
Cyclically Indecomposable Triple
Systems that are Decomposable

Martin Grüttmüller
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Abstract

In this paper we investigate exhaustively the cyclically indecom-
posable triple systems TSλ(v) for λ = 2, v ≤ 33 and λ = 3, v ≤ 21
and we identify the decomposable ones. We also construct, by using
Skolem-type and Rosa-type sequences, cyclically indecomposable two-
fold triple systems TS2(v) for all admissible orders. Further, we inves-
tigate exhaustively all cyclic TS2(v) that are constructed by Skolem-
type and Rosa-type sequences up to v ≤ 45 for indecomposability.



1 Introduction

A λ-fold triple system of order v, denoted TSλ(v) is a collection B of 3-subsets
(called triples or blocks) from a v-set V , such that any given pair of elements
in V lies in exactly λ triples. A one-fold triple system is called a Steiner
triple system STS(v).

A TSλ(v) is simple if it contains no repeated triples. A TSλ(v) is cyclic,
CTSλ(v) if its automorphism group contains a v-cycle. A TSλ(v) is called
indecomposable if its block set B cannot be partitioned into sets B1,B2 of
blocks to form TSλ1(v) and TSλ2(v), where λ1 + λ2 = λ with λ1, λ2 ≥ 1.

The constructions of triple systems with the properties cyclic, simple and
indecomposable, were studied by many researchers one property at a time;
for example, cyclic triple systems for all λs were constructed by Colbourn
and Colbourn [11], simple for λ = 2, by Stinson and Wallis [27]. Also, some
of these properties were combined in studies; for example, indecomposable
and simple for all λs studied Archdeacon and Dinitz [3], while Wang [28],
constructed cyclic simple two-fold triple systems for all admissible orders
and Zhang [29] constructed indecomposable simple (v, 3, λ)-BIBDs (for v ≥
24λ− 5).

When v ≡ 0 (mod 3) a cyclic CTS2(v) must contain each block in the
short orbit {0, v/3, 2v/3} (mod v) twice. Provided that these are the only
occurrences of repeated blocks, we will consider the CTS2(v) to be simple. In
[22], the second and third authors constructed cyclic, simple and indecom-
posable two-fold triple systems for all admissible orders. They also intro-
duced the notion of cyclically indecomposable triple systems. A CTSλ(v) is
called cyclically indecomposable if its block set B cannot be partitioned into
sets B1,B2 of blocks to form CTSλ1(v) and CTSλ2(v), where λ1 + λ2 = λ,
λ1, λ2 ≥ 1. In [14] the first author computed the number of indecomposable
non-isomorphic BIBD(v, k, λ) for k ≤ 5, v ≤ 13 and λ ≤ 6.

In this paper, we investigate the cyclically indecomposable triple systems.
We construct two-fold cyclically indecomposable triple systems, CTS2(v), for
all admissible orders. We also check exhaustively the triple systems that are
cyclically indecomposable and we determine if they actually are decompos-
able (to non cyclic) or not. Furthermore, the structure of some non-cyclic
decompositions is examined.

Up till now the only known examples for triple systems, that are cyclically
indecomposable but decomposable, was CTS3(9). But we found many new
examples the smallest for λ = 3 is this CTS3(15).

Example 1.1 The Base blocks are: {0, 1, 2}, {0, 1, 4}, {0, 2, 6}, {0, 2, 8},
{0, 3, 8}, {0, 3, 10}, {0, 4, 10} (mod15). This system can not be decomposed
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to two cyclic CTS(15)s but it can be decomposed to two non cyclic sub-
systems:
1) STS(15) : {0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, {12, 13, 14}, {2, 3, 6},
{5, 6, 9}, {8, 9, 12}, {0, 11, 12}, {0, 3, 14}, {2, 4, 8}, {5, 7, 11}, {8, 10, 14},
{2, 11, 13}, {1, 5, 14}, {1, 3, 9}, {4, 6, 12}, {0, 7, 9}, {3, 10, 12}, {0, 6, 13},
{1, 4, 11}, {2, 5, 12}, {4, 7, 14}, {0, 5, 8}, {2, 7, 10}, {3, 8, 11}, {5, 10, 13},
{6, 11, 14}, {1, 8, 13}, {2, 9, 14}, {0, 4, 10}, {3, 7, 13}, {1, 6, 10}, {4, 9, 13},
{1, 7, 12}
2) TS2(15) : {1, 2, 3}, {2, 3, 4}, {4, 5, 6}, {5, 6, 7}, {7, 8, 9}, {8, 9, 10},
{10, 11, 12}, {11, 12, 13}, {0, 13, 14}, {0, 1, 14}, {0, 1, 4}, {1, 2, 5}, {3, 4, 7},
{4, 5, 8}, {6, 7, 10}, {7, 8, 11}, {9, 10, 13}, {10, 11, 14}, {1, 12, 13}, {2, 13, 14},
{0, 2, 6}, {1, 3, 7}, {3, 5, 9}, {4, 6, 10}, {6, 8, 12}, {7, 9, 13}, {0, 9, 11},
{1, 10, 12}, {3, 12, 14}, {0, 4, 13}, {0, 2, 8}, {2, 4, 10}, {3, 5, 11}, {5, 7, 13},
{6, 8, 14}, {1, 8, 10}, {2, 9, 11}, {4, 11, 13}, {5, 12, 14}, {1, 7, 14}, {0, 3, 8},
{1, 4, 9}, {2, 5, 10}, {3, 6, 11}, {4, 7, 12}, {5, 8, 13}, {6, 9, 14}, {0, 7, 10},
{1, 8, 11}, {2, 9, 12}, {3, 10, 13}, {4, 11, 14}, {0, 5, 12}, {1, 6, 13}, {2, 7, 14},
{0, 3, 10}, {3, 6, 13}, {1, 6, 9}, {4, 9, 12}, {0, 7, 12}, {1, 5, 11}, {2, 6, 12},
{4, 8, 14}, {0, 5, 9}, {2, 7, 11}, {3, 8, 12}, {5, 10, 14}, {0, 6, 11}, {2, 8, 13},
{3, 9, 14}.

