Mandatory Representation Designs $\operatorname{MRD}(4, k ; v)$ with $k \equiv 2 \bmod 3$

Gennian Ge
Department of Mathematics, Zhejiang University, Hangzhou 310027, Zhejiang, P.R. China
gnge@zju.edu.cn
\section*{Martin Grüttmüller}
Department of Mathematics, University of Rostock, 18051 Rostock, Germany
martin.gruettmueller@uni-rostock.de

Sven Hartmann

Department of Information Systems, Massey University, Private Bag 11222, Palmerston North, New Zealand
s.hartmann@massey.ac.nz

Rolf Rees
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada rolf@math.mun.ca

Abstract

A mandatory representation design $\operatorname{MRD}(K ; v)$ is a pairwise balanced design on v points with block sizes from the set K in which for each $k \in K$ there is at least one block in the design of size k. In this paper, we show that the necessary criteria for an $\operatorname{MRD}(K ; v)$ to exist are asymptotically sufficient for finite K. Furthermore, we consider MRDs with $K=\{4, k\}$, where $k \equiv 2 \bmod 3, k \geq 5$. Here, we prove that the necessary conditions for existence are sufficient if $v \equiv 2 \bmod 3$ and $v \geq 18 k^{2}$, or $v \equiv 0 \bmod 3$ and $v \geq 12 k^{3}$, or $v \equiv 1 \bmod 3$ and $v \geq 8 k^{4}$.

Keywords: pairwise balanced design, mandatory representation design, asymptotic existence
February 14, 2005

1 Introduction

A pairwise balanced design PBD is a pair (X, \mathcal{B}), where X is a set of points and \mathcal{B} is a collection of subsets of X called blocks, such that each pair of distinct points from X occurs in a unique block. $\operatorname{A~} \operatorname{PBD}(K ; v)$ is a pairwise balanced design on v points in which each block has size an integer in the set K. A mandatory representation design $\operatorname{MRD}(K ; v)$ is a $\operatorname{PBD}(K ; v)$ in which for each $k \in K$ there is at least one block in the design of size k. Necessary conditions for the existence of a $\operatorname{PBD}(K ; v)$ are

$$
\begin{equation*}
(v-1) \equiv 0 \bmod \alpha(K) \quad \text { and } \quad v(v-1) \equiv 0 \bmod \beta(K), \tag{1}
\end{equation*}
$$

where $\alpha(K)=\operatorname{gcd}\{k-1 \mid k \in K\}$ and $\beta(K)=\operatorname{gcd}\{k(k-1) \mid k \in K\}$. In a series of three papers R.M. Wilson [27, 28, 29] developed an existence theory for PBDs and proved that the necessary conditions are asymptotically sufficient, that is, there exists a constant $v_{0}(K)$ such that a $\operatorname{PBD}(v, K)$ exists for all $v \geq v_{0}(K)$ which satisfy the congruences in (1). The problem is that we can not conclude that every block size occurs in such a PBD. So using a result of Lamken and Wilson [18] we will prove in Section 2 that the necessary conditions (1) for the existence of an MRD are asymptotically sufficient for finite K.

Although the existence proof of Lamken and Wilson is somehow constructive, the estimate of the constant is very large. Therefore, one attempts to determine the spectrum $B(K)=\{v: \exists M R D(K ; v)\}$ for given K as accurately as possible. Mandatory representation designs have been extensively studied by Mendelsohn and Rees [20], Rees [22, 23], Grüttmüller [13], Grüttmüller and Rees $[15,17,16]$, and Ge [10]. In particular, in the case $K=\{4, k\}$ with $k \equiv 1 \bmod 3$ we have the following result which is the culmination of the contributions of several authors $[6,7,10,17,24,25,26]$. Note that the MRDs in part (i) are equivalent to the embedding of a $(k, 4,1)$-BIBD into a $(v, 4,1)$-BIBD.

Theorem 1.1 Let $k \equiv 1$ mod 3. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\}, v)$
(i) if $k \equiv 1,4 \bmod 12, v \equiv 1,4 \bmod 12$ and $v \geq 3 k+1$; or
(ii) if $k \equiv 7,10 \bmod 12, v \equiv 7,10 \bmod 12$ and $v \geq 3 k+1$; or
(iii) if $k \equiv 7,10 \bmod 12, v \equiv 1,4 \bmod 12$ and $v \geq 4 k-3$, except possibly when $(k, v) \in\{(10,52),(22,121),(22,124),(22,133),(22,136)$, $(22,145),(22,148),(22,244),(34,229),(34,232)\}$.

In this paper, we continue to investigate the spectrum for MRDs with $K=\{4, k\}$ now with $k \equiv 2 \bmod 3$. The necessary conditions for such MRDs are as follows (we use the notation $\lceil x\rceil_{a ; b}$ to mean the smallest integer not less than x which is congruent to a modulo b and define $p(t)=\min \{n>0$: the complete graph K_{n} contains t edge-disjoint $\left.K_{4} s\right\}$).

Theorem 1.2 ([16, Theorem 1.5]) Let $k \equiv 2$ mod 3, and suppose that there exists a mandatory representation design $\operatorname{MRD}(4, k ; v)$. Then the following conditions hold
(i) If $k \equiv 2 \bmod 3$ and $v \equiv 1 \bmod 3$, then either $k \equiv 2$ or $11 \bmod 12$, or $k \equiv 5$ or $8 \bmod 12$ and $v \equiv 1$ or $4 \bmod 12$; in either case $v \geq$ $\frac{1}{3} k(2 k+2)$.
(ii) If $k \equiv 2 \bmod 3$ and $v \equiv 2 \bmod 3$, then either
(a) $k \equiv 5$ or $8 \bmod 12, v \equiv 5$ or $8 \bmod 12$ and $v \geq k p(t)-3 t$, where $t=\left\lfloor\frac{k q-v}{3}\right\rfloor$ and $q=\left\lceil\frac{v}{k}\right\rceil_{1 ; 3}$, or
(b) $k \equiv 2$ or $11 \bmod 12$ and $v \geq k p(t)-3 t$, where $t=\left\lfloor\frac{k q-v}{3}\right\rfloor$, and $q=\left\lceil\frac{v}{k}\right\rceil_{1 ; 6}$ when $v \equiv 2$ or $11 \bmod 12$ while $q=\left\lceil\frac{v}{k}\right\rceil_{4 ; 6}$ when $v \equiv 5$ or 8 mod 12, with the possible exceptions $(k, v)=(11,113)$ and $(14,161)$.
(iii) If $k \equiv 2 \bmod 3$ and $v \equiv 0 \bmod 3$, then either $k \equiv 2$ or $11 \bmod 12$, or $k \equiv 5$ or $8 \bmod 12$ and $v \equiv 0$ or $9 \bmod 12$; furthermore,
$v \geq \begin{cases}\frac{1}{2} k(k+1) & \text { if } k \equiv 2,8,17,23 \bmod 24, \\ \frac{1}{2} k(k+4)-\frac{3}{2}\left\lfloor\frac{k+4}{5}\right\rfloor & \text { if } k \equiv 5,11,14,20 \bmod 24 \text { and } 5 \mid(k+4), \\ \frac{1}{2} k(k+4)-\frac{3}{2}\left\lfloor\frac{k}{5}\right\rfloor & \text { if } k \equiv 5,11,14,20 \bmod 24 \text { and } 5 \nmid(k+4) .\end{cases}$
In Section 3 we will show that the necessary conditions for existence are sufficient whenever $v \equiv 2 \bmod 3$ and $v \geq 18 k^{2}$, or $v \equiv 0 \bmod 3$ and $v \geq 12 k^{3}$, or $v \equiv 1 \bmod 3$ and $v \geq 8 k^{4}$.

In the rest of the introduction, we give some definition and notations as well as some preliminary results which will be used in the sequel. We refer the reader to [4] and [9] for undefined terms as well as a general overview of design theory.

Fundamental to our constructions are a number of designs which we define now. A group-divisible design (GDD) is a triple $(V, \mathcal{G}, \mathcal{B})$ where V is a set of points, \mathcal{G} is a partition of V into groups and \mathcal{B} is a collection of subsets of V (called blocks) such that any pair of distinct points in V occurs together either in some group or in exactly one block, but not both. A K-GDD of
type $g_{1}^{t_{1}} g_{2}^{t_{2}} \ldots g_{r}^{t_{r}}$ is a GDD in which each block has size from the set K and in which there are t_{i} groups of size $g_{i}, i=1,2, \ldots, r$. We will denote a $\{k\}$-GDD as a k-GDD.

The following families of 4-GDDs will be very useful for our constructions.
Lemma 1.3 ([8]) Let t and u be positive integers. Then there exists a 4GDD of type t^{u} if and only if the conditions in the following table are satisfied.

