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Abstract

We discuss the existence of matrix representations for generalized and mini-

mum participation constraints which are frequently used in database design

and conceptual modelling. Matrix representations, also known as Armstrong

relations, have been studied in literature e.g. for functional dependencies and

play an important role in example-based design and for the implication prob-

lem of database constraints. The major tool to achieve the results in this paper

is a theorem of Hajnal and Szemerédi on the occurrence of clique graphs in a

given graph.
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1 Introduction

Informally, a database relation may be considered as a matrix, where every column

contains the data of the same sort and every row contains the data of some ob-

ject. This approach is very similar to the two-dimensional tables that humans have

used to keep track of information for centuries. As an example consider a relation

schema (Teacher, Course, Weekday) and the database relation in Figure 1 containing

information on classes taught at a university.

Teacher Course Weekday

Mary Java Mo

John C++ Tu

John Delphi Tu

Mary Java We

Mary Java Fr

Figure 1: A database relation containing information on classes to be taught.

Often the data stored in a database relation are not independent from each other.

In the example above any two classes on the same course are given by the same

teacher. Let Ω denote the set of columns, and let X,Y be non-empty subsets of Ω.

Then Y functionally depends on X if any two rows coinciding in the columns of X

are also equal in the columns of Y . Further, entries do not occur arbitrarily often.

In the example above every teacher gives between 2 and 3 classes, and for every

course there is at most one class per weekday. Given some entry a in the matrix, its

degree deg(A, a) counts how often this entry occurs in the column A ∈ Ω. Analyzing

these degrees provides lower and upper bounds on the number rows that coincide in

column A.

Some of the dependencies discussed above may hold by accident. When the database

relation is updated they could well be violated. Others, however, we wish to hold

forever, no matter of how the database relation is modified. They reflect the seman-

tics of the real world situation captured by the database. The notion of a database

relation itself provides only syntax but does not carry any semantics of the data.

Therefore, semantic integrity constraints are used to specify the rules which data

have to satisfy in order to reflect the properties of the represented objects in the

modelled real world situation. When designing a database system, integrity con-

straints have been proven useful in ensuring databases with semantically desirable

properties, in preventing update anomalies, and in allowing the application of effi-

cient methods for storing, accessing and querying data. Consequently, various classes

of integrity constraints have been defined and studied for databases with functional

dependencies, multi-valued dependencies and inclusion dependencies being the most

prominent examples. In addition, properties such as axiomatization and implication

have been studied for these constraints. For details we refer e.g. to [11, 13].

In the present paper we study participation constraints which gained much atten-
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tion in the database design community, but also in conceptual modelling and in

knowledge representation.

2 Preliminaries

Let R be a matrix with n columns and s rows and such that no two rows are identical.

Let Ω = {C1, . . . , Cn} be the n-element set of columns. Further, let rangei contain all

entries of R in column Ci. In the context of the relational database model (RDM),

the columns are called attributes, the elements in rangei are called the values of

attribute Ci, the sequence (C1, . . . , Cn) is called a relation schema, and the matrix

R is called a database relation over Ω. The rows of R are tuples from the cartesian

product range1 × · · · × rangen, and each tuple contains the data of one object.

2.1 Participation constraints

Within this paper, we are mainly concerned with participation constraints. A par-

ticipation constraint is an expression cardpart(Ci) = b with b ∈ N∞ and Ci ∈ Ω. This

constraint holds in the database relation R every Ci ∈ rangei appears at most b times

in column Ci. For example, the participation constraint cardpart(Teacher) = 3 tells

us that every teacher gives at most three classes. We call a participation constraint

finite if b is finite.

Participation constraints may be easily extended to sets of columns. A gener-

alized participation constraint is an expression cardpart(X) = b with b ∈ N∞

and ∅ 6= X ⊆ Ω. This constraint holds in a database relation R if there are

at most b rows which coincide in each of the columns Ci ∈ X. For example,

the generalized participation constraint cardpart({Course,Weekday}) = 1 tells us

that every course is taught at most once per weekday. Clearly, a participation

constraint cardpart(Ci) = b corresponds to a generalized participation constraint

cardpart(R,X) = b with X = {Ci}. Generalized participation constraints with X

containing all but one of the columns are better known as look-across constraints or

Chen-style cardinality constraints, and have been widely used in database design,

e.g. in entity-relationship modelling [13].