In 1957, T. Skolem [26] , when studying Steiner triple systems, consid-
ered the possibility of distributing the numbers 1, 2, . . . , 2n in n pairs (ar, br)
such that br − ar = r for r = 1, 2, . . . , n. For example, for n = 4, the
pairs (1, 2), (5, 7), (3, 6), and (4, 8) will be such a partition. Later, this par-
tition was written as a sequence; the previous partition can be written as
1, 1, 3, 4, 2, 3, 2, 4, which is now known as a Skolem sequence of order 4.

Formally, a Skolem sequence of order n is a sequence S = (s1, s2, . . . , s2n)
of 2n integers that satisfy the following conditions:

(1) For every k ∈ {1, 2, . . . , n} there exist exactly two elements si, sj such
that si = sj = k.

(2) If si = sj = k, i < j, then j − i = k.

An extended Skolem sequence of order n is a sequence ES = (s1, s2, . . . , s2n+1)
of 2n + 1 integers that satisfy conditions (1), (2), and:

(3) There is exactly one i ∈ {1, . . . , 2n + 1} such that si = 0.

The si = 0 is also known as the hook (∗) of the sequence, if s2n = 0, then
the sequence is called a hooked Skolem sequence. If sn+1 = 0, for n ≡
0, 3( mod 4) then the sequence is called a Rosa sequence and if sn+1 =
s2n+1 = 0, for n ≡ 1, 2( mod 4) then the sequence is called a hooked Rosa
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sequence. It is known that the necessary conditions for the existence of
(hooked) (extended) Skolem sequences are sufficient and also for (hooked)
Rosa sequences.

Theorem 1.2 [Skolem] [26] A Skolem sequence of order n exists if and
only if n ≡ 0, 1( mod 4).

[O’Keefe] [19] A hooked Skolem sequence of order n exists if and only if
n ≡ 2, 3( mod 4).

[Abrham & Kotzig][2] An extended Skolem sequence of order n exists for
all n.

[Baker] [5] An extended Skolem sequence of order n exists for all positions
i of the hook, if and only if i is odd and n ≡ 0, 1( mod 4) or i is even and
n ≡ 2, 3( mod 4).

[Rosa] [24] A Rosa sequence of order n exists if and only if n ≡ 0, 3(
mod 4) and a hooked Rosa sequence of order n exists if and only if n ≡ 1, 2(
mod 4).

The existence of a (hooked) Skolem sequence of order n implies the ex-
istence of a cyclic STS(6n + 1) [8,12], and the existence of a (hooked) Rosa
sequence implies the existence of a cyclic STS(6n + 3) [24].

For example, the extended Skolem sequence (or Rosa sequence) of order 4;
1, 1, 3, 4, 0, 3, 2, 4, 2 gives rise to the pairs (ar, br), r = 1, . . . , 4, {(1, 2), (7, 9),
(3, 6), (4, 8)} which gives the base blocks {0, i, bi + 4} (or {0, ai + 4, bi + 4}),
i = 1, . . . , 4({0, 1, 6}, {0, 2, 13}, {0, 3, 10}, {0, 4, 12})( mod 27). With the ad-
dition of the base block {0, 9, 18})( mod 27), we get the base blocks of an
STS(27).

An m-fold Skolem sequence of order n is a sequence mS =
(s1, s2, . . . , s2mn) with the following condition:

(1)′ For every k ∈ {1, 2, . . . , n} there exist m disjoint pairs (i, i+k), i, i+k ∈
{1, . . . , 2mn} such that si = si+k = k.

An m-fold extended Skolem sequence of order n is a sequence mES =
(s1, s2, . . . , s2mn+1) with property (1)′, as well as the condition (2)′ there
exists exactly one si = 0, 1 ≤ i ≤ 2mn + 1. If s2mn = 0, the extended
sequence is called an m-fold hooked Skolem sequence.

In [4], [5], it is shown that the necessary conditions are sufficient for the
existence of m-fold (hooked) (extended) Skolem sequences.

Theorem 1.3 An m-fold Skolem sequence of order n exists if and only if

(1) n ≡ 0, 1( mod 4), or
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(2) n ≡ 2, 3( mod 4) and m even,

and a hooked m-fold Skolem sequence of order n exists if and only if n ≡ 2
or 3( mod 4) and m is odd.

Theorem 1.4 Let m,n, k be positive integers. There exists an extended m-
fold Skolem sequence of order n with sk = 0 if and only if one of the following
conditions hold:

(1) n ≡ 0 or 1( mod 4), and k is odd;

(2) n ≡ 2 or 3( mod 4), m is even and k is odd;

(3) n ≡ 2 or 3( mod 4), m is odd and k is even.

For example, 2, 3, 2, 2, 3, 2, 1, 1, 3, 1, 1, 3 is a 2-fold Skolem sequence of
order 3 and 2, 2, 2, 2, 2, 0, 2, 1, 1, 1, 1, 1, 1 is a 3-fold extended Skolem sequence
of order 2.
A sequence 2T = (t1, t2, ..., t4n+2) is a two-fold Rosa sequence of order n if:
i) for every k ∈ {1, 2, ..., n} there exist 2 disjoint pairs (i, i + k), where
i, i + k ∈ {1, 2, ...4n + 2}, such that ti = ti+k = k.
ii) tn+1 = t3n+2 = 0.
In [8] it was shown that:

Theorem 1.5 There exists a two-fold Rosa sequence of order n if and only
if n ≥ 2.

A Langford sequence of order n and defect d is a sequence L =
(l1, l2, ..., l2n) of 2n integers satisfying the conditions:
1) for every k ∈ {d, d + 1, ..., d + n − 1} there exist exactly two elements
li, lj ∈ L such that li = lj = k,
2) if li = lj = k,i < j, then j − i = k.
The extended Langford sequences are defined in a similar manner to that of
the extended Skolem sequences. For more details about (extended) Langford
sequences the reader may consult [6, 10].

2 Constructing Simple Two-Fold Triple Sys-

tems

We will use the following constructions for CTS2(v) from Skolem sequences:
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Construction 2.1 (Rees, Shalaby, Sharary, [23]) Let 2S = (s1, s2, . . . , s4n)
be a two-fold Skolem sequence of order n. Then the set of triples {{0, r, br +
n}, {0, r, dr + n} : r = 1, 2 . . . , n} form the base blocks for a CTS2(6n + 1)
(where as usual (ar, br) and (cr, dr) are the pairs of positions in 2S for which
br − ar = dr − cr = r, r = 1, 2, . . . , n).