Existence of $4-$ GDDs of type t^{u}			
t	u	Condition	
$1,5 \bmod 6$	$1,4 \bmod 12$		
$2,4 \bmod 6$	$1 \bmod 3$	$(t, u) \neq(2,4)$	
$3 \bmod 6$	$0,1 \bmod 4$		
$0 \bmod 6$	none	$u=1$ or $u \geq 4,(t, u) \neq(6,4)$	

Lemma 1.4 ([5, 6, 7, 3, 25, 26, 24]) Let t and u be positive integers. Then there exists a 4 -GDD of type $t^{1} 1^{u}$ if and only if the conditions in the following table are satisfied.

Existence of $4-$ GDDs of type $t^{1} 1^{u}$		
t	u	Condition
$1,7 \bmod 12$	$0,3 \bmod 12$	$u \geq 2 t+1$
$4,10 \bmod 12$	$0,9 \bmod 12$	$u \geq 2 t+1$

Lemma 1.5 ([11, Theorem 5.2(ii)-(iv)]) Let g, u and m be positive integers. Then there exists a 4 -GDD of type $g^{u} m^{1}$ if the conditions in the following table are satisfied.

Existence of $4-$ GDDs of type $\mathrm{g}^{\mathrm{u}} \mathrm{m}^{1}$						
g	u	m	Condition			
$1,5 \bmod 6$	$0 \bmod 12$	$g \bmod 3$	$g \neq 11,17, u \neq 12,24,72,120,168$,			
			$u \geq 2 m+3 / g+1$ $2,4 \bmod 6$ $0 \bmod 3$		$\operatorname{g\operatorname {mod}3}$	$g \neq 2, u \geq 192, u \neq 231,234,237$,
:---						
$3 \bmod 6$						
$0 \bmod 4$	$0 \bmod 3$	$u \geq 2 m / g+1$				
:---						
$u \neq 8,12, u \geq(2 m+3) / g+1$						

We proceed with the definition of a type of design called modified group divisible design (also known as grid design or as a particular class of double group divisible designs) which serves as an essential tool in our constructions. Let k, g, u be positive integers. A modified group divisible design k-MGDD of type g^{u} is a quadruple $(V, \mathcal{G}, \mathcal{H}, \mathcal{B})$, where V is a finite set of cardinality $g u, \mathcal{G}$ and \mathcal{H} are two partitions of V into parts (groups and holes) and \mathcal{B} is a family of subsets (blocks) of V which satisfy the properties:
(i) if $G \in \mathcal{G}$, then $|G|=g$;
(ii) if $B \in \mathcal{B}$, then $|B|=k$;
(iii) if $G \in \mathcal{G}$ and $H \in \mathcal{H}$, then $|G \cap H|=1$;
(iv) every pair of distinct elements of V occurs either in exactly one block, or exactly one group or one hole, but not both.

Assaf and Wei [1], Ling and Colbourn [19], and Ge, Wang and Wei [12] have completely determined the spectrum of 4-MGDDs as recorded in Lemma 1.6.

Lemma 1.6 A modified group divisible design 4-MGDD of type g^{u} exists if and only if $(g-1)(u-1) \equiv 0$ mod 3 and $g, u \geq 4$, except for $(g, u)=(6,4)$.

2 Asymptotic Sufficiency of the Necessary Conditions

In this section, we show that the necessary conditions (1) are also asymptotically sufficient for the existence of an MRD. We want to use a result of Lamken and Wilson concerning decompositions of edge-colored complete digraphs. As we only need one color and no direction on the edges we state here a simplified version of Theorem 1.2 from [18]. We will require the following notation. Given a family \mathcal{G} of simple graphs, a family \mathcal{F} of subgraphs of K_{n} (the complete graph on n vertices) is called a \mathcal{G}-decompositions of K_{n} if every edge $e \in E\left(K_{n}\right)$ belongs to exactly one member of \mathcal{F} and every $F \in \mathcal{F}$ is isomorphic to some graph $G \in \mathcal{G}$. For a vertex x of a graph G let $\tau(x)$ denote the degree of x and denote by $\alpha(\mathcal{G})$ the greatest common divisor of $\tau(x)$ as x ranges over all vertices of all graphs in \mathcal{G}. Let $\mu(G)$ be the number of edges in G and define $\beta(\mathcal{G})$ to be two times the greatest common divisor of $\mu(G), G \in \mathcal{G}$.

Theorem 2.1 ([18, Theorem 1.2]) Let \mathcal{G} be a family of simple graphs. Then there exists a constant $n_{0}=n_{0}(\mathcal{G})$ such that \mathcal{G}-decompositions of K_{n} exist for all $n \geq n_{0}$ satisfying the congruences

$$
\begin{equation*}
n-1 \equiv 0 \bmod \alpha(\mathcal{G}) \quad \text { and } \quad n(n-1) \equiv 0 \bmod \beta(\mathcal{G}) . \tag{2}
\end{equation*}
$$

If we define $\mathcal{G}=\left\{K_{k}: k \in K\right\}$, then a \mathcal{G}-decomposition \mathcal{F} of K_{n} is equivalent to a $\operatorname{PBD}(K, n)$ but not necessarily equivalent to an $\operatorname{MRD}(K, n)$ as we can not assume that for every $k \in K$ there is a graph $F \in \mathcal{F}$ such that $F \simeq K_{k}$. But with a different choice of the graphs in \mathcal{G} we can prove the following result.

Theorem 2.2 Let K be a finite set of positive integers. Then there exists a constant $v_{0}=v_{0}(K)$ such that $\operatorname{MRD}(K, v)$ exist for all $v \geq v_{0}$ satisfying the congruences

$$
\begin{equation*}
v-1 \equiv 0 \bmod \alpha(K) \quad \text { and } \quad v(v-1) \equiv 0 \bmod \beta(K) \tag{3}
\end{equation*}
$$

Proof. Let U be the disjoint union of all K_{k} with $k \in K$, define G_{k} to be the disjoint union $U \cup K_{k}$ and let $\mathcal{G}=\{U\} \cup\left\{G_{k}: k \in K\right\}$. It follows immediately from the definition that $\alpha(\mathcal{G})=\alpha(K)$. Moreover, $\beta(\mathcal{G})=$ $\operatorname{gcd}(2 e(U), 2 e(U)+k(k-1): k \in K)$, where $e(U)$ denotes the sum of all $k(k-1)$ with $k \in K$. That implies that $\beta(K)$ is a divisor of $\beta(\mathcal{G})$ and vice versa. Hence, $\beta(K)=\beta(\mathcal{G})$ and the claim follows from Theorem 2.1.

3 Constructions and Results

In this section, we develop the constructions for $\operatorname{MRD}(\{4, k\}, v)$ s required to prove the main result Theorem 3.28. In order to facilitate this, we state an additional necessary condition which does not influence the asymptotic existence question but is important when considering small orders of v and useful to structure the paper. Let x be an arbitrary point and let γ_{k} denote the number of blocks of size k which contain x. Then counting pairs containing x gives $3 \gamma_{4}+(k-1) \gamma_{k}=v-1$, which reduces for $k \equiv 2 \bmod 3$ to $\gamma_{k} \equiv v-1 \bmod 3$. It will be convenient to consider these cases in separate subsections where we will first investigate MRDs with $\gamma_{k} \equiv 1 \bmod 3$, i.e. $v \equiv 2 \bmod 3$. Then, these MRDs will be used to construct MRDs with $\gamma_{k} \equiv 2 \bmod 3$, i.e. $v \equiv 0 \bmod 3$. And finally both types of MRDs form the basis for the construction of MRDs with $\gamma_{k} \equiv 0 \bmod 3$, i.e. $v \equiv 1 \bmod 3$.

$3.1 v \equiv 2 \bmod 3, \gamma_{k} \equiv 1 \bmod 3$

We start with constructing some basic MRDs with $v \equiv 2 \bmod 3$ from 4-GDDs which will serve as ingredient designs in further constructions.

Lemma 3.1 Let $k \equiv 2 \bmod 3, k \geq 5$. There is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; k u)$
(i) if $k \equiv 2,8 \bmod 12$ and $u \equiv 1 \bmod 3, u \geq 4$; or
(ii) if $k \equiv 5,11 \bmod 12$ and $u \equiv 1,4 \bmod 12, u \geq 4$.

Moreover, there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ;(k-1) u+$ 1)
(i) if $k \equiv 2,8 \bmod 12$ and $u \equiv 1,4 \bmod 12, u \geq 4$; or
(ii) if $k \equiv 5,11 \bmod 12$ and $u \equiv 1 \bmod 3, u \geq 4$.

Proof. Take a 4-GDD of type k^{u} from Lemma 1.3 and consider the groups to be blocks of size k to obtain the desired $\operatorname{MRD}(\{4, k\} ; k u)$. Furthermore, adjoin a new point at infinity to a 4-GDD of type $(k-1)^{u}$ and replace each group and the infinity point by a block of size k to produce an $\operatorname{MRD}(\{4, k\} ;(k-1) u+1)$.

