to dmin(G) and as long as
C 6= ∅, in each loop at least one more vertex switches to x(v) = 1. So
the algorithm terminates after finitely many steps. As in MSA algorithm
one could reduce the ordering of the candidate vertices to a certain subset
C ′ ⊆ C.

10

5 The k-cutset algorithm

Again, we start with the zero function x0. Assume that after some steps,
we have a realization (G, x) with d(G, x) = dmin(G). As in the previous
sections we work with the set C of candidate vertices. We switch them all
simultaneously, i.e. we put

x′(v) :=

{
1 if v ∈ C,
x(v) otherwise.

Clearly this improves the cost, i.e. c(G, x′) ≤ c(G, x), but in general, we also
have d(G, x′) > d(G, x). Hence we have to switch back some vertices from
x′(v) = 1 to x′(v) = 0 in order to obtain the minimum length dmin(G). Now
we change notation, and assume that (G, x) is a realization with d(G, x) >
dmin(G). We describe a step by which d(G, x) is decreased and the cost
increase is minimum. It is presented in two variants.

Here is the first variant. Let Gx = (Vx, Ex) be the critical graph, i.e. the
graph defined by

Vx := {v ∈ V : slack(v, x) = 0},
Ex := {vw ∈ E : v, w ∈ Vx and e(v, x) + dx(v)(v) = e(w, x)}.

Note that q, s ∈ Vx. Using the edge identity e(v, x) + dx(v)(v) = e(w, x),
one can easily derive that in Gx, every q-s-path has length e(s, x) = d(G, x).
Vice versa, every q-s-path in G having length d(G, x) is obviously a path in
Gx. Let

k :=

⌈
d(G, x)− dmin(G)

maxdif(G)

⌉
. (6)

We say that a set S ⊆ Vx is a k-cutset in Gx iff every q-s-path in Gx has at
least k vertices in S.

Lemma 4. Let d(G, x) > dmin(G) and assume that S ⊆ Vx is a set of vertices
with x(v) = 1 for all v ∈ S and such that

x′(v) :=

{
0 if v ∈ S,
x(v) otherwise,

defines a realization (G, x′) with d(G, x′) = dmin(G). Then S is a k-cutset in
Gx.

Proof. Let P be any q-s-path in Gx. We have d(P, x) = d(G, x). Let T =
P ∩ S be the set of vertices on P that have been switched. We have to show
that |T | ≥ k. Clearly,

d(P, x′) = d(P, x)−
∑
v∈T

dif(v) ≥ d(G, x)− |T |maxdif(G). (7)

11

Assume that |T | < k. Then by (6), |T |maxdif(G) < d(G, x)− dmin(G), and
from (7) we obtain d(P, x′) > dmin(G), a contradiction to our assumption.

Our approach is to switch the vertices of some k-cutset in Gx to zero,
and iterate this until dmin(G) is reached. A first try could be to choose a k-
cutset S with minimum weight, where the weight is defined by weight(S) =∑

v∈S c(v). In practical examples many vertices have the same value of c(v),
hence it is helpful to take also other objectives into account, in particular
the amount of length decrease. In our implementation we use the weight
function

weight(v) = c(v)− µ dif(v), weight(S) =
∑
v∈S

weight(v),

where µ is some constant bounded by

0 ≤ µ ≤ min
v:dif(v)>0

c(v)

dif(v)
.

We have chosen µ very small, e.g. µ = 0.0001. The determination of a
minimum k-cutset can be accomplished by a min-cost-flow algorithm. This
is completely described in Chapter 4 of [4] in terms of posets. (We obtain a
poset from Gx by taking the reflexive and transitive hull). Now the length
decreasing part of our algorithm can be described as follows.

Length Decreasing Procedure (LDP)
Input: G = (V, E), c(v), di(v) (i = 1, 2, v ∈ V), old x : V → {0, 1}
Output: new x : V → {0, 1}
while d(G, x) > dmin(G)

determine slack(v, x) for all v ∈ V
determine the critical graph Gx = (Vx, Ex)

k :=
⌈

d(G,x)−dmin(G)
maxdif(G)

⌉
determine a k-cutset S in Gx with minimum weight
put x(v) := 0 for all v ∈ S

return x

Since in each q-s-path of length d(G, x), at least k ≥ 1 vertices are switched
to zero, the length indeed decreases and after finitely many steps we obtain
a realization (G, x) with d(G, x) = dmin(G).