In many applications, one is not only interested in upper bounds on the number of

occurrences of values but also in lower bounds. A minimum participation constraint

is an expression cardmin(Ci) = a with a ∈ N∞ and Ci ∈ Ω. This constraint holds

in the database relation R every Ci ∈ rangei appears at least a times in column Ci.

For example, the participation constraint cardmin(Teacher) = 2 tells us that every

teacher gives at least two classes.
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2.2 The implication problem and closed constraint sets

The constraints satisfied by a database relation are usually not independent. A single

constraint σ follows from a constraint set Σ if σ holds in every database relation R

which satisfies Σ. We also say that Σ implies σ. Two constraint sets Σ and Σ′ are
equivalent if every constraint in Σ′ follows from Σ and vice versa.

For a fixed class Z of constraints, the implication problem for this class Z reads

as follows: Given a constraint set Σ ⊆ Z and a single constraint σ ∈ Z, we want

to know whether σ follows from Σ. The emergence of the implication problem in

database theory is discussed e.g. in [11, 12]. A constraint set Σ is Z-closed if it

contains every constraint σ ∈ Z which follows from Σ. Special attention is devoted

to the determination of closed constraint sets. Clearly, Σ implies σ ∈ Z if and only

if σ is in the Z-closure of Σ. Thus the characterization of closed sets in a constraint

class Z completely solves the implication problem for this class.

In the present paper, we are interested in the joint class P of generalized participation

constraints and minimum participation constraints.

3 Matrix representations

Given a database relation R it is often a straightforward task to extract the set

Σ(R) ⊆ Z of all constraints from Z satisfied by R. Clearly, ΣR must be Z-closed.
Conversely, given a constraint set Σ ⊆ Z it is natural to ask whether there is a

database relation R such that Σ(R) is just the Z-closure of Σ. In this case, R is

said to represent the constraint set Σ under consideration or to be a Z-Armstrong
relation for Σ. In this case, R satisfies exactly the logical consequences of Σ among

all the constraints in Z.

In view of this property, matrix representations are excellent tools in example-based

database design. Armstrong relations satisfy exactly the conditions specified by the

database designer. This makes them good examples to represent the real world

situation captured by the database. Further, they help the designer to recognize

omissions and mistakes in the design. Actually, a major problem that has been noted

with the use of automated design tools is to get all necessary design information from

the designer into the tool.

Matrix representations have been first studied for functional dependencies. A func-

tional dependency is a statementX → Y where bothX and Y are non-empty subsets

of Ω. This constraint holds in the database relation R if any two rows coinciding

in the columns of X also coincide in the columns of Y . Armstrong [1] observed

that closed sets of functional dependencies correspond to closure operations on the

set Ω. He proved that every closed set of functional dependencies admits a matrix

representation. In [7] Demetrovics and Gyepesi proved that in the worst case the

minimum size s of an Armstrong relation for a set of functional dependencies satisfies
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the inequality
1

n2

(

n

bn/2c

)

< s ≤ (1 + c√
n
)

(

n

bn/2c

)

,

for some suitable constant c. A functional dependency X → Ω is, in particular,

called a key dependency and X is said to be a key. Note that key dependencies are

special kinds of generalized participation constraints, namely those ones with b = 1.

Demetrovics observed that the set of minimal keys is always a Sperner family over

the set Ω, that is, minimal keys are mutually inclusion-free. Again, every closed set

of key dependencies admits a matrix representation. Demetrovics and Gyepesi [7]

proved that in the worst case the minimum size s of an Armstrong relation for a set

of key dependencies satisfies the inequality

1

n2

(

n

bn/2c

)

< s ≤ 1 +

(

n

bn/2c

)

.