Construction 2.2 (Rees, Shalaby, Sharary, [23]) Let 2T =
(t1, t2, . . . , t4n+2) be a two-fold Rosa sequence of order n. (In particu-
lar, tn+1 = t3n+2 = 0). The set of triples {{0, r, br + n}, {0, r, dr + n} : r =
1, 2 . . . , n} form the base blocks for a cyclic two-fold 3-GDD of type 32n+1

(whose groups are given by {0, 2n + 1, 4n + 2}( mod 6n + 3)) which in turn
gives rise to a CTS2(6n + 3). (Again (ar, br) and (cr, dr) are the pairs of
positions in 2T for which br − ar = dr − cr = r, r = 1, 2, . . . , n).

Construction 2.3 (Rees, Shalaby, [22]) Let S = (s1, s2, . . . , s2n) be a
Skolem sequence of order n and let {(ar, br) : r = 1, 2, . . . , n} be the pairs of
positions in S for which br−ar = r. Then the set {r, ar +n, br +n} partitions
the set {1, 2, . . . , 3n} into n triples (a, b, c) such that a+b ≡ c( mod 3n+1).
Hence the set of triples {{0, r, br + n} : r = 1, 2 . . . , n} form the base blocks
for a cyclic two-fold triple system CTS2(3n + 1). For example,

n = 1 11 (1, 2, 3) ⇒ {0, 1, 3}( mod 4)

n = 4 11342324 (1, 5, 6) (2, 9, 11) (3, 7, 10) (4, 8, 12)

⇒ {0, 1, 6} {0, 2, 11} {0, 3, 10} {0, 4, 12} ( mod 13)

Construction 2.4 (Rees, Shalaby [22] Let T = (t1, t2, . . . , t2n+1) be a Rosa
sequence of order n. (In particular, tn+1 = 0), and let {(ar, br)} be the
set of positions in T for which br − ar = r, r = 1, 2, . . . , n. Then the set
{r, ar + n + 1, br + n + 1} partitions the set {1, 2, . . . , 3n + 2}\{n + 1, 2n + 2}
into n triples (a, b, c) such that a + b ≡ c( mod 3n + 3). Hence the set of
triples {{0, r, br + n + 1} : r = 1, 2 . . . , n} form the base blocks for a cyclic
two-fold 3-GDD of type 3n+1 (whose groups are given by {0, n + 1, 2n + 2}(
mod 3n + 3)) which in turn gives rise to a CTS2(3n + 3). For example,

n = 3 1130232 (1, 5, 6) (2, 9, 11) (3, 7, 10)

⇒ {0, 1, 6} {0, 2, 11} {0, 3, 10} (with 2 copies of {0, 4, 8}) ( mod 12)

Theorem 2.5 (Rees, Shalaby [22])

(i) The CTS2(v)s produced by Constructions 2.1 and 2.3 are simple.

(ii) The GDDs produced by Constructions 2.2 and 2.4 are simple.
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3 Cyclically Indecomposable Two-Fold

Triple Systems

We will make use of the following results.

Lemma 3.1 (Rees, Shalaby [22]) If 2S = (s1, s2, . . . , s4n) is a two-fold
Skolem sequence of order n and the pairs (ar, br), (cr, dr) contain among them
a pair (xr, yr) where xr + yr = 4n + 1 then the corresponding CTS2(6n + 1)
(arising out of Construction 2.1) is indecomposable.

Lemma 3.2 (Rees, Shalaby [22]) If 2T = (t1, t2, . . . , t4n+2) is a two-fold
Rosa sequence of order n and the pairs (ar, br), (cr, dr) contain among them
a pair (xr, yr) where xr + yr = 4n + 3 then the corresponding CTS2(6n + 3)
(arising out of Construction 2.2) is indecomposable.

Lemma 3.3 (Rees, Shalaby [22]) If S = (s1, s2, . . . , s2n) is a Skolem se-
quence of order n in which s2n−1 = s2n = 1, then the corresponding
CTS2(3n + 1) (arising out of Construction 2.3) is indecomposable.

Lemma 3.4 (Rees, Shalaby [22]) If T = (t1, t2, . . . , t2n+1) is a Rosa sequence
of order n in which t2n = t2n+1 = 1, then the corresponding CTS2(3n + 3)
(arising out of Construction 2.4) is indecomposable.

When discussing cyclic m-fold triple systems, there is a weaker notion of
indecomposability that is sometimes useful to consider. We defined in the
introduction a cyclic m-fold triple system to be cyclically indecomposable if
it does not contain a cyclic m′-fold triple system for any 0 < m′ < m. In our
context, where m = 2, a two-fold cyclic triple system CTS2(v) is cyclically
indecomposable if it does not contain a cyclic STS(v) as a subsystem (the
complement of which would of course be a second cyclic STS(v)).

Thus, let 2S = (s1, s2, . . . , s4n) be a two-fold Skolem sequence of order n
and suppose that we can write 2S as a vector sum 2S = S1 +S2 of sequences
S1 = (s1

1, s
1
2, . . . , s

1
4n), S2 = (s2

1, s
2
2, . . . , s

2
4n), (whence 2S = (s1

1 + s2
1, s

1
2 +

s2
2, . . . , s

1
4n + s2

4n), each one of which satisfies the following two properties:

(1) For each k ∈ {1, 2, . . . , n} there are exactly two elements sα
i , sα

j ∈ Sα

such that sα
i = sα

j = k and j − i = k.

(2) For each 1 ≤ i ≤ 2n exactly one of sα
i , sα

4n−i+1 is equal to 0.

Among the pairs (ar, br), (cr, dr) arising from 2S via Construction 2.1 we
choose only those pairs that correspond to non-zero entries in S1. Since
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there are 2n non-zero entries in S1 we will therefore have a set of n difference
triples, each of the form (r, ar + n, br + n) or (6n + 1− r, dr + n, cr + n), over
Z6n+1. Now because of Property (1), it follows that for each k = 1, 2, . . . , n,
exactly one of k, 6n+1−k will appear as a difference among these n difference
triples, and because of Property (2), the same will be true for each k =
n + 1, n + 2, . . . , 3n. Therefore, the set {{0, r, yr + n} : r = 1, 2, . . . , n} of
base blocks arising out of these n difference triples will generate a cyclic
STS(6n + 1), whence the CTS2(6n + 1) arising from the original sequence
2S is cyclically decomposable.