Now we present the second length decreasing variant. Instead of working
only with vertices of zero slack we also allow vertices with “small” slack. The
idea behind this approach is to “destroy” in one step not only the paths with

12

maximum length, but also paths with “large” length. For a nonnegative real
λ, let Gλ

x = (V λ
x , Eλ

x) be the λ-critical graph, defined by

V λ
x := {v ∈ V : slack(v, x) ≤ λ(d(G, x)− dmin(G))},

Eλ
x := {vw ∈ E : v, w ∈ V λ

x , e(v, x) + dx(v)(v) = e(w, x)

or h(x, v)− dx(v)(v) = h(w, x)}.

Of course, Gλ
x contains also q-s-paths P with d(P, x) < d(G, x), but one can

expect that these paths still have large length. Let dλ(G, x) be the minimum
length of a q-s-path in Gλ

x. This value can be computed efficiently, e.g. with
a slight modification of the DFS based algorithm for the determination of
the maximum length in G. Note that limλ→+0 dλ(G, x) = d(G, x). Let

k :=

⌈
dλ(G, x)− dmin(G)

maxdif(G)

⌉
.

As for Lemma 4, one can prove that, in order to achieve dmin(G), one has to
switch vertices of a k-cutset to zero, and again, it is a good idea to take a k-
cutset of minimum weight. The algorithm presented in [4] for Hasse diagrams
of posets directly applies to general dags. In contrast to the first variant,
also for d(G, x) > dmin(G) it can happen that k ≤ 0 because, in general,
dλ(G, x) < d(G, x), i.e. the case dλ(G, x) < dmin(G) is possible. If this is the
case, we decrease λ, e.g. by λ := λ/2, and iterate until dλ(G, x) > dmin(G),
hence k ≥ 1. Altogether, we have the following extended version:

Extended Length Decreasing Procedure (ELDP)
Input: G = (V, E), c(v), di(v) (i = 1, 2, v ∈ V), old x : V → {0, 1}, λ
Output: new x : V → {0, 1}
while d(G, x) > dmin(G)

determine slack(v, x) for all v ∈ V
do

determine the λ-critical graph Gλ
x = (V λ

x , Eλ
x)

determine dλ(G, x)

k :=
⌈

dλ(G,x)−dmin(G)
maxdif(G)

⌉
if (k ≤ 0) λ := λ/2

while k ≤ 0
determine a k-cutset S in Gλ

x with minimum weight
x(v) := 0 for all v ∈ S

return x

As in the basic version it is easy to see that after finitely many steps a
realization (G, x) with d(G, x) = dmin(G) will be obtained.

13

At the beginning of this section we already mentioned that we start with
a realization (G, x) with d(G, x) = dmin(G, x), switch all vertices of the can-
didate set C to 1 and then switch back some vertices to 0 using (E)LDP.
By allowing only vertices from C for the back-switching we assure that in
the end the number of vertices v with x(v) = 1 has increased by at least 1
compared with the realization we started with, because otherwise the last
k-cutset in (E)LDP would not have had minimum weight. Of course, Gx

respective Gλ
x can also contain vertices that do not belong to C. By putting

weight(v) = ∞ for v ∈ Vx \ C resp. v ∈ V λ
x \ C we make sure that these

vertices cannot be switched back to 0. Now the whole algorithm reads as
follows:

k-Cutset Algorithm (k-CA)
Input: G = (V, E), c(v), di(v) (i = 1, 2, v ∈ V), λ0

Output: decision function x : V → {0, 1}
Initialization
x := x0

Iteration
do

determine slack(v, x) for all v ∈ V
determine the candidate set C
if (C 6= ∅)

x(v) := 1 for all v ∈ C
weight(v) := c(v)− µdif(v) for all v ∈ C
weight(v) := ∞ for all v ∈ V \ C
λ := λ0

call (E)LPD
while C 6= ∅
return x

Since in each loop the number of vertices v with x(v) = 1 increases by at
least 1, the algorithm terminates after finitely many steps.

