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Abstract

Multileaf collimators are widely used in radiotherapy to realize intensity mod-
ulated fields as superpositions of homogeneous fields, so called segments. One
important step in the planning process is the decomposition of the modulated
field into a small number of segments such that the total number of monitor
units is also small. In this paper we present an algorithm that is based on
the results of [6] and constructs a segmentation with minimal total num-
ber of monitor units and a small number of segments, taking into account a
machine–dependent constraint, that forbids leaf overtravel in adjacent rows
of the multileaf collimator.
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1 Introduction

In radiotherapy a modulated field is described by an intensity map. After
discretization such an intensity map can be considered as a nonnegative in-
teger m×n–matrix A = (ai,j). A realization of the modulated intensity with
a multileaf collimator corresponds to a representation of A as a nonnega-
tive combination of special (0, 1)–matrices, called segments, which describe
the possible leaf positions of the collimator. Throughout, for n ∈ N, let [n]
denote the set {1, 2, . . . , n}.
Definition. A segment is an m× n-matrix S = (si,j), such that there exist
integers li, ri (i ∈ [m]) with the following properties:

li ≤ ri + 1 (i ∈ [m]), (1)

si,j =

{
1 if li ≤ j ≤ ri

0 otherwise
(i ∈ [m], j ∈ [n]), (2)

ICC: li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m− 1]). (3)

The interpretation is that li − 1 and ri + 1 are the positions of the i–th
left and right leaf, respectively. (3) is the formal description of the interleaf
collision constraint (ICC), a technological restriction present in many widely
used multileaf collimators, which forbids the overtravel of opposite leafs in
adjacent rows. A segmentation of A is a representation of A as a sum of
segments, i.e.

A =
k∑

i=1

uiSi (4)

with segments Si (i = 1, 2, . . . , k) and positive integers ui (i = 1, 2, . . . , k). To
a segmentation of A there corresponds a treatment plan realizing the intensity
map given by A. There are two obvious measures for the quality of the
segmentation: the total number of monitor units (TNMU) and the number of
segments (NS) which are given by

∑k
i=1 ui and k, respectively. Clearly, both

of these should be minimized in order to optimize the treatment plan. In the
literature there are several algorithms for the construction of segmentations
([2–8]), some of them minimizing the TNMU, others reducing the NS at the
cost of an increased TNMU. In [1] it is shown that the NS–minimization is
NP–complete even for one row. So it might be a good strategy to look for an
algorithm that minimizes the TNMU and approximately minimizes the NS.
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2 The Algorithm

In order to avoid case distinctions later on we add two zero columns left and
right of the matrix A, i.e. we put

ai,0 = ai,n+1 = 0 (i ∈ [m]).

Further let
di,j = ai,j − ai,j−1 (i ∈ [m], j ∈ [n]).

In [6] it is proved that the minimal TNMU in a segmentation of A equals

c(A) = max{δ(P ) : P is a (0, 1)− path in
−→
G},

where
−→
G = (V ∪ {0, 1}, E) is a digraph with V = [m] × [n] and E =

4⋃
i=1

Ei

with

E1 = {(0, (i, 1)) : i ∈ [m]} ∪ {((i, n), 1) : i ∈ [m]},
E2 = {((i, j), (i, j + 1) : i ∈ [m], j ∈ [n− 1])},
E3 = {((i, j), (i + 1, j)) : i ∈ [m− 1], j ∈ [n]},
E4 = {((i, j), (i− 1, j)) : 2 ≤ i ≤ m, j ∈ [n]},

and the length function δ on E is defined by

δ(0, (i, 1)) = ai,1 (i ∈ [m]),

δ((i, n), 1) = 0 (i ∈ [m]),

δ((i, j), (i, j + 1)) = max{0, di,j+1} (i ∈ [m], j ∈ [n− 1]),

δ((i, j), (i + 1, j)) = −ai,j (i ∈ [m− 1], j ∈ [n]),

δ((i, j), (i− 1, j)) = −ai,j (2 ≤ i ≤ m, j ∈ [n]).

Adopting the terminology of [4] we call the pair (u, S) of a positive number
u and a segment S an admissible segmentation pair if

A′ = A− uS is nonnegative and

c(A′) = c(A)− u.