On the other hand, suppose that we have a two-fold Skolem sequence
2S = (s1, s2, . . . , s4n) where the CTS2(6n + 1) arising via Construction 2.1
is cyclically decomposable, that is, contains a cyclic STS(6n + 1) as a sub-
system. Then among the 2n base blocks for the CTS2(6n + 1) there are
n of them which generate the cyclic STS(6n + 1); let these base blocks be
{0, r, yr +n} for r = 1, 2, . . . , n. Then for each k = 1, 2, . . . , 3n, exactly one of
k, 6n+1−k will appear as a difference among the corresponding n difference
triples, each of the form (r, ar+n, br+n) or (6n+1−r, dr+n, cr+n). Now con-
struct a sequence S1 = (s1

1, s
1
2, . . . , s

1
4n) as follows. For each k = 1, 2, . . . , n,

if (k, ak + n, bk + n) is one of the foregoing n difference triples, then set
s1

ak
= s1

bk
= k; otherwise (6n + 1− k, dk + n, ck + n) is one of the n difference

triples and we set s1
ck

= s1
dk

= k. Set all remaining s1
i equal to 0. Now S1

clearly satisfies Property (1) above. With regards to Property (2), suppose
that s1

i = k for some 1 ≤ i ≤ 2n. Then the difference i + n appears among
the n difference triples, whence the difference 6n+1−(i+n) = 5n−i+1 does
not. Hence s1

4n−i+1 = 0. On the other hand, if s1
i = 0, then the difference

i + n does not appear among the n difference triples and so the difference
6n+1−(i+n) = 5n−i+1 must so appear, whence s1

4n−i+1 = k ∈ {1, 2, . . . , n}.
Thus S1 satisfies Property (2) above. Now let S2 be the vector difference
S2 = S − S1. Then we have S = S1 + S2 where each Sα satisfies Properties
(1) and (2) above. The foregoing discussion now gives us the following.

Theorem 3.5 Let 2S = (s1, s2, . . . , s4n) be a two-fold Skolem sequence of
order n. Then the two-fold cyclic triple system CTS2(6n + 1), arising out
of Construction 2.1, is cyclically indecomposable if and only if 2S cannot be
written as a vector sum 2S = S1 + S2, where each Sα satisfies Properties (1)
and (2) above.

Theorem 3.5 has an obvious analogue for CTS2(6n + 3)s:

Theorem 3.6 Let 2T = (t1, t2, . . . , t4n+2) be a two-fold Rosa sequence of
order n. Then the two-fold cyclic triple system CTS2(6n + 3), arising out
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of Construction 2.2 is cyclically indecomposable if and only if 2T cannot be
written as a vector sum 2T = T1 + T2, where each Tα satisfies the following
two properties:

(1)′ For each k ∈ {1, 2, . . . , n} there are exactly two elements tαi , tαj ∈ Tα

such that tαi = tαj = k and j − i = k.

(2)′ tαn+1 = tα3n+2 = 0 and, for each i ∈ {1, 2, . . . , 2n + 1}\{n + 1} exactly
one of tαi , tα4n−i+3 is equal to 0.

Thus, for example, the two-fold Skolem sequences of order n > 2 con-
structed in [[23], Theorem 2.2] all give rise to cyclically indecomposable two-
fold triple systems of order 6n + 1:

Theorem 3.7 Let n > 2 and let 0n be the largest odd integer not exceed-
ing n and let En be the largest even integer not exceeding n. Then let
2S = (En, En− 2, . . . , 4, 2, En, 2, 4, . . . , En, En− 2, . . . , 4, 2, En, 2, 4, . . . , En−
2, 0n, 0n−2, . . . , 3, 1, 1, 3, . . . , 0n−2, 0n, 0n, 0n−2, . . . , 3, 1, 1, 3, . . . , 0n−2, 0n).
Then 2S yields (via Construction 2.1) a cyclically indecomposable two-fold
cyclic triple system CTS2(6n + 1).

Proof.
Suppose first that n is even, and that 2S = S1+S2. Without loss of generality,
we may suppose that s1

1 = En = n and s1
n+1 = n. But then we would have

s1
4n−1+1 = s1

4n = 0 and s1
4n−(n+1)+1 = s1

3n = 0, whence S1 will not contain
0n = n − 1, a contradiction. Hence 2S 6= S1 + S2 and the corresponding
CTS2(6n + 1) is cyclically indecomposable.

Now suppose that n is odd. If n = 3, then the corresponding sequence
is 2S = (2, 2, 2, 2, 3, 1, 1, 3, 3, 1, 1, 3), which gives rise to an indecomposable
CTS2(19) (apply Lemma 3.1 with x1 = 6 and y1 = 7) which is of course
cyclically indecomposable. For n ≥ 5, we suppose that 2S = S1 + S2. With-
out loss of generality, we may suppose that s1

1 = En = n− 1 and s1
n = n− 1.

Now this forces s1
4n−1+1 = s1

4n = 0 and s1
4n−(n)+1 = s1

3n+1 = 0, whence

s1
3n = 0 and s1

4n−1 = 0. But then s1
4n−3n+1 = s1

n+1 = En − 2 = n − 3 and
s1
4n−(4n−1)+1 = s1

2 = En − 2 = n − 3. This means that S1 must contain all
four copies of the number n − 3, a contradiction. Hence 2S 6= S1 + S2 and
again the corresponding CTS2(6n + 1) is cyclically indecomposable.