Since then, matrix representations for functional dependencies have been widely

studied in the literature [2, 3, 4, 8]. For a survey on similar results for other con-

straints such as multi-valued dependencies, inclusion dependencies or branching de-

pendencies, see e.g. [11, 12, 13].

Unfortunately, matrix representations are not always possible. Let n ≥ 2 and con-

sider the empty constraint set Σ which is clearly satisfied by every database relation

R over Ω = {C1, . . . , Cn}. Hence, Σ does not imply any participation constraint

cardpart(C1) = b with finite b. Conversely, however, each database relation R of size

s satisfies the participation constraint cardpart(C1) = s, which is not a consequence

of Σ. In order to be represented by some database relation, Σ must at least imply

some finite participation constraint for every Ci ∈ Ω.

4 Inference rules

The latter observation again rises the implication problem. Of course, one will not

inspect all possible database relations in order to decide the implications of a given

constraint set. Rather, we are interested in inference rules which help to decide this

question. An inference rule is an expression Σ′

σ
γ where Σ′ is a subset of Σ, and γ

states some condition on Σ′ which has to be satisfied if we want to apply this rule.

If Σ contains a subset Σ′ satisfying the condition γ, then σ may be derived from Σ

due to that inference rule. An inference rule is sound if Σ implies every constraint

σ which may be derived from Σ due to that rule.

We are interested in inference rules which completely describe all the implications

of a given constraint set Σ. A rule system R is a set of inference rules. The most

prominent example of such a rule system is the Armstrong system for functional

dependencies [1]. A set Σ is syntactically closed with respect to R if it contains

every constraint σ which may be derived from Σ due to some rule in R. The general
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problem is to find a rule system R for the constraint class Z such that a given set

Σ ⊆ Z is Z-closed if and only if it is syntactically closed w.r.t. R. Such a rule

system is said to be sound and complete for the implication of Z. The Armstrong

system for functional dependencies is the most prominent example of a sound and

complete rule system.

Let Ci, Cj ∈ Ω, let X,Y be non-empty subsets of Ω, and let a, a′, b, b′ ∈ N∞. For the

class P of generalized and minimum participation constraints the following inference

rules are clearly sound:

cardpart(X) =∞
,

cardpart(Ω) = 1
,

cardmin(Ci) = 1
,

cardpart(X) = b

cardpart(Y ) = b
X ⊂ Y,

cardpart(X) = b

cardpart(X) = b′
b < b′,

cardmin(Ci) = a

cardmin(Ci) = a′
a > a′,

cardpart(Ci) = b, cardmin(Ci) = a

cardpart(Ci) = 0
a > b,

cardpart(Ci) = 0

cardpart(Cj) = 0
,

cardpart(Ci) = 0

cardmin(Ci) =∞
.

Note that the last three rules describe situations where Σ is only satisfied by the

empty database relation. We call such a constraint set conflicting. Matrix represen-

tations will help us to verify that the rule system above is in fact complete, that is,

provides a characterization of closed sets of generalized and minimum participation

constraints.

5 Representation graphs

In the sequel we make use of a nice graph-theoretic analogue of matrix representa-

tions. For every column Ci, we introduce its representation graph Gi whose vertices

are the rows of R, and where two vertices r and r′ are connected by an edge just

when the rows r and r′ coincide in column Ci.

By Kk we denote the complete graph on k vertices. A clique of size k in a graph

G is a maximal complete subgraph with k vertices in G. A clique graph is a graph

where every connected component is a complete graph. Obviously the representation

graph Gi is a clique graph where each clique corresponds to exactly one value of the

attribute Ci. Conversely, suppose we are given a collection O of subgraphs Gi of
the complete graph Ks such that each of them is a clique graph. Then it is easy to

construct a database relation R of size s whose representation graphs are just the

given graphs Gi.