Note, that in the designs constructed $v \equiv 2 \bmod 3$ and each point lies on either 1 or $u \equiv 1 \bmod 3$ blocks of size k, so the condition $\gamma_{k} \equiv v-1 \bmod 3$ is satisfied.

The two constructions following next allow us to construct an infinite sequence of mandatory representation designs from just one ingredient design with the property that if for all points in the ingredient design $\gamma_{k} \equiv 1 \bmod 3$, then also in the resulting MRD holds $\gamma_{k} \equiv 1 \bmod 3$ for each point.

Construction 3.2 Let $k \equiv 2 \bmod 6, k \geq 8$ and suppose there is a $\operatorname{PBD}(\{4, k\} ; m)$ with $m \equiv 2 \bmod 3$. Then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 m+k$ with $v \equiv m \bmod 3 k, v \geq$ $192 k+m, v \neq 231 k+m, 234 k+m, 237 k+m$.

Proof. Use a 4-GDD of type $k^{u} m^{1}$ which exists by Lemma 1.5 for all $u \equiv 0 \bmod 3, u \geq 192, u \neq 231,234,237, u \geq 2 m / k+1$, consider groups of size k to be blocks and fill the group of size m by the $\operatorname{PBD}(\{4, k\} ; m)$ to produce a $\operatorname{PBD}(\{4, k\} ; v=u k+m)$. Clearly, $v \equiv m \bmod 3 k$ and we get a PBD for each such v with $v \geq\lceil 2 m / k+1\rceil_{0 ; 3} k+m \geq 3 m+k$ with the three exceptions listed. Since there is more than one group in the 4-GDD there are blocks of size 4 and k. So the resulting PBD is indeed an $\operatorname{MRD}(\{4, k\} ; v)$ as desired.

Construction 3.3 Let $k \equiv 5 \bmod 6$ and suppose there is a $P B D(\{4, k\} ; m)$ with $m \equiv 2 \bmod 3$. Then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 m+k-3$ with $v \equiv m \bmod 3(k-1), v \geq$ $192(k-1)+m, v \neq 231(k-1)+m, 234(k-1)+m, 237(k-1)+m$.

Proof. Take a 4-GDD of type $(k-1)^{u}(m-1)^{1}$ which exists by Lemma 1.5 for all $u \equiv 0 \bmod 3, u \geq 192, u \neq 231,234,237, u \geq 2(m-1) /(k-1)+1$, adjoin one infinite point and fill in the groups together with the infinite point by blocks of size k or the $\operatorname{PBD}(\{4, k\} ; m)$ to obtain a $\operatorname{PBD}(\{4, k\} ; v=$ $u(k-1)+m)$. Obviously, $v \equiv m \bmod 3(k-1)$ and $v \geq\lceil 2(m-1) /(k-1)+$ $1\rceil_{0 ; 3}(k-1)+m \geq 3 m+k-3$. Again, if m is relatively small we can have
three possible exceptions. Note, that the construction method ensures that there are blocks of size 4 and k and, therefore, the PBD constructed is an MRD.

In the following we want apply Constructions 3.2 and 3.3. If we are able to provide a representative PBD in each possible residue class modulo $3 k$ or $3(k-1)$, then we have established the existence of an $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 m_{\max }+k$ or $v \geq 3 m_{\max }+k-3$ where $m_{\max }$ is the number of points in the largest representative PBD. To be more precise, we need according to the necessary conditions representative $\operatorname{PBD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 3 t+2 \bmod 3 k$ if $k \equiv 2 \bmod 12$ for each $t=0,1, \ldots, k-1$, or $m_{t} \equiv 3 t+2 \bmod 3(k-1)$ if $k \equiv 11 \bmod 12$ for each $t=0,1, \ldots, k-2$, or $m_{t} \equiv 12 t+5,12 t+8 \bmod 3(k-1)$ if $k \equiv 5 \bmod 12$ for each $t=0,1, \ldots,(k-1) / 4-1$, or $m_{t} \equiv 12 t+5,12 t+$ $8 \bmod 3 k$ if $k \equiv 8 \bmod 12$ for each $t=0,1, \ldots, k / 4-1$. In the next lemmata we will provide these representative PBDs and compute the corresponding bounds for v.

Lemma 3.4 Let $k \equiv 2 \bmod 6$ and $v \equiv 2 \bmod 3$. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$
(i) if $k \equiv 2 \bmod 12, k \geq 26, v \equiv 2 \bmod 3$ and $v \geq 18 k^{2}-41 k+27$; or
(ii) if $k \equiv 8 \bmod 12, k \geq 44, v \equiv 5,8 \bmod 12$ and $v \geq 9 k^{2}-32 k+27$.

Proof. We take as representative designs $\operatorname{MRD}\left(\{4, k\} ; m_{s}=(k-1) u_{s}+1\right)$ which exist by Lemma 3.1 for all $u_{s}=12 s+a$ where $s \in \mathbb{N}, a \in\{1,4\}$ and $(s, a) \neq(0,1)$. In the latter case we use as representative PBD just a block of size k. Then $m_{s} \equiv-12 s+k-a+1 \bmod 3 k$. If $k \equiv 2 \bmod 12$, then $\operatorname{gcd}(12,3 k)=6$ and thus with $a=1$ and $s=0,1, \ldots, k / 2-1$ we get all residues $6 t+2$ modulo $3 k$. Moreover, with $a=4$ and $s=0,1, \ldots, k / 2-1$ we get all residues $6 t+5$ modulo $3 k$. Therefore, we obtained a representative design congruent $3 t+2$ modulo $3 k$ for each $t=0,1, \ldots, k-1$. The largest representative design has order $m_{\max }=(k-1)\left(12 s_{\max }+4\right)+1=6 k^{2}-14 k+9$. Hence using Construction 3.2 establishes the bound $v \geq 3 m_{\max }+k$ in Case (i). Note, that the exceptional cases $v \neq 231 k+m, 234 k+m, 237 k+m$ do not affect the bound in general as $2 m_{\max }+k>237 k$ if $k \geq 26$.

Similarly, for $k \equiv 8 \bmod 12$ with $a=1$ or 4 and $s=0,1, \ldots, k / 4-1$ we get all residues $12 t+5$ or $12 t+8$ modulo $3 k$. Again using these representative $\operatorname{MRD}\left(\{4, k\}, m_{s}\right)$ with $m_{\max }=3 k^{2}-11 k+9$ in Construction 3.2 yields the bound in Case (ii). It is easily checked that $2 m_{\max }+k>237 k$ if $k \geq 44$, so the exceptional cases listed in Construction 3.2 do not apply.

Lemma 3.5 Let $k \equiv 5 \bmod 6$ and $v \equiv 2 \bmod 3$. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$
(i) if $k \equiv 5 \bmod 12, k \geq 53, v \equiv 5,8 \bmod 12$ and $v \geq 9 k^{2}-32 k-3$; or
(ii) if $k \equiv 11 \bmod 12, k \geq 23, v \equiv 2 \bmod 3$ and $v \geq 18 k^{2}-41 k-3$.

Proof. Here, we use representative designs $\operatorname{MRD}\left(\{4, k\} ; m_{s}=k u_{s}\right)$ which exist by Lemma 3.1 for all $u_{s}=12 s+a$ where $s \in \mathbb{N}, a \in\{1,4\}$ and $(s, a) \neq$ $(0,1)$ or a representative $\operatorname{PBD}(\{4, k\} ; k)$. Then $m_{s} \equiv 12 s+a k \bmod 3(k-1)$. If $k \equiv 11 \bmod 12$, then $\operatorname{gcd}(12,3(k-1))=6$ and thus with $a=1$ and $s=0,1, \ldots,(k-1) / 2-1$ we get all residues $6 t+5$ modulo $3(k-1)$. Moreover, with $a=4$ and $s=0,1, \ldots,(k-1) / 2-1$ we get all residues $6 t+2$ modulo $3(k-1)$. Therefore, we obtained a representative design congruent to $3 t+2$ modulo $3(k-1)$ for each $t=0,1, \ldots, k-2$. The largest representative design has order $m_{\max }=k\left(12 s_{\max }+4\right)=6 k^{2}-14 k$. Hence using Construction 3.3 establishes the bound $v \geq 3 m_{\max }+k-3$ in Case (i). Note, that the exceptional cases $v \neq 231 k+m, 234 k+m, 237 k+m$ do not affect the bound in general as $2 m_{\max }+k-3>237 k$ if $k \geq 23$.

Similarly, for $k \equiv 5 \bmod 12$ with $a=1$ or 4 and $s=0,1, \ldots,(k-1) / 4-1$ we get all residues $12 t+5$ or $12 t+8$ modulo $3(k-1)$. Again using these representative $\operatorname{MRD}\left(\{4, k\}, m_{s}\right)$ with $m_{\text {max }}=3 k^{2}-11 k$ in Construction 3.3 yields the bound in Case (ii). Again $k \geq 53$ implies that $2 m_{\max }+k-3>$ $237 k$, so the exceptional cases listed in the construction do not need to be considered.