6 Experimental results

We implemented the four algorithms in C++. The ten ISCAS85 netlists
form the test data. Clearly, the results strongly depend on the functions
di, ci : V → R+ (i = 0, 1). We worked with unit-leakage, i.e. c1(v) = 0,
c0(v) = 1 for all v ∈ V , and with average-leakage. The delay and average-
leakage values are contained in Table 1. Without knowing these values it
is not possible to compare the performance of the algorithms with other

14

Delay [ns] average-leakage [µW]
Gate type d0 d1 c0 c1

INV 37 46 92.8 12.6
NAND 43 58 135.0 20.3
AND 59 81 253.9 37.5
NOR 66 90 86.0 10.6
OR 71 98 151.9 20.9

Table 1: The delay and average-leakage values

algorithms from the literature. Unfortunately, the numbers of vertices of a
given circuit differ from paper to paper. The following tables contain the
percentage of improvement of the cost compared with the zero function x0.
For instance, if we have a circuit with n vertices and the algorithm returns
a decision with n0 LTV-vertices (i.e. |{v ∈ V : x(v) = 0}| = n0) and n1

HTV-vertices, (i.e. |{v ∈ V : x(v) = 1}| = n1) then the cost improvement
in the case of unit-leakage is (n1/n) · 100% . The bold numbers indicate the
best result for the respective circuit. One can see that for unit-leakage k-

Circuit |V | SSA MSA k-FA k-CA
c432 155 52.26 51.61 54.19 54.19
c499 474 67.72 67.51 68.78 70.04
c880 393 84.22 83.97 84.22 84.22
c1355 738 70.87 71.00 75.07 74.80
c1908 453 72.19 71.74 72.19 72.19
c2670 663 91.10 91.10 91.10 91.10
c3540 1093 87.56 87.65 87.74 87.74
c5315 1781 92.70 92.76 92.76 92.64
c6288 2701 64.68 64.61 64.39 65.27
c7552 1874 95.84 95.79 95.41 95.68

Table 2: Leakage improvement for unit-leakage

CA and the k-FA have in general best performance while for average leakage
MSA and k-CA are mostly the best ones. The parameter λ in (2) and (5),
and the initial value for λ in the k-CA have some but no great influence on
the results. Good choices for λ are given in Table 4. Note that λ does not
have an influence in SSA and MSA in case of unit-leakage. The algorithms
are fast enough to allow several runs with different values of λ resp. λ0. Here
we present the running times (in seconds) of the algorithms on a 1.8GHz PC
for the largest ISCAS85 circuits c7552 and c6288 and for a special 64-bit-

15

Circuit |V | SSA MSA k-FA k-CA
c432 155 44.76 43.94 43.87 44.16
c499 474 56.10 56.43 57.08 58.28
c880 393 72.27 72.27 72.27 72.27
c1355 738 57.43 58.79 62.39 62.37
c1908 453 59.45 60.61 60.47 61.07
c2670 663 77.85 77.89 77.79 77.90
c3540 1093 75.28 75.28 75.05 75.06
c5315 1781 79.03 79.12 78.87 78.59
c6288 2701 53.13 52.59 53.08 53.60
c7552 1874 81.49 81.54 81.00 80.75

Table 3: Leakage improvement for average-leakage

SSA MSA k-FA k-CA
unit-leakage – – 50 0.1
average-leakage 0.01 0.01 0.2 0.1

Table 4: Choice for λ resp. λ0.

multiplier with 56353 vertices where the λ’s were chosen according to Table
4.

Circuit |V | SSA MSA k-FA k-CA
unit- c7552 1874 6.44 0.55 4.70 4.22
leakage c6288 2701 10.53 1.66 12.20 4.95

64-bit-mult 56353 7301.14 323.94 3375.14 648.78
average- c7552 1874 6.64 0.45 1.32 0.39
leakage c6288 2701 10.27 1.97 7.00 7.78

64-bit-mult 56353 7087.64 329.34 2850.59 766.23

Table 5: Running times of the different algorithms in seconds.

The cost improvements for the 64-bit-multiplier are shown in Table 6.
These results suggest that for very large circuits (more than 50,000 vertices)
MSA seems to be the best choice: although SSA yields a slightly better
leakage reduction this is compensated by the significantly smaller running
time of MSA.

16

SSA MSA k-FA k-CA
unit-leakage 71.02 70.73 67.54 69.41
average-leakage 62.21 61.73 58.43 59.96

Table 6: Leakage improvements for the 64-bit-multiplier.

References

[1] J. Chang and M. Pedram. Energy minimization using multiple supply
voltages. IEEE Transactions on Very Large Scale Integration Systems,
4:436–443, 1997.

[2] C. Chen, E. Bozorgzadeh, A. Srivastava, and M. Sarrafzadeh. Budget
management with applications. Algorithmica, 34:261–275, 2002.

[3] C. Chen and M. Sarrafzadeh. An effective algorithm for gate-level power-
delay tradeoff using two voltages. In Proceedings of the International
Conference on Computer Design, pages 222–227, 1999.

[4] K. Engel. Sperner Theory. Cambridge University Press, 1997.