For any non-empty subset X ⊆ Ω, let GX denote the intersection of the representa-

tion graphs Gi with Ci ∈ X. This intersection is again a clique graph. The following

observation is straightforward.
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Proposition 1. A database relation R satisfies the generalized participation con-

straint cardpart(X) = b if and only if the intersection graph GX has maximum clique

size at most b. A database relation R satisfies the minimum participation constraint

cardmin(Ci) = a if and only if the representation graph Gi has minimum clique size

at least a.

This explains our interest in collections of clique graphs whose intersections have

prescribed clique sizes. In the remainder of this section we assemble a number of

lemmata ensuring the existence of such collections. The final lemma in this series will

then turn out to be the major tool to establish matrix representations for generalized

and minimum participation constraints. In order to prove this final lemma we are

going to apply a theorem of Hajnal and Szemerédi [10]. By µKk we denote the clique

graph consisting of µ vertex-disjoint copies of Kk.

Theorem 2 (Hajnal and Szemerédi). Let H be a graph with m = µk vertices

and minimum valency δ(H) ≥ m − µ. Then H has a subgraph isomorphic to the

clique graph µKk.

This deep result was first conjectured by Erdős [9] and gives a necessary condition

on the occurrence of clique graphs as subgraphs in a given graph H. For a detailed

discussion, we refer to Bollobás [5].

Throughout, suppose we are given positive integers kX for every non-empty subset

X ⊆ Ω such that kX ≥ kY whenever X ⊆ Y . For simplicity, we write kj instead of

kCj
for every Cj ∈ Ω.

Lemma 3. Let s =
∑

∅6=X⊆Ω kX . Then there is a collection of spanning subgraphs

G1, . . . ,Gn of Ks satisfying the following conditions:

(i) For every j with 1 ≤ j ≤ n, the subgraph Gj is a clique graph.

(ii) For every non-empty subset X ⊆ Ω, the intersection graph GX has maximum

clique size kX .

Proof. To begin with, we partition the vertex set of Ks into subsets VZ where VZ
consists of kZ vertices and Z runs through all non-empty subsets Z ⊆ Ω. Then,

for every j = 1, . . . , n, we choose Gj to be the clique graph whose components are

the complete graphs on the sets VZ with j ∈ Z together with the isolated vertices

contained in the sets VZ with j 6∈ Z. Each Gj satisfies the first condition as kZ ≤ kj
holds whenever j ∈ Z ⊆ Ω. Given some non-empty subset X ⊆ Ω, the intersection

graph GX is just the clique graph whose non-singleton components are complete

graphs on the sets VZ with X ⊆ Z. The inequality kZ ≤ kX for X ⊆ Z proves GX
to be of maximum clique size kX as claimed.

Lemma 4. Let s =
∑

∅6=X⊆Ω

(

kX − |X|kX +
∑

j∈X kj

)

. Then there is a collection

of spanning subgraphs G1, . . . ,Gn of Ks satisfying the following conditions:
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(i) For every j with 1 ≤ j ≤ n, the subgraph Gj is a clique graph such that each

of its cliques is of size 1 or kj.

(ii) For every non-empty subset X ⊆ Ω, the intersection graph GX has maximum

clique size kX .

Proof. First, we select a subset V ′ of size s′ =
∑

∅6=X⊆Ω kX among the vertices of Ks.

For these vertices we proceed as in the preceding lemma which gives us a collection

O′ of graphs G ′j with vertex set V ′ satisfying the conditions in the preceding lemma.

The remaining vertices not in V ′ should be partitioned into subsets Vj,Z where Vj,Z
consists of kj − kZ vertices, and j, Z runs through all pairs j, Z with 1 ≤ j ≤ n and

j ∈ Z ⊆ Ω. Next, for every j = 1, . . . , n, we have to extend the subgraph G ′j on

vertex set V ′ to a spanning subgraph Gj containing all vertices of Ks. For that, we

extend the component with vertex set V ′Z in G ′j to a complete graph on the vertex

set V ′Z ∪ Vj,Z where Z runs through all subsets Z ⊆ Ω containing j. Due to our

choice of the vertex sets V ′Z and Vj,Z , all the cliques in the resulting clique graph Gj
are of size 1 or kj as desired. The second condition immediately follows from our

construction and the preceding lemma. Note that the intersection graph GX is just

the intersection graph G ′X on the vertex set V ′ augmented by a number of isolated

vertices.