Remark 3.8 With regards n = 1 and 2 in relation to Theorem 3.7, the only
two-fold Skolem sequence of order 1 is (1111), which gives rise to the cyclic
CTS2(7) whose base blocks are {0, 1, 3} and {0, 1, 5}, each of which gener-
ates a (cyclic) STS(7). On the other hand, there are two two-fold Skolem
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sequences of order 2, namely (11112222) and (11222211). Now the CTS2(13)
arising from (11112222) has as its base blocks {0, 1, 4}, {0, 1, 6}, {0, 2, 9} and
{0, 2, 10}, no pair of which generates an STS(13); hence this CTS2(13) is
cyclically indecomposable. But the sequence (11222211) can be written as
S1 + S2, where S1 = (11202000) and S2 = (00020211) whence the corre-
sponding CTS2(13) (whose base blocks are {0, 1, 4}, {0, 1, 10}, {0, 2, 7}, and
{0, 2, 8}) is cyclically decomposable into the two STS(13)s generated, respec-
tively, by {{0, 1, 4}, {0, 2, 7}} and {{0, 1, 10}, {0, 2, 8}}.

In a similar fashion, the two-fold Rosa sequences of order n ≥ 3 con-
structed in [9, Theorem 3.4] all give rise to cyclically indecomposable two-fold
triple systems of order 6n + 3:

Theorem 3.9 (i) Let n be even, n ≥ 4, and let 2T = (n − 1, n −
3, . . . , 3, 1, 1, 3, . . . , n − 3, n − 1, 0, n, n − 2, . . . , 4, 2, n, 2, 4, . . . , n, n −
2, . . . , 4, 2, n, 2, 4, . . . , n−2, 0, n−1, n−3, . . . , 3, 1, 1, 3, . . . , n−3, n−1).
Then 2T yields (via Construction 2.2) a cyclically indecomposable two-
fold cyclic triple system CTS2(6n + 3).

(ii) Let n be odd, n ≥ 3, and let 2T = (11202232330311) if
n = 3, 2T = (3113502325341154042524) if n = 5, 2T =
(531135703523275641174606427246) if n = 7; if n ≡ 1 ( mod 4) and
n ≥ 9, then take 2T = (n − 2, n − 4, . . . , 1, 1, 3, . . . , n − 2, n, 0, n −
4, n−2, n−8, n−6, . . . , [572325397], . . . , n−4, n−6, n, n−2, n−1, n−
3, . . . , 4, 1, 1, n, 4, 6, . . . , n − 1, 0, n − 1, n − 3, . . . , 2, n, 2, 4, . . . , n − 1),
while if n ≡ 3 ( mod 4) and n ≥ 11, then take 2T to be the forego-
ing sequence, with the subsequence [572325397] replaced by [793523275].
Then 2T yields (via Construction 2.2) a cyclically indecomposable two-
fold cyclic triple system CTS2(6n + 3).

Proof.

(i) Suppose that 2T = T1 + T2. Without loss of generality, we may sup-
pose that t1n+2 = t12n+2 = n. But then t14n−(n+2)+3 = t13n+1 = 0 and

t14n−(2n+2)+3 = t12n+1 = 0; this means that T1 will not contain n − 2, a

contradiction. Hence 2T 6= T1+T2 and the corresponding CTS2(6n+3)
is cyclically indecomposable.

(ii) Let n ≥ 7 and suppose that 2T = T1+T2. Without loss of generality, we
may suppose that t11 = n − 2, whereupon t14n+2 = 0 and so t13n+3 = 0.
Now t13n+3 = 0 ⇒ t13n+1 = n − 1 ⇒ t12n+2 = n − 1 ⇒ t12n+1 = 0 ⇒
t1n+3 = 0 ⇒ t14n−(n+3)+3 = t13n = n − 3 ⇒ t12n+3 = n − 3 ⇒ t12n =

10



0 ⇒ t1n = 0. Thus, we have t13n+3 = 0 and t1n = 0, a contradiction.
Hence 2T 6= T1 + T2 and the corresponding CTS2(6n + 3) is cyclically
indecomposable.

We leave the verification for n = 3 and n = 5 as an exercise for the
reader.

Remark 3.10 With regards n = 1 and 2 in relation to Theorem 3.9, there
is no two-fold Rosa sequence of order 1, while the only two-fold Rosa se-
quence of order 2 is (1102222011), and this sequence can be written as
T1 + T2 where T1 = (1102020000) and T2 = (0000202011). The correspond-
ing CTS2(15) (whose base blocks are {0, 1, 4}, {0, 1, 12}, {0, 2, 8}, {0, 2, 9},
and {0, 5, 10}, {0, 5, 10}) is therefore cyclically decomposable into the two
STS(15)s generated, respectively, by {{0, 1, 4}, {0, 2, 8}, {0, 5, 10}} and
{{0, 1, 12}, {0, 2, 9}, {0, 5, 10}}.

4 Cyclically indecomposable triple systems

that are decomposable

In this section, we will investigate exhaustively the decomposability of
CTSλ(v) for λ = 2, v ≤ 33 and λ = 3, v ≤ 21. To do so, we need some
more definition. Let B = {b1, b2, b3} be a block. A translate B + i, i ∈ Zv

of B is the block B + i = {b1 + i, b2 + i, b3 + i} mod v. In a CTS the set
of distinct translates forms a block orbit. An arbitrarily fixed block in a
block orbit is called a base block for this orbit. A base block B is canonical
if it is lexicographically smallest in its block orbit and is said to be short if
B + i = B for some nonzero i ∈ Zv. To represent a CTS it suffices to list all
its canonical base blocks. All blocks in one orbit provide the same (multi)
set of differences d(B) = {±(b2−b1),±(b3−b1),±(b3−b2)} or, if B is a short
block d(B) = {±(b2 − b1)} = {±(v/3)}. Given a block B and an integer
w which is co-prime to v, we define w · B = {wb1, wb2, wb3} mod v. Two
CTS with block sets B1,B2 are equivalent if there exist w, i ∈ Zv such that
for each canonical base block B1 ∈ B1 there is some canonical base block
B2 ∈ B2 with w ·B1 + i = B2. Non-isomorphic CTS are clearly inequivalent.
Unfortunately, the converse is not true in general the smallest known coun-
terexample being a CTS2(16), see Brand [7]. Under certain circumstances
one can ensure that inequivalent CTS are also non-isomorphic, see Bays [6],
Lambossy [17], Pálfy [20], Phelps [21] or Brand [8]. Although these condi-
tions do not apply for all orders v considered here, we use the equivalence
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notation because this is computational less demanding as a complete isomor-
phism test. A CTS is said to be canonical if its representation by canonical
base blocks is lexicographically smallest among the representation of all CTS
in its equivalence class.