In view of the lemmata above it remains to investigate $k=5,8,11,14,17$, $20,29,32,41$. The closure of $K=\{4,5\}$ and $K=\{4,8\}$ are almost completely know, see $[4,2,21]$, so we just need to trace back the constructions and see which of them ensure that the designs constructed contain both blocks of size 4 and 5 or 8 , respectively.

Lemma 3.6 If $v \equiv 5,8 \bmod 12, v \geq 17$, then there is a mandatory representation design $\operatorname{MRD}(\{4,5\}, v)$.

Proof. $B(\{4,5\})=\mathbb{N}_{0,1} \bmod { }_{4} \backslash\{8,9,12\}$, thus if $v \equiv 5,8 \bmod 12, v \geq 17$, then $v \in B(\{4,5\})$. Moreover, if $v \not \equiv 5,41 \bmod 60$, then the necessary conditions imply that $v \notin B(\{4\}), B(\{5\})$ and, therefore, there is an $\operatorname{MRD}(\{4,5\}, v)$. Now, it is easily seen that each $v \equiv 5,41 \bmod 60, v \geq 65$ has a representation $v=4 g+a$ with $g \equiv 0,1 \bmod 4, g \geq 16, a \in\{1,5,13\}$. Take a transversal design $\operatorname{TD}(5, g)$ which exists for all $g \geq 11$ (see [9]), delete all but a points from the last group and fill in groups by a $\operatorname{PBD}(\{4,5\}, g)$ or $\operatorname{PBD}(\{4,5\}, a)$ to obtain an $\operatorname{MRD}(\{4,5\}, v=4 g+a)$. Noting that by Lemma 3.1 there exists an $\operatorname{MRD}(\{4,5\}, 41)$ completes the proof.

Lemma 3.7 If $v \equiv 5,8 \bmod 12, v \geq 176$, then there is a mandatory representation design $\operatorname{MRD}(\{4,8\}, v)$.

Proof. $B(\{4,8\}) \supseteq \mathbb{N}_{0,1} \bmod { }_{4} \backslash\{5,9,12,17,20,21,24,33,41,44,45,48,53$, $60,65,69,77,89,101,161,164,173\}$, thus if $v \equiv 5,8 \bmod 12, v \geq 176, v \not \equiv$ $8,113 \bmod 168$ then $v \in B(\{4,8\})$ but $v \notin B(\{4\}), B(\{8\})$ and, therefore, there is an $\operatorname{MRD}(\{4,8\}, v)$. Each $v \equiv 8 \bmod 168, v \geq 176$ has a representation $v=8 u$ where $u \equiv 1 \bmod 3$ and each $v \equiv 113 \bmod 168$ has a representation $v=7 u+1$ where $u \equiv 4 \bmod 12$, so Lemma 3.1 provides in each case an $\operatorname{MRD}(\{4,8\}, v)$.

So far we did not use 4-GDDs of type $g^{u} m^{1}$ with $g \equiv 1,5 \bmod 6$ from Lemma 1.5 as these give in general worse bounds compared to the bounds we already have. But there are less possible exceptions, so these GDDs are useful for small k.

Construction 3.8 Let $k \equiv 5 \bmod 6, k \neq 11,17$ and suppose there is a $\operatorname{PBD}(\{4, k\} ; m)$ with $m \equiv 2 \bmod 3$. Then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 m+k+3$ with $v \equiv m \bmod 12 k, v \neq$ $12 k+m, 24 k+m, 72 k+m, 120 k+m, 168 k+m$.

Proof. Use a 4-GDD of type $k^{u} m^{1}$ which exists by Lemma 1.5 for all $u \equiv 0 \bmod 12, u \neq 12,24,72,120,168, u \geq(2 m+3) / k+1$, consider groups of size k to be blocks and fill the group of size m by the $\operatorname{PBD}(\{4, k\} ; m)$ to produce $\operatorname{PBD}(\{4, k\} ; v=u k+m)$. Clearly, $v \equiv m \bmod 12 k$ and we get a PBD for each such v with $v \geq\lceil(2 m+3) / k+1\rceil_{0 ; 12} k+m \geq 3 m+k+3$ with the five exceptions listed. Since there is more than one group in the 4 -GDD there are blocks of size 4 and k. So the resulting PBD is indeed an $\operatorname{MRD}(\{4, k\} ; v)$ as desired.

Construction 3.9 Let $k \equiv 2 \bmod 6, k \geq 8$ and suppose there is a $\operatorname{PBD}(\{4, k\} ; m)$ with $m \equiv 2 \bmod 3$. Then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 m+k$ with $v \equiv m \bmod 12(k-1), v \neq$ $12(k-1)+m, 24(k-1)+m, 72(k-1)+m, 120(k-1)+m, 168(k-1)+m$.

Proof. Take a 4-GDD of type $(k-1)^{u}(m-1)^{1}$ which exists by Lemma 1.5 for all $u \equiv 0 \bmod 12, u \neq 12,24,72,120,168, u \geq(2(m-1)+3) /(k-1)+1$, adjoin one infinite point and fill in the groups together with the infinite point by blocks of size k or the $\operatorname{PBD}(\{4, k\} ; m)$ to obtain a $\operatorname{PBD}(\{4, k\} ; v=$ $u(k-1)+m)$. Obviously, $v \equiv m \bmod 12(k-1)$ and $v \geq\lceil(2(m-1)+3) /(k-$ 1) +1$\rceil_{0 ; 12}(k-1)+m \geq 3 m+k$. Again, if m is relatively small we can have five possible exceptions. Note, that the construction method ensures that there are blocks of size 4 and k and, therefore, the PBD constructed is an MRD.

Lemma 3.10 If $v \equiv 2 \bmod 3, v>2492, v \neq 2513,2516,2546,2585,2615$, 2618, 2645, 2648, 2678, 2717, 2747, 2750, 2777, 2780, 2810, 2849, 2879, 2882, 2909, 2912, 2942, then there is a mandatory representation design $\operatorname{MRD}(\{4,11\}, v)$.

Proof. Let $M=\{11,44,143,176,275,308,407,440,539,572\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,11\}, m)$ for all $m \in M$ which represent each residue class $3 t+2$ modulo 30. Hence, Construction 3.3 yields an $\operatorname{MRD}(\{4,11\}, v)$ for all $v \equiv 2 \bmod 3$ with $v \geq 3 m_{\max }+11-3=1724, v>192 \cdot 10+m_{\max }=2492$ and $v \neq 231 \cdot 10+M, 234 \cdot 10+M, 237 \cdot 10+M$.

Lemma 3.11 If $v \equiv 5,11 \bmod 12, v>3677, v \neq 3680,3719,3758,3836$, $3875,3914,3992,4031,4070$, or if $v \equiv 2,8 \bmod 12, v \geq 3206, v \neq 3206,3248$ then there is a mandatory representation design $\operatorname{MRD}(\{4,14\}, v)$.

Proof. Let $M=\{156 t+53: t=0, \ldots, 6\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,14\}, m)$ for all $m \in M$ which represent each residue class $6 t+5$ modulo 42. Hence, Construction 3.2 yields an $\operatorname{MRD}(\{4,14\}, v)$ for all $v \equiv$ $5,11 \bmod 12$ with $v \geq 3 m_{\max }+14=2981, v>192 \cdot 14+m_{\max }=3677$ and $v \neq 231 \cdot 14+M, 234 \cdot 14+M, 237 \cdot 14+M$. Now let $R=\{42 t+14$: $t=0, \ldots, 25\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,14\}, r)$ for all $r \in R$ which represent each residue class $6 t+2$ modulo 156. Hence, Construction 3.9 yields an $\operatorname{MRD}(\{4,14\}, v)$ for all $v \equiv 2,8 \bmod 12$ with $v \geq 3 r_{\max }+14=3206$ and $v \neq 169 \cdot 13+R$.

Lemma 3.12 If $v \equiv 5,8 \bmod 12, v>3752, v \neq 3761,3764,3809,3812,3860$, 3917, 3965, 3968, 4013, 4016, 4064, 4121, 4169, 4172, 4217, 4220, 4268, 4325, 4373, 4376, 4421, 4424, 4472, then there is a mandatory representation design $\operatorname{MRD}(\{4,17\}, v)$.

Proof. Let $M=\{17,68,221,272,425,476,629,680\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,17\}, m)$ for all $m \in M$ which represent each residue class $12 t+5$ or $12 t+8$ modulo 48 . Hence, Construction 3.3 yields an $\operatorname{MRD}(\{4,17\}, v)$ for all $v \equiv 5,8 \bmod 12$ with $v \geq 3 m_{\max }+17-3=2054, v>192 \cdot 16+m_{\max }=3752$ and $v \neq 231 \cdot 16+M, 234 \cdot 16+M, 237 \cdot 16+M$.