Choose λ to be a positive integer such that λ
∏n

j=1 kj ≥
∑

∅6=X⊆Ω kX .

Lemma 5. Let s = (λ+1)
∏n

j=1 kj. Then there is a collection of spanning subgraphs

G1, . . . ,Gn of Ks satisfying the following conditions:

(i) For every j with 1 ≤ j ≤ n, the subgraph Gj is isomorphic to the clique graph
kjKs/kj

.

(ii) For every non-empty subset X ⊆ Ω, the intersection graph GX has maximum

clique size kX .

Proof. Let V denote the vertex set of Ks. First, we select a subset V ′ ⊆ V of

size s′ =
∑

∅6=X⊆Ω

(

kX − |X|kX +
∑

j∈X kj

)

. For these vertices we proceed as in

the preceding lemma which gives us a collection O′ of graphs G ′j with vertex set

V ′ satisfying the conditions in the preceding lemma. Now, for every j = 1, . . . , n,

we have to extend the subgraph G ′j on vertex set V ′ to a spanning subgraph Gj on

vertex set V .

Assume we have already constructed suitable subgraphs Gi for i < j, and are now

going to construct Gj. Let V ′′ consist of all the isolated vertices in G ′j and all the

vertices in V − V ′. Put

µ = (λ+ 1)
∏

i6=j
ki − |{Z ⊆ Ω : j ∈ Z}|.
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It is an easy calculation to see that V ′′ is just of size µkj. The subgraph of G ′j induced
by V −V ′′ is clearly isomorphic to the clique graph ((λ+1)

∏

i6=j ki−µ)Kkj
. Hence,

to ensure condition (i), it essentially remains to arrange the vertices in V ′′ to cliques

of size kj each. For that, however, we may use neither the edges in the subgraphs

Gi, i < j, nor the edges in the subgraphs G ′i, i ≥ j. Let H be the graph on vertex

set V containing all the remaining, i.e. permitted edges for Gj. Further, let H′′ be
the subgraph of H induced by the vertex set V ′′. Every vertex in H′′ has valency at

least

δ(H′′) ≥ |V ′′| − 1−
∑

i6=j
(ki − 1) = µkj − 1−

∑

i6=j
(ki − 1).

This allows us to apply the Theorem of Hajnal and Szemerédi which verifies that

H′′ contains a subgraph with vertex set V ′′ which is isomorphic to µKkj
. Together

with the copy of ((λ + 1)
∏

i6=j ki − µ)Kkj
with vertex set V − V ′′ this gives us the

subgraph Gj satisfying condition (i) as desired. Again, condition (ii) immediately

follows from our construction and the preceding lemma. Note that the intersection

graph GX is just the intersection graph G ′X on the vertex set V ′ augmented by a

number of isolated vertices.

6 Main results

We are now ready to state our results on matrix representations of generalized and

minimum participation constraints. As a consequence we also obtain a characteri-

zation of closed sets of these constraints.

Theorem 6. Let Σ be a set of generalized and minimum participation constraints

containing some finite participation constraint for every Ci ∈ Ω. Then Σ may be

represented by a database relation R.

Proof. Let Σ+ contain Σ and all the consequences of Σ derived by applying the

rules in Section 4. If Σ+ contains a constraint cardpart(Ci) = 0 for some (and

thus for all) Ci ∈ Ω, the empty database relation represents Σ. Otherwise, put

bX = min{b : cardpart(X) = b is in Σ+} for every non-empty X ⊆ Ω, and ai =

max{a : cardmin(Ci) = a is in Σ+}. For short, we again write bi instead of bCi
.

By hypothesis, all these values are finite. Two applications of the final lemma in

the preceding section will provide representation graphs G1, . . . ,Gn which yield the

claimed database relation R. First, we choose kX = bX for every non-empty X ⊆ Ω.