We start our investigations by determining a list with all inequivalent
CTSλ(v), for λ = 2 or 3, v ≡ 1, 3 mod 6. Note, that CTS2(v), v ≡ 0, 4
mod 6 and CTS3(v), v ≡ 5 mod 6 also exist, but are trivially indecompos-
able as there is no STS(v) for v ≡ 0, 4, 5 mod 6. The list is created by
a backtrack-algorithm, a search technique which builds up partial solutions,
exhaustively covering all possibilities in a systematic fashion. For more infor-
mation on search techniques used in design theory see for example Colbourn
[10], Gibbons [13] or Kreher and Stinson [16]. In our problem the search
space for the backtrack consists of all canonical base blocks, and a partial
CTSλ(v) representation is a collection of canonical base blocks with the ad-
ditional property that every difference d ∈ Zv \ {0} occurs at most λ times
among the differences of the base blocks. A partial CTS with canonical base
block representation R is said to be proper if R is lexicographically smallest
among the partial CTS representations in its equivalence class. The task of
our enumeration problem is to find all proper partial CTS representations
where every difference d occurs exactly λ times among the differences of the
base blocks. Using this approach we constructed all inequivalent, canonical
CTSλ(v) for λ = 2, v ≤ 31 and λ = 3, v ≤ 21. The number IECTS of
inequivalent CTSλ(v) over Zv is listed in Tables 1 and 2 and is the same as
listed in [1, Table IV.10.79].

In a second step we try to (cyclically) decompose each of the constructed
canonical CTS. Colbourn and Colbourn [12] proved that deciding whether
a TSλ(v) (λ = 3, 4) is decomposable is NP-complete. Whereas deciding
whether a TS2(v) and therefore a CTS2(v) is decomposable can be done by
a polynomial time algorithm, see Kramer [15]. To do this we formulate our
problem as a problem for (multi)graphs. The (pair) block-intersection graph
of a CTS has the block set B as vertex set and there is an edge between blocks
B1 and B2 (B1 6= B2) labeled with the pair {i, j} if {i, j} ⊆ B1 ∩ B2. Note
that multiple edges (with distinct labels) are possible if two blocks intersect
in more than two elements. Moreover, the edges with label {i, j} form for
each pair {i, j} ⊂ Zv (i 6= j) a λ-clique.

Theorem 4.1 A CTSλ(v) is decomposable if and only if there is a λ′ ∈ N
with 1 ≤ λ′ ≤ bλ

2
c and a coloring (red, blue) of the vertices (i.e. blocks) of the

block-intersection graph such that in the subgraph induced by the red vertices
the edges with label {i, j} form for each pair {i, j} ⊂ Zv (i 6= j) a λ′-clique.

In the case λ = 2 such a coloring exists if and only if the block-intersection
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v 7 9 13 15 19 21 25 27 31
IECTS 2 0 9 9 201 175 19543 10841 2532755
IDCTS 0 0 6 5 161 109 18201 10320 2468671

CIDCTS 0 0 6 5 161 109 18201 10320 2468671

Table 1: Decomposability for CTS2(v) with v ≤ 31

v 7 9 13 15 19 21
IECTS 3 4 47 421 13316 212968
IDCTS 1 1 24 355 8839 209825

CIDCTS 1 4 24 400 8840 202578

Table 2: Decomposability for CTS3(v) with v ≤ 21

graph is bipartite which can efficiently be checked in linear time. For λ ≥ 3
we used a backtrack algorithm described in [14] to obtain the number IDCTS
of indecomposable CTS. The results are summarized in Tables 1 and 2 and
the actual decompositions are available from the authors upon request.

Similarly, in order to decide if a CTS represented by the set of canonical
base blocks R is cyclically decomposable we define the base block-difference
graph with vertex set R which has an edge between base blocks B1 and B2

labeled with d if either B1 6= B2 and d ∈ d(Bi) ∩ d(Bj), or B1 = B2 and
rd(B1) > 1, where rd(B) counts how often difference d is repeated in the
multi set d(B). Edges of the first kind are repeated rd(B1) · rd(B2) times,
while loops are repeated

(
rd(B1)

2

)
times. Here, the edges with label d form for

each d ∈ Zv \{0} a (possibly degenerated) λ-clique. Degenerated means that
some vertices of the clique may collapse into one vertex generating multiple
edges and loops.

Theorem 4.2 A CTSλ(v) is cyclically decomposable if and only if there is
a λ′ ∈ N with 1 ≤ λ′ ≤ bλ

2
c and a coloring (red, blue) of the vertices (i.e.

base blocks) of the base block-difference graph such that in the subgraph in-
duced by the red vertices the edges with label d form for each d ∈ Zv \ {0} a
(degenerated) λ′-clique.

Again, such a coloring exists for λ = 2 if and only if the block-intersection
graph is bipartite which can efficiently be computed. For λ ≥ 3 we used a
variation of the backtrack algorithm described in [14] that is able to deal with
loops to obtain the number CIDCTS of cyclically indecomposable CTS.
The results are displayed Tables 1 and 2.
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v 7 9 13 15 19 21 25 27 31 33
IECTSwRD 2 0 7 8 116 118 11774 6257 1512940 1050764
IDCTSwRD 0 0 4 4 76 52 10432 5736 1448856 992656

CIDCTSwRD 0 0 4 4 76 52 10432 5736 1448856 992656

Table 3: Decomposability for CTS2(v) without repeated differences with
v ≤ 33

The following observation was helpful to speed up the computations in
the case λ = 2 and to get an additional result when v = 33.

Lemma 4.3 A CTS2(v) having a base block B those set of differences d(B)
contains a repeated difference d is indecomposable.

Proof.
As already mentioned, we only need to consider v ≡ 1, 3 mod 6. Suppose
that B = {x, x + d, x + 2d}, then B + d = {x + d, x + 2d, x + 3d} contains a
common pair {x + d, x + 2d} with B. Thus, if B is colored red, then B + d
must be colored blue, B + 2d red, B + 3d blue again, and so forth. So for all
i ∈ Zv the blocks B +2id need to be colored red and the blocks B +(2i+1)d
need to be colored blue, which is impossible as 2id and (2i + 1)d generate
the same orbit for odd v.