Lemma 3.13 If $v \equiv 8 \bmod 12, v>4772, v \neq 4868,4928,4988,5096,5156$, $5216,5324,5384,5444,5552,5612,5672$, or if $v \equiv 5 \bmod 12, v \geq 3320, v \neq$ $3320,3332,3380,3392,3452,3512,3572,3632,3692,3752,3812,3872,3932$, 3992, 4052, 4112, 4172, 4232, 4292, then there is a mandatory representation design $\operatorname{MRD}(\{4,20\}, v)$.

Proof. Let $M=\{228 t+20: t=0, \ldots, 4\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,20\}, m)$ for all $m \in M$ which represent each residue class $12 t+8$ modulo 60. Hence, Construction 3.2 yields an $\operatorname{MRD}(\{4,20\}, v)$ for all $v \equiv$ $8 \bmod 12$ with $v \geq 3 m_{\text {max }}+20=2816, v>192 \cdot 20+m_{\max }=4772$ and $v \neq$ $4620+M, 4680+M, 4740+M$. Now let $R=\{60 t+20: t=0, \ldots, 18\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,20\}, r)$ for all $r \in R$ which represent each residue class $12 t+5$ modulo 228. Hence, Construction 3.9 yields an $\operatorname{MRD}(\{4,20\}, v)$ for all $v \equiv 5 \bmod 12$ with $v \geq 3 r_{\max }+20=3320$ and $v \neq 120 \cdot 19+R, 169 \cdot 19+R$.

Lemma 3.14 If $v \equiv 8 \bmod 12, v>7580, v \neq 7628,7712,7796,7976,8060$, $8144,8324,8408,8492,8672,8756,8840$, or if $v \equiv 5 \bmod 12, v \geq 7175, v \neq$ 7253 , then there is a mandatory representation design $\operatorname{MRD}(\{4,29\}, v)$.

Proof. Let $M=\{348 t+116: t=0, \ldots, 6\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,29\}, m)$ for all $m \in M$ which represent each residue class $12 t+8$ modulo 84. Hence, Construction 3.3 yields an $\operatorname{MRD}(\{4,29\}, v)$ for all $v \equiv$ $8 \bmod 12$ with $v \geq 3 m_{\max }+29-3=6638, v>192 \cdot 28+m_{\max }=7580$ and $v \neq 231 \cdot 28+M, 234 \cdot 28+M, 237 \cdot 28+M$. Now let $R=\{84 t+29$: $t=0, \ldots, 28\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,29\}, r)$ for all $r \in R$ which represent each residue class $12 t+5$ modulo 348. Hence, Construction 3.8 yields an $\operatorname{MRD}(\{4,29\}, v)$ for all $v \equiv 5 \bmod 12$ with $v \geq 3 r_{\max }+29+3=$ 7175 , and $v \neq 168 \cdot 29+R$.

Lemma 3.15 If $v \equiv 8 \bmod 12, v>8780, v \neq 8912,9008,9104,9284,9380$, $9476,9656,9752,9848,10028,10124,10220$, or if $v \equiv 5 \bmod 12, v \geq 8768$, then there is a mandatory representation design $\operatorname{MRD}(\{4,32\}, v)$.

Proof. Let $M=\{372 t+32: t=0, \ldots, 7\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,32\}, m)$ for all $m \in M$ which represent each residue class $12 t+8$ modulo 96. Hence, Construction 3.2 yields an $\operatorname{MRD}(\{4,32\}, v)$ for all $v \equiv$ $8 \bmod 12$ with $v \geq 3 m_{\max }+32=7940, v>192 \cdot 32+m_{\max }=8780$ and $v \neq 231 \cdot 32+M, 234 \cdot 32+M, 237 \cdot 32+M$. Now let $R=\{96 t+32:$ $t=0, \ldots, 30\}$. Lemma 3.1 provides a $\operatorname{PBD}(\{4,32\}, r)$ for all $r \in R$ which represent each residue class $12 t+5$ modulo 372. Hence, Construction 3.9 yields an $\operatorname{MRD}(\{4,32\}, v)$ for all $v \equiv 5 \bmod 12$ with $v \geq 3 r_{\max }+32=8768$.

Lemma 3.16 If $v \equiv 5,8 \bmod 12, v \geq 13814, v \neq 13832,13952,14072$, then there is a mandatory representation design $\operatorname{MRD}(\{4,41\}, v)$.

Proof. Let $M=\{492 t+41,492 t+164: t=0, \ldots, 9\}$. Lemma 3.1 provides $\operatorname{arBD}(\{4,41\}, m)$ for all $m \in M$ which represent each residue class $12 t+5$ or $12 t+8$ modulo 120. Hence, Construction 3.3 yields an $\operatorname{MRD}(\{4,41\}, v)$ for all $v \equiv 5,8 \bmod 12$ with $v \geq 3 m_{\max }+41-3=13814, v>192 \cdot 40+m_{\max }=12272$ and $v \neq 231 \cdot 40+M, 234 \cdot 40+M, 237 \cdot 40+M$. The latter inequality gives a list of five possible exceptions with $v \geq 13814$. We can delete $v=$ 13829,12949 from that list as there are a 4 -GDD of type $41^{228} 4481^{1}$, a 4 GDD of type $41^{228} 4601^{1}$ (Lemma 1.5) and an $\operatorname{MRD}(\{4,41\}, 4481)$ and an $\operatorname{MRD}(\{4,41\}, 4601)$ (Lemma 3.1). Thus filling in groups yields the desired MRDs leaving three possible exceptions $v=13832,13952,14072$.

$3.2 v \equiv 0 \bmod 3, \gamma_{k} \equiv 2 \bmod 3$

Now, we turn our attention to MRDs on $v \equiv 0 \bmod 3$ points where γ_{k} needs to be congruent to $2 \bmod 3$. The basic idea is to take a modified group divisible design and to construct on each group and on each hole an MRD with $\gamma_{k} \equiv 1 \bmod 3$ which provides, as every point occurs in exactly one group and exactly one hole, an MRD with $\gamma_{k} \equiv 2 \bmod 3$. But, first we state a more general construction using modified group divisible designs.

Construction 3.17 Let $k \equiv 2 \bmod 3, k \geq 5$. If there is a $\operatorname{PBD}(\{4, k\} ; v)$, then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ;(k-1) v+1)$. If there is a $\operatorname{PBD}(\{4, k\} ; v)$ with $v \equiv 2 \bmod 3$, then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; k(v-1)+1)$.

Proof. Clearly, $((k-1)-1)(v-1) \equiv 0 \bmod 3$ and therefore Lemma 1.6 implies that there is a $4-\mathrm{MGDD}$ of type $(k-1)^{v}$. So take that 4-MGDD and fill each hole by the $\operatorname{PBD}(\{4, k\} ; v)$. Furthermore, adjoin a new point to the point set and replace each group and the new point by a k-block to produce an MRD with blocks of size 4 and k on $(k-1) v+1$ points. Similarly, if in addition $v \equiv 2 \bmod 3$, then $(k-1)((v-1)-1) \equiv 0 \bmod 3$ which implies that there exists a 4-MGDD of type k^{v-1}. Again, we adjoin a new point and replace now each hole and this new point by the $\operatorname{PBD}(\{4, k\} ; v)$. If we consider all groups to be blocks of size k, then we get the desired $\operatorname{MRD}(\{4, k\} ; k(v-1)+1)$.

Using this construction together with designs from Lemma 3.1 we obtain the following three corollaries.

Corollary 3.18 Let $k \equiv 2 \bmod 3, k \geq 5$. There is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; k(k-1) u+1)$ for all $u \equiv 1 \bmod 3$.

Proof. For $u \geq 4$ take an $\operatorname{MRD}(\{4, k\} ; k u)$ from Lemma 3.1 as ingredient PBD in Construction 3.17 to obtain an $\operatorname{MRD}(\{4, k\}, k(k-1) u+1)$. For $u=1$ just use a single block of size k as a (trivial) PBD in Construction 3.17. This provides all required MRDs except for $k \equiv 5,11 \bmod 12$ and $u \equiv 7,10 \bmod 12$. Here take an $\operatorname{MRD}(\{4, k\}, k(k-1)+1)$ just constructed and fill in the groups of a 4-GDD of type $(k(k-1))^{u}$ with a point at infinity adjoint which exists for all $u \equiv 1 \bmod 3$ by Lemma 1.3.

Corollary 3.19 Let $k \equiv 2 \bmod 3, k \geq 5$. There is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; k(k u-1)+1)$
(i) if $k \equiv 2,8 \bmod 12$ and $u \equiv 1 \bmod 3$; or
(ii) if $k \equiv 5,11 \bmod 12$ and $u \equiv 1,4 \bmod 12$.