[5] M. Hamada, Y. Ootaguro, and T. Kuroda. Utilizing surplus timing for
power reduction. In Proc. IEEE Custom Integrated Circuits Conference,
pages 89–92, 2001.

[6] J. Kao, A. Chandrakasan, and D. Antoniadis. Transistor sizing issues
and tool for multi-threshold CMOS technology. In Proceedings of the
34th ACM/IEEE conference on Design Automation (DAC), pages 409–
414, 1997.

[7] T. Karnik, Y. Ye, J. Tschanz, L. Wei, S. Burns, V. Govindarajulu,
V. De, and S. Borkar. Total power optimization by simultaneous dual-
Vt allocation and device sizing in high performance microprocessors. In
Proceedings of the 39th ACM/IEEE conference on Design Automation
(DAC), pages 486–491, 2002.

[8] M. Ketkar and S.S. Sapatnekar. Standby power optimization via tran-
sistor sizing and dual threshold voltage assignment. In Proceedings of
the 2002 IEEE/ACM international conference on Computer-aided de-
sign (ICCAD), pages 375–378, 2002.

[9] N.S. Kim, T. Austin, T. Blaauw, T. Mudge, K. Flautner, H.S. Hu, M.J.
Irwin, M. Kandemir, and V. Narayanan. Leakage current: Moore’s law
meets static power. IEEE Computer, 36(12):68–75, 2003.

17

[10] W.-N. Li, A. Lim, P. Agrawal, and S. Sahni. On the circuit implemen-
tation problem. In Proceedings of the 29th ACM/IEEE conference on
Design Automation (DAC), pages 478–483, 1993.

[11] M. Liu, W.-S. Wang, and M. Orshansky. Leakage power reduction by
dual-Vth designs under probabilistic analysis of Vth variation. In Pro-
ceedings of the 2004 International Symposium on Low Power Electronics
and Design (ISLPED’04), pages 2–7, 2004.

[12] P. Maken, M. Degrauwe, M. Van Paemel, and H. Oguey. A voltage
reduction technique for digital systems. In 1990 IEEE International
Solid-State Circuits Conference, pages 238–239, 1990.

[13] D Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thomson, and
K. Keutzer. Minimization of dynamic and static power through joint
assignment of threshold voltages and sizing optimization. In Proceedings
of the 2003 International Symposium on Low Power Electronics and
Design (ISLPED), pages 158–163, 2003.

[14] R. Sedgewick. Algorithms in C++ Part 5: Graph Algorithms. Addison-
Wesley, 3rd edition, 2001.

[15] W.-T. Shiue and C. Chakrabarti. Low-power scheduling with resor-
ces operating at multiple voltages. IEEE Transactions on Circuits and
Systems–II: Analog and Digital Signal Processing, 47(6):536–543, 2000.

[16] F. Sill, F. Grassert, and D. Timmermann. Low power gate-level design
with mixed-Vth (MVT) techniques. In 17th Symposium on Integrated
Circuits and Systems (SBCCI), pages 278–282, 2004.

[17] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw. Duet:
An accurate leakage estimation and optimization tool for dual-Vt cir-
cuits. IEEE Transactions on VLSI Systems, 10(2):79–90, 2002.

[18] V. Sundararajan and K. Parhi. Low power synthesis of dual thresh-
old voltage CMOS VLSI circuits. In Proceedings of the 1999 Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
pages 139–144, 1999.

[19] K. Usami and M. Horowitz. Clustered voltage scaling for low-power
design. In International Symposium on Low Power Design, pages 3–8,
1995.

18

[20] K. Usami and M. Igarashi. Low-power design methodology and appli-
cations utilizing dual supply voltages. In Proceedings of the Asia and
South Pacific Design Automation Conference, pages 123–128, 2000.

[21] L. Wei, Z. Chen, K. Roy, M.C. Johnson, Y. Ye, and V.K. De. Design
and optimization of dual-threshold circuits for low-voltage low-power
applications. IEEE Transactions on VLSI Systems, 7(1):16–24, 1999.

[22] L. Wei, Z. Chen, K. Roy, Y. Ye, and V. De. Mixed-Vth (MVT) CMOS
circuit design methodology for low power applications. In Proceedings of
the 36th ACM/IEEE conference on Design Automation (DAC), pages
430–435, 1999.

[23] L. Wei, K. Roy, and C.-K. Koh. Power minimization by simultaneous
dual-Vth assignment and gate-sizing. In Proceedings of the IEEE Cus-
tom Integrated Circuits Conference, pages 413–416, 2000.

19