The essential step of our algorithm is to determine the maximal coefficient
u with the property that there exists a segment S, such that (u, S) is an
admissible segmentation pair. Iterating this step with A′ = A−uS we clearly
obtain a segmentation of A with c(A) monitor units. In order to derive an
upper bound for the coefficient u in an admissible segmentation pair (u, S),
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we identify, according to [2], the set of segments with the set of paths from
D to D′ in the layered digraph H = (V, E), constructed as follows. The
vertices in the i−th layer correspond to the possible leaf positions in row i
(1 ≤ i ≤ m) and two additional vertices D and D′ are added:

V = {(i, l, r) : i = 1, . . . , m, l = 1, . . . , n + 1, r = l − 1, . . . , n} ∪ {D, D′}.
Between two vertices (i, l, r) and (i + 1, l′, r′) there is an edge if the corre-
sponding leaf positions are consistent with the ICC, i.e. if l′ ≤ r + 1 and
r′ ≥ l − 1. In addition E contains all edges from D to the first layer and
from the last layer m to D′, so

E = E+(D) ∪ E−(D′) ∪
m−1⋃
i=1

E+(i), where

E+(D) = {(D, (1, l, r)) : (1, l, r) ∈ V },
E−(D) = {((m, l, r), D′) : (m, l, r) ∈ V },
E+(i) = {((i, l, r), (i + 1, l′, r′)) : l′ ≤ r + 1, r′ ≥ l − 1}.

There is a bijection between the possible leaf positions and the paths from D
to D′ in H. This is illustrated in Fig. 1 which shows a path in H for m = 4,
n = 2, corresponding to the segment

(
1 0
0 1
1 1
1 0

)
.

Assume, for every triple (i, l, r), 1 ≤ i ≤ m, 1 ≤ l ≤ r + 1 ≤ n + 1, we
have already determined some upper bound u0(i, l, r) for the coefficient u in
an admissible segmentation pair (u, S) where S is a segment with li = l and
ri = r. That is u ≤ u0(i, li, ri) for all i if (u, S) is an admissible segmentation
pair and li, ri (i = 1, . . . , m) are the parameters of S. We put

û = max{u : There is a path D, (1, l1, r1), . . . , (m, lm, rm), D′

in H with u0(i, li, ri) ≥ u for i = 1, . . . ,m}.
Clearly, û is an upper bound for the coefficient u in an admissible segmen-
tation pair (u, S). Now we describe an algorithm which constructs an ad-
missible segmentation pair (u, S) with maximal u. Fix u and assume we
have already determined the first i− 1 rows of a segment. If it is possible to
complete these i−1 rows to obtain a segment S such that (u, S) is an admissi-
ble segmentation pair, then the procedure Complete Segment(i) determines
li, . . . , lm and ri, . . . , rm which realize such a completion. Here MaxLength(i)

denotes the maximal length of a path in
−→
G that has all its vertices in the

first i rows.
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Figure 1: The vertices of H for m = 4, n = 2 and a (D, D′)–path.

Procedure Complete Segment(i)
for (li, ri) with 1 ≤ li ≤ ri−1 + 1,

max{li, li−1} − 1 ≤ ri ≤ n and
u0(i, li, ri) ≥ u do

if MaxLength(i) ≤ c(A)− u then
if i < m then
Complete Segment(i + 1)

else
finished:=true

end if
end if

end for

Now the pair (u, S) is constructed as follows:

Procedure Construct Segment

u := û
finished:=false
l−1 := 1, r−1 := n + 1
while not finished do
Complete Segment(1)
if not finished then

u := u− 1
end if

end while

Clearly, the efficiency of the backtracking depends very much on the quality
of the bounds u0(i, l, r). We give some bounds that turned out to be quite
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good in numerical experiments. Trivially, in an admissible segmentation pair
(u, S) we have, for all i,

u ≤ v1(i, li, ri) := min{ai,j : li ≤ j ≤ ri ≤ n}.

For (i, j) ∈ V we use the notation

α1(i, j) = max{δ(P ) : P is a (0, (i, j))− path in
−→
G}, (5)

α2(i, j) = max{δ(P ) : P is a ((i, j), 1)− path in
−→
G}. (6)

To avoid case distinctions we also put α1(i, 0) = α2(i, n + 1) = 0. Fix an

admissible segmentation pair (u, S), denote by δ′ the length function on
−→
G

corresponding to A′ = A− uS and let

α′1(i, j) = max{δ′(P ) : P is a (0, (i, j))− path in
−→
G}, (7)

α′2(i, j) = max{δ′(P ) : P is a ((i, j), 1)− path in
−→
G}. (8)

The upper bounds below are based on the following simple observations

1. The only edges e with δ′(e) < δ(e) are of the form e = ((i, li−1), (i, li))
(1 ≤ i ≤ m), and for these edges δ′(e) ≥ δ(e)− u.