Proof. An MRD with $k(k-1)+1$ points is already constructed in Corollary 3.18 for all $k \equiv 2 \bmod 3, k \geq 5$, so we only need to consider $u \geq 4$. For that purpose take an MRD with $v=k u$ from Lemma 3.1 for which clearly $v \equiv 2 \bmod 3$ holds. Thus applying Construction 3.17 yields the desired $\operatorname{MRD}(\{4, k\} ; k(k u-1)+1)$.

Corollary 3.20 Let $k \equiv 2 \bmod 3, k \geq 5$. There is a mandatory representation design $\operatorname{MRD}\left(\{4, k\} ;(k-1)^{2} u+k\right)$
(i) if $k \equiv 2,8 \bmod 12$ and $u \equiv 1,4 \bmod 12$; or
(ii) if $k \equiv 5,11 \bmod 12$ and $u \equiv 1 \bmod 3$.

Proof. For $u=1$ take an MRD with $v=k(k-1)+1$ from Corollary 3.18. For $u \geq 4$ apply Construction 3.17 with an $\operatorname{MRD}(\{4, k\} ;(k-1) u+1)$ constructed in Lemma 3.1 to obtain an MRD on $(k-1)((k-1) u+1)+1=$ $(k-1)^{2} u+k$ points.

We remark, that for the number of points $v=k(k-1) u+1, v=k(k u-$ 1) +1 or $v=(k-1)^{2} u+k$ of the MRDs constructed above holds $v \equiv 0 \bmod 3$ and that every point is contained in either $2, k, u+1,2 u, k u$ or $(k-1) u+1$ blocks of size k. Hence, $\gamma_{k} \equiv 2 \bmod 3$ as desired.

Similar as in the case $v \equiv 2 \bmod 3$ one can construct an infinite sequence of mandatory representation designs from just one ingredient MRD with the property that if $\gamma_{k} \equiv 2 \bmod 3$ for each point in the ingredient MRD, then also in the resulting MRD $\gamma_{k} \equiv 2 \bmod 3$ for all points.

Construction 3.21 Let $k \equiv 2 \bmod 3$ and suppose there is an $\operatorname{MRD}(\{4, k\} ; m)$ with $m \equiv 0 \bmod 3$. Then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 m+k(k-1)+4$ with $v \equiv m \bmod 4(k(k-1)+1), v \neq 8(k(k-1)+1)+m, 12(k(k-1)+1)+m$.

Proof. If $k \equiv 2 \bmod 3$, then $k(k-1)+1 \equiv 3 \bmod 6$ and so by Lemma 1.5 there is a 4 -GDD of type $(k(k-1)+1)^{u} m^{1}$ for all $u \equiv 0 \bmod 4, u \neq 8,12, u \geq$ $(2 m+3) /(k(k-1)+1)+1$. Replacing groups of size $k(k-1)+1$ by an $\operatorname{MRD}(\{4, k\} ; k(k-1)+1)$ which exists by Corollary 3.18 and the group of size m by the $\operatorname{MRD}(\{4, k\} ; m)$ produces an $\operatorname{MRD}(\{4, k\} ; v=u(k(k-1)+$ $1)+m)$. Thus we get an MRD for all $v \equiv m \bmod 4(k(k-1)+1)$ where $v \geq\lceil(2 m+3) /(k(k-1)+1)+1\rceil_{0 ; 4}(k(k-1)+1)+m \geq 3 m+k(k-1)+4$ with the exception of $v=8(k(k-1)+1)+m$ or $v=12(k(k-1)+1)+m$.

In what follows we want apply Construction 3.21. If we are able to provide a representative $\operatorname{MRD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 3 t \bmod 4(k(k-1)+1)$ for each $t=0,1, \ldots, 4(k(k-1)+1) / 3-1$ if $k \equiv 2,11 \bmod 12$; or with $m_{t} \equiv$ $6 t+3 \bmod 4(k(k-1)+1)$ for each $t=0,1, \ldots, 4(k(k-1)+1) / 6-1$ if $k \equiv 5,8 \bmod 12$, then we have established the existence of an $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 m_{\max }+g+3$ where $m_{\max }=\max \left\{m_{t}\right\}$. We remark that the designs resulting from Construction 3.21 lie in the same residue class modulo 12 as the second ingredient $\operatorname{MRD}(\{4, k\} ; m)$. So we will need to consider different types of ingredient MRDs to obtain the desired designs in each residue class modulo 12. This will be done in the next three lemmata.

Lemma 3.22 Let $k \equiv 2 \bmod 3$ and $v \equiv 3,9 \bmod 12$. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$
(i) if $k \equiv 2,11 \bmod 12, v \equiv 3,9 \bmod 12$ and $v \geq 6 k^{4}-12 k^{3}+25 k^{2}-19 k+7$; or
(ii) if $k \equiv 5,8 \bmod 12, v \equiv 9 \bmod 12$ and $v \geq 3 k^{4}-6 k^{3}+10 k^{2}-7 k+7$.

Proof. For $k \equiv 2,11 \bmod 12$ it suffices to provide representative $\operatorname{MRD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 12 t+3 \bmod 4(k(k-1)+1)$ and $m_{t} \equiv 12 t+$ $9 \bmod 4(k(k-1)+1)$ for each $t=0,1, \ldots,(k(k-1)+1) / 3-1$ to obtain the desired bounds. These representative MRDs are taken from Corollary 3.18: an $\operatorname{MRD}\left(\{4, k\} ; m_{s}\right)$ with $m_{s}=k(k-1) u_{s}+1$ exists for all $u_{s}=12 s+a$ where $s \in \mathbb{N}, a \in\{1,4,7,10\}$. Then $m_{s}=3 s(4(k(k-1)+1))-12 s+a k(k-$ $1)+1$ and thus $m_{s} \equiv-12 s+a k(k-1)+1 \bmod 4(k(k-1)+1)$. Since $\operatorname{gcd}(12,4(k(k-1)+1))=12$ it is easy to check that with $a=1$ or $a=7$ and $s=0,1, \ldots,(k(k-1)-2) / 6$ we get all residues $12 t+3$ modulo $4(k(k-1)+1)$. Moreover, with $a=4$ or $a=10$ and $s=0,1, \ldots,(k(k-1)-2) / 6$ we get all residues $12 t+9$ modulo $4(k(k-1)+1)$. The largest representative MRD has order $m_{\max }=k(k-1)\left(12 s_{\max }+10\right)+1=2 k^{2}(k-1)^{2}+6 k(k-1)+1$. Hence using Construction 3.21 establishes the bound $v \geq 3 m_{\max }+g+3$ in

Case (i). Note, that the exceptional case $v \neq 8 g+m, 12 g+m$ does not affect the bound as $2 m_{\text {max }}>12 g$.

Similarly, for $k \equiv 5,8 \bmod 12$ it suffices to present representative $\operatorname{MRD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 12 t+9 \bmod 4(k(k-1)+1)$ for each $t=$ $0,1, \ldots,(k(k-1)+1) / 3-1$ to obtain the desired bounds. With $u=12 s+a$, $a=1,4,7$ or 10 and $s=0,1, \ldots,(k(k-1)-8) / 12$ we get all residues $12 t+9$ modulo $4(k(k-1)+1)$. Again using these representative $\operatorname{MRD}\left(\{4, k\}, m_{s}\right)$ with $m_{\max }=k^{2}(k-1)^{2}+2 k(k-1)+1$ in Construction 3.21 yields the bound in Case (ii).

Lemma 3.23 Let $k \equiv 5,11 \bmod 12$ and $v \equiv 0,6 \bmod 12$. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$,
(i) if $k \equiv 5 \bmod 12, v \equiv 0 \bmod 12$ and $v \geq 4 k^{4}-5 k^{3}+43 k^{2}-12 k+14$; or
(ii) if $k \equiv 11 \bmod 12, v \equiv 0,6 \bmod 12$ and $v \geq 8 k^{4}-10 k^{3}+49 k^{2}-14 k+15$.

Proof. First, let $k \equiv 5 \bmod 12$. It suffices to provide representative $\operatorname{MRD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 12 t \bmod 4(k(k-1)+1)$ for each $t=$ $0,1, \ldots,(k(k-1)+1) / 3-1$. There is an $\operatorname{MRD}(\{4, k\} ; k(4 k-1)+1)$ by Corollary 3.19 with $k(4 k-1)+1 \equiv 0 \bmod 12$. Lemma 1.3 implies that there exists a 4 -GDD of type $(k(4 k-1)+1)^{s}$ for all $s \geq 4$ and, therefore, an $\operatorname{MRD}\left(\{4, k\}, m_{s}=(k(4 k-1)+1) s\right)$. It is easy to check that $m_{s}=s(4(k(k-1)+1))+3(k-1) t$ and thus $m_{s} \equiv 3(k-1) s \bmod 4(k(k-1)+1)$. Clearly $\operatorname{gcd}(3(k-1), 4(k(k-1)+1))=12$, so it follows immediately that with $s=4,5, \ldots,(k(k-1)+10) / 3$ we get all residues $12 t$ modulo $4(k(k-1)+1)$. The largest representative MRD has order $m_{\max }=(k(4 k-1)+1) s_{\max }=$ $\frac{1}{3}\left(4 k^{4}-5 k^{3}+42 k^{2}-11 k+10\right)$. Hence using Construction 3.21 establishes the bound in Case (i).