In Table 3 we present the results where we only considered inequivalent
CTS2(v) without repeated differences (wRD) in the canonical base blocks.
In the case v = 33 we did not create all inequivalent CTS2 just those without
repeated differences so this value is missing in Table 1.

We remark that there is no cyclically indecomposable CTS2(v), v ≤ 33
that is decomposable. But it is worth to notice that some cyclically decom-
posable CTS2 also admit a non-cyclic decomposition.

Example 4.4 The CTS2(21) generated by the base blocks {0, 1, 3}, {0, 1, 9},
{0, 2, 5}, {0, 4, 10}, {0, 4, 12}, {0, 5, 15}, {0, 7, 14}, {0, 7, 14} contains a cyclic
sub-design with base blocks {0, 1, 3}, {0, 4, 12}, {0, 5, 15}, {0, 7, 14}, but also
contains a non-cyclic triple system which can be obtained by developing the
following blocks +3 mod 21: {0, 1, 3}, {1, 2, 4}, {2, 3, 11}, {0, 2, 5}, {2, 6, 12},
{0, 4, 12}, {1, 5, 13}, {1, 6, 16}, {0, 7, 14}, {1, 8, 15}, {2, 9, 16}.

Cyclically indecomposable CTS3(v) that are decomposable exist for v =
9, 15, 19 or 21, but not for v = 7 or 13. Concerning the structure of the de-
compositions we observe that most sub STS are generated +3 mod v. So the
STS(15) in Example 1.1 can be represented by the blocks {0, 1, 2}, {2, 3, 6},
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{2, 4, 8}, {1, 3, 9}, {1, 4, 11}, {2, 5, 12}, {0, 4, 10}, all remaining blocks are
formed by adding 3 modulo 15. On the other hand there are decomposi-
tions which are not that easy to generate.

Example 4.5 The CTS3(9) represented by base blocks {0, 1, 2}, {0, 1, 5},
{0, 2, 4}, {0, 3, 6}, {0, 3, 6}, {0, 3, 6} can be decomposed into a STS(9) and a
TS2(9) in the following way. For the STS(9) take blocks {0, 1, 2}, {3, 5, 7},
{6, 4, 8}, {0, 7, 8}, {2, 3, 4}, {1, 5, 6}, {0, 4, 5}, {3, 1, 8}, {6, 2, 7}, {0, 3, 6},
{1, 4, 7}, {2, 5, 8}, which are not closed under addition with +3 mod 9. But
note that there is also a cyclic sub Steiner triple system of the CTS3(9) which
is generated by developing the blocks {0, 1, 2}, {2, 3, 7}, {2, 4, 6}, {0, 3, 6},
{1, 4, 7}, {2, 5, 8} +3 mod 9 (the last 3 blocks are short blocks).

With the examples above in mind one might ask whether for all decomposable
CTS3(v) there is a decomposition generated +3 mod v. This is not the case
as the unique cyclically indecomposable, but decomposable CTS3(19) shows.

Example 4.6 The CTS3(19) represented by base blocks {0, 1, 2}, {0, 1, 8},
{0, 2, 4}, {0, 3, 6}, {0, 3, 11}, {0, 4, 10}, {0, 4, 13}, {0, 5, 10}, {0, 5, 12} con-
tains the following sub STS(9) : {0, 1, 2}, {0, 17, 18}, {2, 3, 4}, {4, 5, 6},
{6, 7, 8}, {8, 9, 10}, {10, 11, 12}, {12, 13, 14}, {14, 15, 16}, {5, 16, 17},
{1, 3, 5}, {1, 16, 18}, {5, 7, 9}, {9, 11, 13}, {13, 15, 17}, {1, 4, 17}, {4, 7, 10},
{5, 8, 11}, {10, 13, 16}, {11, 14, 17}, {0, 3, 11}, {0, 8, 16}, {1, 9, 12}, {2, 5, 13},
{2, 10, 18}, {3, 6, 14}, {4, 12, 15}, {6, 9, 17}, {7, 15, 18}, {1, 10, 14}, {2, 6, 12},
{2, 8, 17}, {2, 11, 15}, {3, 7, 13}, {3, 9, 18}, {3, 12, 16}, {4, 8, 14}, {5, 14, 18},
{8, 12, 18}, {0, 4, 13}, {0, 6, 10}, {0, 9, 15}, {1, 7, 11}, {1, 6, 15}, {2, 7, 16},
{5, 10, 15}, {6, 11, 16}, {7, 12, 17}, {0, 5, 12}, {0, 7, 14}, {1, 8, 13}, {2, 9, 14},
{3, 8, 15}, {3, 10, 17}, {4, 9, 16}, {4, 11, 18}, {6, 13, 18}.

5 Cyclically indecomposable two-fold triple

systems constructed from Skolem-type and

Rosa-type sequences

We also investigated exhaustively all CTS2(v) that are constructed by
Skolem-type and Rosa-type sequences up to v ≤ 45 for indecomposabil-
ity. All Skolem and Rosa sequences used are constructed by Churchill and
Shalaby [9], the listings of the sequences are available from the authors upon
request. The number of sequences considered are presented in the Appendix
in Tables 8 and 9.

We form with Constructions 2.1 to 2.4 for each given sequence the cor-
responding CTS2(v). Following Lemma 4.3 we only need to do this for
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n 1 2 3 4 5 6 7
v 7 13 19 25 31 37 43

No. of CTS from 2-Skolem seq. 1 3 12 186 3212 79238 2770026
Indecomposable 0 2 8 146 2992 74916 2692464

Cyclically indecomposable 0 2 8 146 2992 74916 2692464

Table 4: CTS2(v) with v ≤ 43 constructed from two-fold Skolem sequences
(Construction 2.1)

CTS2(v) without repeated differences in some base block. Two-fold Skolem
and Rosa sequences which provide base blocks with repeated differences are
characterized by Lemma 3.1 and 3.2. We generalize Lemma 3.3 and 3.4 to
identify all Skolem and Rosa sequences which would give base blocks with
repeated differences.

Lemma 5.1 1. If S = (s1, s2, . . . , s2n) is a Skolem sequence of order n in
which si = 2n+1−i for some n+1 ≤ i ≤ 2n or si = sn+1−i = n+1−2i
for some 1 ≤ i ≤ n/2, then the corresponding CTS2(3n + 1) (arising
out of Construction 2.3) is indecomposable.