2. For edges of the form e = ((i, j), (i ± 1, j)) (li ≤ j ≤ ri) we have
δ′(e) = δ(e) + u.

3. If j < lk for some k ∈ [m] then, on every (0, (k, j))−path P , the number
of edges of the form ((i, li−1), (i, li)) is equal to or less than the number
of edges of the form ((i, j), (i± 1, j)) with li ≤ j ≤ ri.

4. If j ≥ lk for some k ∈ [m] then, for every ((k, j), 1)−path P , the
number of edges of the form ((i, li − 1), (i, li)) is equal to or less than
the number of edges of the form ((i, j), (i± 1, j)) with li ≤ j ≤ ri.

The third and the fourth observations are illustrated in Figure 2.
It follows, for 1 ≤ i ≤ m,

α′1(i, j) ≥ α1(i, j) for j < li,

α′2(i, j) ≥ α2(i, j) for j ≥ li.

Lemma 1. Let (u, S) be an admissible segmentation pair with li = l and
ri = r. Then u ≤ v2(i, l, r) where

v2(i, l, l − 1) = c(A)− α1(i, l − 1)−max{0, di,l} − α2(i, l),
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Figure 2: The area which is covered by the leafs is shaded. On any path with
both end vertices in the shaded region, for every arc that enters the white
region there must be an arc leaving the white region. If the last vertex is left
of the white region (as in 3. above) every arc leaving the white region is a
vertical one. Similarly, if the starting point of the path is right of the white
region (as in 4. above), for every horizontal arc entering the white region
there must be a vertical arc leaving the white region.

and if r ≥ l then v2(i, l, r) = min{γ1, γ2, γ3, γ4}, where

γ1 = c(A)− α1(i, l − 1)− α2(i, l),

γ2 = c(A)− α1(i, l − 1)−
r∑

j=l+1

max{0, di,j} − α2(i, r + 1),

γ3 = c(A)− α1(i, l − 1)− di,l −
r∑

j=l+1

max{0, di,j} − di,r+1 − α2(i, r + 1),

γ4 =
1

2

(
c(A)− α1(i, l − 1)−

r∑

j=l+1

max{0, di,j} − di,r+1 − α2(i, r + 1)

)
.

Proof. Let P be the the concatenation of the paths P1, P2 and P3, where
P1 is a (0, (i, l − 1))−path with δ(P1) = α1(i, l − 1), P2 is the path ((i, l −
1), (i, l), . . . , (i, r+1)), and P3 is an ((i, r+1), 1)−path with δ(P2) = α2(i, r+
1).

Case 1: r = l − 1. Using the above observations, we obtain

c(A)− u = c(A′) ≥ δ′(P ) ≥ α1(i, l − 1) + max{0, di,l}+ α2(i, l),

and thus u ≤ c(A)− α1(i, l − 1)−max{0, di,l} − α2(i, l).
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Case 2: r ≥ l. Now

δ′(P ) = δ′(P1) + max{0, di,l − u}+
r∑

j=l+1

max{0, di,j}

+ max{0, di,r+1 + u}+ δ′(P2),

and thus

α1(i, l − 1) + max{0, di,l − u}+
r∑

j=l+1

max{0, di,j}

+ max{0, di,r+1 + u}+ α2(i, r + 1) ≤ c(A)− u,

or

u + max{0, di,l − u}+ max{0, di,r+1 + u} ≤ c(A)− α1(i, l − 1)

−
r∑

j=l+1

max{0, di,j} − α2(i, r + 1),

which implies u ≤ γi (i = 2, 3, 4). To see u ≤ γ1, consider the path
Q that is the concatenation of P1, the edge ((i, l − 1), (i, l)) and an
((i, l), 1)−path P4 with δ(P4) = α2(i, l). Then

δ′(Q) ≥ α1(i, l − 1) + α2(i, l),

and thus u ≤ γ1.

Lemma 2. Suppose (u, S) is an admissible segmentation pair, fix some i,
2 ≤ i ≤ m− 1, and put

λ1 = max
li≤t≤ri

{α1(i− 1, t)− ai−1,t − ai,t + α2(i + 1, t)},
λ2 = max

li≤t≤ri

{α1(i + 1, t)− ai+1,t − ai,t + α2(i− 1, t)}.

Then
u ≤ v3(i, li, ri) := c(A)−min{λ1, λ2}.

Proof. By symmetry, w.l.o.g. λ1 ≤ λ2. Assume u > c(A) − λ1, and let t
be the index where the maximum in the definition of λ1 is attained. Let
P be the concatenation of the three paths P1, P2 and P3, where P1 is an
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(0, (i− 1, t))−path with δ(P1) = α1(i− 1, t), P2 = ((i− 1, t), (i, t), (i + 1, t))
and P3 is an ((i + 1, t), 1)− path with δ(P3) = α2(i + 1, t). Then

δ′(P ) ≤ c(A′) = c(A)− u < λ1 = δ(P ).