Now, let $k \equiv 11 \bmod 12$. It suffices to provide representative $\operatorname{MRD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 12 t$, or $12 t+6 \bmod 4(k(k-1)+1)$ for each $t=0,1, \ldots,(k(k-1)+1) / 3-1$. In a similar way as in the discussion above one shows that there is an $\operatorname{MRD}\left(\{4, k\}, m_{s}=(k(4 k-1)+1) s\right)$ for all $s \geq 4$. Note, that $k(4 k-1)+1 \equiv 6 \bmod 12$ and hence if s is even and $s=0,2, \ldots, 2(k(k-1)+4) / 3$, then we get all residues $12 t$ modulo $4(k(k-1)+1)$. While, if s is odd and $s=1,3, \ldots, 2(k(k-1)+4) / 3+1$, then we get all residues $12 t+6$ modulo $4(k(k-1)+1)$. Again using these representative $\operatorname{MRD}\left(\{4, k\}, m_{s}\right)$ with $m_{\text {max }}=\frac{1}{3}\left(8 k^{4}-10 k^{3}+48 k^{2}-13 k+11\right)$ in Construction 3.21 yields the bound in Case (ii).

Lemma 3.24 Let $k \equiv 2,8 \bmod 12$ and $v \equiv 0,6 \bmod 12$. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$,
(i) if $k \equiv 2 \bmod 12, v \equiv 0,6 \bmod 12$ and $v \geq 8 k^{4}-22 k^{3}+67 k^{2}-86 k+48$; or
(iii) if $k \equiv 8 \bmod 12, v \equiv 0 \bmod 12$ and $v \geq 4 k^{4}-11 k^{3}+52 k^{2}-75 k+44$.

Proof. First, let $k \equiv 8 \bmod 12$. It suffices to provide representative $\operatorname{MRD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 12 t \bmod 4(k(k-1)+1)$ for each $t=$ $0,1, \ldots,(k(k-1)+1) / 3-1$. There is an $\operatorname{MRD}\left(\{4, k\} ; 4(k-1)^{2}+k\right)$ by Corollary 3.20 with $4(k-1)^{2}+k \equiv 0 \bmod 12$. Lemma 1.3 implies that there exists a 4-GDD of type $\left(4(k-1)^{2}+k\right)^{s}$ for all $s \geq 4$ and, therefore, an $\operatorname{MRD}\left(\{4, k\}, m_{s}=\left(4(k-1)^{2}+k\right) s\right)$. It is easy to check that $m_{s}=s(4(k(k-1)+1))-3 k s$ and thus $m_{s} \equiv-3 k s \bmod 4(k(k-1)+1)$. Clearly $\operatorname{gcd}(3 k, 4(k(k-1)+1))=12$, so it follows immediately that with $s=4,5, \ldots,(k(k-1)+10) / 3$ we get all residues $12 t$ modulo $4(k(k-1)+1)$. The largest representative MRD has order $m_{\max }=\left(4(k-1)^{2}+k\right) s_{\max }=$ $\frac{1}{3}\left(4 k^{4}-11 k^{3}+51 k^{2}-74 k+40\right)$. Hence using Construction 3.21 establishes the bound in Case (ii).

Now, let $k \equiv 2 \bmod 12$. It suffices to provide representative $\operatorname{MRD}\left(\{4, k\}, m_{t}\right)$ with $m_{t} \equiv 12 t$, or $12 t+6 \bmod 4(k(k-1)+1)$ for each $t=$ $0,1, \ldots,(k(k-1)+1) / 3-1$. As described above there is an $\operatorname{MRD}\left(\{4, k\}, m_{s}=\right.$ $\left.\left(4(k-1)^{2}+k\right) s\right)$ for all $s \geq 4$. Note, that $4(k-1)^{2}+k \equiv 6 \bmod 12$ and hence if s is even and $s=0,2, \ldots, 2(k(k-1)+4) / 3$, then we get all residues $12 t$ modulo $4(k(k-1)+1)$. While, if s is odd and $s=1,3, \ldots, 2(k(k-1)+4) / 3+1$, then we get all residues $12 t+6$ modulo $4(k(k-1)+1)$. Again using these representative $\operatorname{MRD}\left(\{4, k\}, m_{s}\right)$ with $m_{\text {max }}=\frac{1}{3}\left(8 k^{4}-22 k^{3}+66 k^{2}-85 k+44\right)$ in Construction 3.21 yields the bound in Case (i).

$3.3 v \equiv 1 \bmod 3, \gamma_{k} \equiv 0 \bmod 3$

Using MRDs with $\gamma_{k} \equiv 2 \bmod 3$ from the previous subsection we are now able in conjunction with Construction 3.17 to establish the existence of some MRDs with $\gamma_{k} \equiv 0 \bmod 3$ for each $k \equiv 2 \bmod 3$. These MRDs are then used to fill groups of appropriate 4-GDDs.

Corollary 3.25 Let $k \equiv 2 \bmod 3, k \geq 5$. There is a mandatory representation design $\operatorname{MRD}\left(\{4, k\} ; k(k-1)^{2} u+k\right)$
(i) if $k \equiv 2,8 \bmod 12$ and $u \equiv 1 \bmod 3, u \geq 4$; or
(ii) if $k \equiv 5,11 \bmod 12$ and $u \equiv 1,4 \bmod 12, u \geq 4$.

Proof. Use an $\operatorname{MRD}(\{4, k\} ; k(k-1) u+1)$ constructed in Lemma 3.18 as ingredient PBD in Construction 3.17 to obtain an $\operatorname{MRD}(\{4, k\} ;(k-1)(k(k-$ 1) $u+1)+1)$.

Construction 3.26 Let $t \equiv 1 \bmod 3$ and suppose there is an $\operatorname{MRD}(\{4, k\} ; t)$. Then there is a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$ for all $v \geq 3 t+1$
(i) with $v \equiv 1,4 \bmod 12$ if $t \equiv 1,4 \bmod 12$; or
(ii) with $v \equiv 7,10 \bmod 12$ if $t \equiv 0,9 \bmod 12$.

Proof. Use a 4-GDD of type $t^{1} 1^{v-t}$ from Lemma 1.4 and replace the group of size t by the $\operatorname{MRD}(\{4, k\} ; t)$.

Lemma 3.27 Let $k \equiv 2 \bmod 3$ and $v \equiv 1 \bmod 3$. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$
(i) if $k \equiv 2,5,8 \bmod 12, v \equiv 1,4 \bmod 12$ and $v \geq 3 k(k-1)^{2}+3 k+1$; or
(ii) if $k \equiv 11 \bmod 12, v \equiv 1,4 \bmod 12$ and $v \geq 12 k(k-1)^{2}+12 k-8$; or
(iii) if $k \equiv 2 \bmod 12, v \equiv 7,10 \bmod 12$ and $v \geq 12 k(k-1)^{2}+3 k+1$; or
(iv) if $k \equiv 11 \bmod 12, v \equiv 7,10 \bmod 12$ and $v \geq 3 k(k-1)^{2}+3 k+1$.

Proof. Start with an $\operatorname{MRD}\left(\{4, k\} ; k(k-1)^{2}+k\right)$ from 3.25 and use it as ingredient in Construction 3.26. If $k \equiv 2,5,8 \bmod 12$ the number of points $t=k(k-1)^{2}+k$ is congruent 1 or 4 modulo 12 , so an MRD for all $v \geq 3\left(k(k-1)^{2}+k\right)+1, v \equiv 1,4 \bmod 12$ is produced which gives the bound for Case (i). While if $k \equiv 11 \bmod 12$ we have $t \equiv 7 \bmod 12$ and, therefore, $v \equiv 7,10 \bmod 12($ Case (iv)).

For $k \equiv 11 \bmod 12$ we continue by filling in the $\operatorname{MRD}\left(\{4, k\} ; k(k-1)^{2}+k\right)$ into the groups of a 4-GDD of type $\left(k(k-1)^{2}+k\right)^{4}$ and get an MRD on $t=4\left(k(k-1)^{2}+k\right)$ where $t \equiv 4 \bmod 12$. Thus, if used with Construction $3.26 \operatorname{MRD}(\{4, k\} ; v) \mathrm{s}$ for all $v \geq 12\left(k(k-1)^{2}+k\right)+1, v \equiv 1,4 \bmod 12$ are obtained (Case (ii)).