2. If T = (t1, t2, . . . , t2n+1) is a Rosa sequence of order n in which ti =
2n + 2− i for some n + 2 ≤ i ≤ 2n + 1 or ti = tn+1−i = n + 1− 2i for
some 1 ≤ i ≤ n/2, then the corresponding CTS2(3n + 3) (arising out
of Construction 2.4) is indecomposable.

Proof.
If si = 2n+1− i for some n+1 ≤ i ≤ 2n, then Construction 2.3 provides the
base block {0, 2n+1− i, i+n} with difference set {±(2n+1− i),±(i+n) =
∓(2n+1−i),±(n+1−2i)} that contains d = 2n+1−i twice. If si = sn+1−i =
n+1−2i for some 1 ≤ i ≤ n/2, then the base block {0, n+1−2i, 2n+1− i}
providing differences {±(n+1−2i),±(2n+1−i),±(−n−i) = ±(2n+1−i)} is
obtained from Construction 2.3. Again, difference d = 2n+1− i is repeated.
Similarly, Construction 2.4 provides repeated difference d = 2n + 2 − i if
ti = 2n+2− i for some n+2 ≤ i ≤ 2n+1 or ti = tn+1−i = n+1−2i for some
1 ≤ i ≤ n/2. It is a short exercise to check that other repeated differences
can not occur.

The CTS2(v) obtained are treated as described in the previous section
in order to decide (cyclically) decomposability. The results are presented in
Tables 4 to 7.
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n 2 3 4 5 6 7
v 15 21 27 33 39 45

No. of CTS from 2-Rosa seq. 1 8 50 912 22286 782374
Indecomposable 0 4 44 802 21258 764196

Cyclically indecomposable 0 4 44 802 21258 764196

Table 5: CTS2(v) with v ≤ 45 constructed from two-fold Rosa sequences
(Construction 2.2)

n 4 5 8 9 12 13
v 13 16 25 28 37 40

No. of CTS from Skolem seq. 6 10 504 2656 455936 3040560
Indecomposable 6 10 481 2656 452123 3040560

Cyclically indecomposable 6 10 481 2656 452123 3040560

Table 6: CTS2(v) with v ≤ 40 constructed from Skolem sequences (Con-
struction 2.3)

n 3 4 7 8 11 12
v 12 15 24 27 36 39

No. of CTS from Rosa seq. 2 2 44 260 33104 203712
Indecomposable 2 2 44 251 33104 202415

Cyclically indecomposable 2 2 44 251 33104 202415

Table 7: CTS2(v) with v ≤ 39 constructed from Rosa sequences (Construc-
tion 2.4)
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Order Number of Skolem sequences Number of Rosa sequences
1 1 0
2 0 0
3 0 2
4 6 2
5 10 0
6 0 0
7 0 44
8 504 260
9 2656 0
10 0 0
11 0 33104
12 455936 203712
13 3040560 0

Table 8: Number of Skolem and Rosa sequences of order n ≤ 13

6 Appendix

We give listings of small orders of (2-fold) Skolem and Rosa sequences and
present in Tables 8 and 9 the number of distinct sequences of small order.

Listings of small orders of Skolem sequences:
n= 4: 11423243; 11342324; 41134232; 23243114; 42324311; 34232411
n= 5: 1152423543; 1134532425; 4115423253; 5113453242; 4511435232;
2325341154; 2423543115; 3523245114; 5242354311; 3453242511
Listings of small orders of Rosa sequences:
n= 3: 1130232; 2320311
n=4: 113403242; 242304311
Listings of small orders of 2-fold Skolem sequences
n=1: 1111
n=2: 11112222; 11222211; 22221111
n=3: 111123233232; 113113232232; 112322323113; 112323323211;
311311232232; 311331132222; 311322223113; 311323223211; 222231133113;
232232113113; 232232311311; 232332321111
Listings of small orders of 2-fold Rosa sequences
n=2: 1102222011
n= 3: 23203112320311; 23203111130232; 23203311320211; 11302322320311;
11302321130232; 11303323220211; 11202311330232; 11202232330311
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Order Number of 2-fold Skolem sequences Number of 2-fold Rosa sequences
1 1 0
2 3 1
3 12 8
4 186 50
5 3212 912
6 79238 22286
7 2770026 782374
8 127860956 36649766
9 > 5000000000

Table 9: Number of 2-fold Skolem and 2-fold Rosa sequences of order n ≤ 9

7 Conclusion

In this paper we investigated CTSλ(v) for the properties of being indecom-
posable or cyclically indecomposable. On first inspection it seems that for
λ = 2 all cyclically indecomposable CTS are also indecomposable. So it
would be of interest to either find a CTS2(v) which is cyclically indecom-
posable but decomposable or to prove that this is impossible. For λ = 3 we
are interested in the spectrum of those integers v for which there exists a
cyclically indecomposable but decomposable CTS3(v).
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N premier (ou puissance du nombre premier) de la forme 6n+1, II-VI.
Comment. Math. Helv., 3 (1931), 22-41, 122-147, 307-325.

[7] N. Brand. Isomorphic designs that are not multiplier equivalent. Discrete
Math., 57 (1985), 159-165.

[8] N. Brand. On the Bays-Lambossy theorem. Discrete Math., 78 (1989),
217-222.

[9] D. Churchill and N. Shalaby. Constructions for generalizations of
Skolem/Rosa type sequences Summer research project 2004, Memorial
University of Newfoundland.

[10] M. J. Colbourn. Algorithmic Aspects of Combinatorial Designs: A Sur-
vey. Ann. Discrete Math., 26 (1985), 67-136.

[11] C. J. Colbourn and M. J. Colbourn. Cyclic block designs with block size
3. European J. Combin., 2 (1981), 21-26.

[12] C. J. Colbourn and M. J. Colbourn. The Computational Complexity of
Decomposing Block Designs. Discrete Appl. Math., 27 (1985), 345-350.

[13] P.B. Gibbons. Computational methods in design theory. C. J. Colbourn
and J. H. Dinitz (Editors), The CRC Handbook of Combinatorial De-
signs, CRC Press, Boca Raton, (1996), 718-740.
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