By the above observations, we have δ′(P1) ≥ δ(P1) − u, δ′(P3) ≥ δ(P3) − u
and

δ′(P2) =

{
δ(P2) + 2u if li−1 ≤ t ≤ ri−1,
δ(P2) + u otherwise.

So δ′(P ) < δ(P ) implies

δ′(P1) < δ(P1),

δ′(P2) = δ(P2) + u,

δ′(P3) < δ(P3).

And from this follows

li−1 ≤ t and li+1 > t.

Now denote by t′ the index where the maximum in the definition of λ2 is
attained. Since u > c− λ1 ≥ c− λ2, by an analoguous argument we obtain

li+1 ≤ t′ and li−1 > t′.

But this is a contradiction to li+1 > t if t′ ≤ t and to li−1 < t if t′ > t.

Thus we may put

u0(i, l, r) = min{vk(i, l, r) : k = 1, 2, 3}. (9)

Theorem 3. If the u0(i, l, r) are determined according to (9) the algorithm
Construct Segment yields an admissible segmentation pair (u, S) such that
u′ ≤ u for any admissible segmentation pair (u′, S ′).

3 Results

To test our algorithm we computed segmentations for 15× 15–matrices with
random entries from {0, 1, . . . , L} for 3 ≤ L ≤ 16. Table 1 shows the re-
sults. The numbers in the comlumns TNMU (new) and NS (new) are the
average total number of monitor units and the average number of segments,
where we have averaged over 10000 matrices with randomly chosen entries
from {0, . . . , L} (uniformly distributed). The remaining comlumns show the

8



corresponding results for some other algorithms that were proposed for the
segmentation problem. These numbers are taken from [8]. The columns la-
beled X-V, B, G contain the results for the algorithms of Xia and Verhey
[8], Bortfeld et al. [3] and Galvin et al. [5], respectively. On an 1.3GHz–PC
the computation of the two new entries in a row of the table, i.e. the seg-
mentation of 10000 matrices, took approximately 1 hour. But it should be
mentioned that the algorithm is fast for the vast majority of the matrices,
while there are some very rare exceptions. This is illustrated in Table 2.

L TNMU TNMU TNMU TNMU NS NS NS NS
(new) (X–V) (B) (G) (new) (X–V) (B) (G)

3 15.4 19.5 17.7 19.7 12.6 13.3 17.7 13.4
4 19.5 29.6 22.8 40.5 14.5 18.6 22.8 20.4
5 23.6 30.9 27.9 40.1 16.0 19.0 27.9 20.4
6 27.6 46.8 32.8 44.2 17.2 20.3 32.8 21.5
7 31.7 45.6 37.9 67.1 18.2 20.0 37.9 27.1
8 35.7 63.4 42.8 72.3 19.1 24.3 42.8 28.2
9 39.8 67.1 47.8 72.3 19.9 24.3 47.8 28.3
10 43.8 68.6 52.6 76.5 20.7 25.7 52.6 28.9
11 47.7 68.6 57.6 81.4 21.3 25.7 57.6 30.9
12 51.8 101.1 62.4 106.8 21.9 27.0 62.4 34.8
13 55.7 100.6 67.3 101.1 22.5 26.9 67.3 35.5
14 59.8 100.0 72.2 112.7 23.0 26.9 72.2 35.6
15 63.8 98.0 77.1 116.0 23.5 26.7 77.1 35.9
16 67.7 124.9 82.0 154.5 24.0 30.0 82.0 41.7

Table 1: Test results for m = n = 15.

CPU–time ≤ 1 sec ≤ 2 sec ≤ 10 sec ≤ 1 min
number of matrices 7879 9972 9992 9999

Table 2: The table shows the numbers of matrices that were treated in the
time given in the first row, when altogether segmentations for 10000 15×15–
matrices with random entries between 0 and 16 were computed.

4 Discussion

We presented an algorithm for the construction of a treatment plan realizing a
given intensity map with a multileaf collimator in the static mode which takes
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into account the interleaf collision constraint and constructs a segmentation
with minimal TNMU and a small NS. The algorithm is based in the repeated
subtraction of segments with the maximal possible coefficient. The drawback
of the method is the computational complexity. There are matrices where
the search for the maximal possible coefficient is very time–consuming, and
due to the used backtracking the computation time grows rapidly with the
problem size. So further research with the aim to overcome these problems
should be devoted to the determination of the maximal coefficient.
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