This gives us a collection O1 of clique graphs G11 , . . . ,G
1
n. Next, we choose ki = ai

for every Ci ∈ Ω and kX = 1 for every subset X ⊂ Ω of size at least 2. This gives us

a collection O2 of clique graphs G21 , . . . ,G
2
n. Afterwards, for every Ci ∈ Ω, we take Gi

as the vertex-disjoint union of G1i and G2i . Due to Proposition 1, it is an easy exercise

to check that the database relation R corresponding to the chosen representation

graphs in fact represents Σ+ and, thus, Σ.
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Corollary 7. Let n ≥ 2. A set Σ of generalized and minimum participation con-

straints admits a P-Armstrong relation if and only if Σ is conflicting or contains

some finite participation constraint for every Ci ∈ Ω.

Proof. By virtue of the discussion at the end of Section 3, it suffices to show that

Σ does not imply a finite participation constraint for a fixed Cj ∈ Ω unless it is

conflicting or contains such a constraint. Suppose Σ is not conflicting and con-

tains no finite participation constraint for Cj, but assume Σ implies some constraint

cardpart(Cj) = b. Adjoin new participation constraints cardpart(Cj) = b + 1 and

cardpart(Ci) = ai for every Ci, i 6= j, without a finite participation constraint in Σ

where ai is defined as in the proof of the preceding theorem. By this theorem, the

augmented constraint set may be represented by a database relation R. Hence, R

satisfies Σ, but violates cardpart(Cj) = b.

Corollary 8. The rule system presented in Section 4 is sound and complete for

generalized and minimum participation constraints, that is, a set Σ of generalized

and minimum participation constraints is P-closed if and only if Σ is syntactically

closed w.r.t. these rules.

7 Final remarks

Before closing this paper, there are two remarks called for. The interested reader

might wonder why we did not extend the concept of minimum participation con-

straints to subsets of Ω. This, of course, would be a natural idea similar to the

investigation of generalized participation constraints. The reason for this is twofold.

First, lower bounds for the occurrence in pairs, triples, etc. of entries are rarely used

in database design. This, however, is surely not a satisfactory answer from the sci-

entific point of view. Rather, in case we could construct matrix representations for

these extended set of constraints, we would have written a completely different pa-

per. Let n ≥ 3 and Σ contain the constraints cardpart(Ci) = k and cardmin(Ci) = k

for every Ci ∈ Ω, and cardpart(X) = 1 and cardmin(X) = 1 for every two-element

subset X ⊆ Ω. A database relation representing Σ is a transversal design TD(n, k)

with block size n and group size k. For relevant notions from combinatorial design

theory, we refer to [6]. It is well-known that a transversal design TD(n, k) corre-

sponds to a set of n − 2 mutually orthogonal Latin squares. The question whether

there exists a TD(5, 10), that is, a set of 3 mutually orthogonal squares of order

10, however, is one of the most famous open problems in design theory. This, we

hope, explains our difficulties with extending the concept of minimum participation

constraints to subsets of Ω.

Further, one may ask for matrix representations of minimum size. For functional

dependencies this problem has been widely studied and partial results have been

obtained. For the constraints studied in this paper, we already started to study this
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question for special constraint sets. This time, let n ≥ 3 and Σ contain the con-

straints cardpart(Ci) = k and cardmin(Ci) = k for every Ci ∈ Ω, and cardpart(X) = 1

for every two-element subset X ⊆ Ω. If there exists a transversal design TD(n, k),

this would be a matrix representation of minimum size for Σ. Hence, again, it seems

to be hard to achieve general results on the minimum size of a database relation rep-

resenting a rather simple set of generalized and minimum participation constraints.

In either case, the known results on key dependencies show that in the worst case

the minimum size will be exponential in n.
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and V. T. Sós, editors, Combinatorial theory and its applications, volume 4 of Colloq.

J. Bolyai Math. Soc., pages 601–623. North-Holland, Amsterdam, 1970.
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