Finally, take for $k \equiv 2 \bmod 12$ an $\operatorname{MRD}\left(\{4, k\} ; 4 k(k-1)^{2}+k\right)$ which is obtained from 3.25 by setting $u=4$. Here, $t=4 k(k-1)^{2}+k \equiv 10 \bmod 12$ so using again Construction 3.26 yields an $\operatorname{MRD}(\{4, k\} ; v)$ s for all $v \geq 12 k(k-$ $1)^{2}+3 k+1, v \equiv 1,4 \bmod 12$ and establishes the bound in Case (iii).

3.4 Main Result

We summarize the main result of the section which is a combination of Lemmata 3.4-3.7, 3.10-3.16, 3.22-3.24 and 3.27.

Theorem 3.28 Let $k \equiv 2$ mod $3, k \geq 5$. There exists a mandatory representation design $\operatorname{MRD}(\{4, k\} ; v)$
(i) with $v \equiv 1 \bmod 3$, if
(a) $k \equiv 2,5,8 \bmod 12, v \equiv 1,4 \bmod 12$, or $k \equiv 11 \bmod 12, v \equiv$ $7,10 \bmod 12$, and $v \geq 3 k(k-1)^{2}+3 k+1$, or
(b) $k \equiv 2 \bmod 12, v \equiv 7,10 \bmod 12$, or $k \equiv 11 \bmod 12, v \equiv$ $1,4 \bmod 1$, and $v \geq 12 k(k-1)^{2}+12 k-8$;
(ii) with $v \equiv 2 \bmod 3$, if
(a) $k \equiv 5,8 \bmod 12, k=5,8$ or $k \geq 44, v \equiv 5,8 \bmod 12$ and $v \geq$ $9 k^{2}-32 k+27$, or
(b) $k \equiv 2,11 \bmod 12, k \geq 23$ and $v \geq 18 k^{2}-41 k+27$, or
(c) $k=17,20,29,32,41$ and $v>192 k+3 k^{2}-11 k+9$, or
(d) $k=11,14$ and $v>192 k+6 k^{2}-14 k+9$;
(iii) with $v \equiv 0 \bmod 3$, if
(a) $k \equiv 5,8 \bmod 12, v \equiv 9 \bmod 12$ and $v \geq 3 k^{4}-6 k^{3}+10 k^{2}-7 k+7$, or
(b) $k \equiv 2,11 \bmod 12, v \equiv 3,9 \bmod 12$ and $v \geq 6 k^{4}-12 k^{3}+25 k^{2}-$ $19 k+7$, or
(c) $k \equiv 5,8 \bmod 12, v \equiv 0 \bmod 12$ and $v \geq 4 k^{4}-5 k^{3}+43 k^{2}-12 k+14$, or
(d) $k \equiv 2,11 \bmod 12, v \equiv 0,6 \bmod 12$ and $v \geq 8 k^{4}-10 k^{3}+49 k^{2}-$ $14 k+15$.

4 Conclusion

After having established upper bounds for the case $k \equiv 2 \bmod 3$, it remains to close the gap between lower and upper bounds. We remark that the analogue problem for $K=\{3, k\}$ is difficult and far from being completely solved, see [14] for recent advances.

Also, the determination of the MRD-closure in the case $k \equiv 0 \bmod 3$ is open. Here, the difficulties arise out of the fact that each point lies on either $\gamma_{k} \equiv 0 \bmod 3$ or $\gamma_{k} \equiv 1 \bmod 3$ blocks of size k. So in order to construct MRDs with $\gamma_{k} \equiv 0 \bmod 3$ we can not use modified group divisible designs together with MRDs with $\gamma_{k} \equiv 1$ or $2 \bmod 3$ since the latter simply do
not exist. It would be of considerable interest to establish something like a further modified group divisible design, i.e. a design with three parallel classes of equal sized holes, as this would allow to fill each parallel class just with MRDs with $\gamma_{k} \equiv 1 \bmod 3$.

5 Acknowledgement

Research of the first author was supported by National Natural Science Foundation of China under Grant No. 10471127 and Zhejiang Provincial Natural Science Foundation of China under Grant No. R604001. Some of the research was conducted while the second author was visiting the Memorial University of Newfoundland; this author wishes to thank the university for its hospitality.

References

[1] A.M. Assaf and R. Wei. Modified group divisible designs with block size 4 and $\lambda=1$. Discrete Math., 195:15-25, 1999.
[2] F.E. Bennett. Pairwise balanced designs with block sizes 4 and 8. Australasian J. of Combin., 2:77-100, 1990.
[3] J.-C. Bermond and J. Bond. Combinatorial designs and hypergraphs of degree one. In Graph Theory and its Applications: East and West, volume 576, pages 51-62. Annals of the New York Acadamy of Sciences, 1989.
[4] Th. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. I. and II. 2nd ed. Cambridge University Press, Cambridge, 1999.
[5] A.E. Brouwer. Optimal packings of K_{4} 's into a K_{n}. J. Combin. Theory Ser. A, 26:278-297, 1979.
[6] A.E. Brouwer and H. Lenz. Unterräume von Blockplänen. In GeometrieSymposium Siegen 1977, pages 383-389. Birkhäuser Verlag, Basel, 1979.
[7] A.E. Brouwer and H. Lenz. Subspaces of linear spaces of line size four. European J. Combin., 2:323-330, 1981.
[8] A.E. Brouwer, A. Schrijver, and H. Hanani. Group divisible designs with block size four. Discrete Math., 20:1-10, 1977.
[9] C.J. Colbourn and J.H. Dinitz, editors. The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton, 1996.
[10] G. Ge. Mandatory representation designs $\operatorname{MRD}(4, k ; v)$ with $k \equiv$ $1 \bmod$ 3. Discrete Math., 275:319-329, 2003.
[11] G. Ge and R.S. Rees. On group-divisible designs with block size four and group-type $g^{u} m^{1}$. Designs Codes and Cryptography, 27:5-24, 2002.
[12] G. Ge, J. Wang, and R. Wei. MGDD with block size 4 and its applications to sampling designs. Discrete Math., 272:277-283, 2003.
[13] M. Grüttmüller. On the existence of mandatory representation designs with block sizes 3 and k. J. of Combin. Designs, 8:122-131, 2000.
[14] M. Grüttmüller, V. Linek, R.S. Rees, and N. Shalaby. Mandatory representation designs $\operatorname{MRD}(3, k ; v)$ with k and v even. manuscript, :-, 2004.
[15] M. Grüttmüller and R.S. Rees. Pairwise balanced designs $\operatorname{PBD}(v, K)$ with $3 \in K$. Cong. Numer., 147:41-51, 2000.
[16] M. Grüttmüller and R.S. Rees. Mandatory representation designs $\operatorname{MRD}(4, k ; v)$ with $k \equiv 1 \bmod 3$. Utilitas Math., 60:153-180, 2001.
[17] M. Grüttmüller and R.S. Rees. Necessary existence criteria for mandatory representation designs $\operatorname{MRD}(4, k ; v)$. J. of Combin. Designs, 9:309333, 2001.
[18] E.R. Lamken and R.M. Wilson. Decompositions of edge-colored complete graphs. J. Combin. Theory Ser. A, 89:149-200, 2000.
[19] A.C.H. Ling and C.J. Colbourn. Modified group divisble designs with block size four. Discrete Math., 219:207-221, 2000.
[20] E. Mendelsohn and R.S. Rees. Mandatory representation designs. J. Combin. Theory Ser. A, 49:349-362, 1988.
[21] R.C. Mullin, A.C.H. Ling, R.J.R. Abel, and F.E. Bennett. On the closure of subsets of $\{4,5, \ldots, 9\}$ which contain $\{4\}$. Ars Combinatoria, 45:33-76, 1997.
[22] R.S. Rees. Mandatory representation designs $\operatorname{MR}(3, k ; v)$ with k even and v odd. J. Stat. Plan. Infer., 86:567-594, 2000.
[23] R.S. Rees. A survey of results on mandatory representation designs. J. Combin. Math. Combin. Comput., 38:33-43, 2001.
[24] R.S. Rees and D.R. Stinson. On the existence of incomplete designs of block size four having one hole. Utilitas Math., 35:119-152, 1989.
[25] R. Wei and L. Zhu. Embeddings of Steiner systems $s(2,4, v)$. Annals of Discrete Math., 34:465-470, 1987.
[26] R. Wei and L. Zhu. Embeddings of Steiner systems $s(2,4, v)$. European J. Combin., 10:201-206, 1989.
[27] R.M. Wilson. An existence theory for pairwise balanced designs I: Composition theorems and morphisms. J. Combin. Theory Ser. A, 13:220245, 1972.
[28] R.M. Wilson. An existence theory for pairwise balanced designs II: The structure of PBD-closed sets and the existence conjectures. J. Combin. Theory Ser. A, 13:246-273, 1972.
[29] R.M. Wilson. An existence theory for pairwise balanced designs III: Proof of the existence conjectures. J. Combin. Theory Ser. A, 18:7179, 1975.

