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Abstract

We present a new fast radiotherapy planning algorithm which de-

termines approximatively optimal gantry and table angles, kinds of

wedges, leaf positions and intensities simultaneously in a global way.

Other parameters are optimized only independently of each other.

The algorithm uses an elaborate field management and field reduc-

tion. Beam intensities are determined via a variant of a projected

Newton method of Bertsekas. The objective function is a standard

piecewise quadratic penalty function, but it is built with efficient upper

bounds which are calculated during the optimization process. Instead

of pencil beams, basic leaf positions are included. The algorithm is im-

plemented in the new beam modelling and dose optimization module

Homo OptiS.

1 Introduction

“Inverse radiation therapy planning” is a well–known notion for techniques
providing the geometric–physical set–up and the intensity profiles of radia-
tion beams that realize a desired dose distribution for a particular patient.
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Here the geometric–physical set–up is given by a certain number of fields
having parameters like position of the isocenter, field–width, field–length,
gantry angle, table angle, collimator angle, kind of wedge, shape of a com-
pensator, and energy. The intensity profile is characterized either only by
the time of radiation (old version) or by the time of radiation of a number
of pencil beams (beamlets, bixels) into which a beam is partitioned. These
intensity modulated beams are realized by multileaf–collimators (MLC). For
an overview cf. [12, 23, 54, 56].

The clinical requirements to the dose distribution can more or less never
be realized, but by means of optimization the deviation from the requirements
can be kept “small”. Nowadays, the optimization is an iterated two–stage
process. In the first stage the geometric–physical set–up is fixed and in the
second stage the intensity profiles are computed. The first stage is carried
out by experienced trial and error, by heuristic (often geometrically based)
methods, or by stochastic search methods including in particular simulated
annealing [9, 36, 39, 42, 47, 53] and genetic algorithms [21, 23, 31]. These
search methods are also time–consuming in their fast variants. For the second
stage one uses algorithms from linear programming [2, 6, 25, 46] or nonlinear,
in particular quadratic, programming [12, 14, 15, 16, 18, 26, 29, 37, 45, 48,
50, 51, 52, 59] and control theory [28] including multiple objective approaches
[17, 24, 60]. Also iterative dose reconstruction techniques [8, 27, 43, 49] and
methods from global optimization have been developped [58]. Moreover, it
must be mentioned that one–stage algorithms have been designed by means
of mixed integer programming [13, 33, 34] but they are time– and memory–
consuming, too.

We present a new method that realizes on the one hand a near–optimal
geometric–physical set–up for the most important parameters gantry angle,
table angle, kind of wedge and energy (optional) and on the other hand
optimal beam intensities in a one–stage process. Other parameters are
determined automatically by efficient heuristics. We emphasize that it is not
necessary to fix the geometric–physical set–up in advance. This method is
already realized in our beam modelling and dose optimization module Homo

OptiS which computes the solution – depending on the concrete situation –
in a few seconds or at most in a few minutes.

Essential new ingredients of the algorithm are the determination of
voxel–dependent bounds and costs, a special variant of a projected
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Newton method, a well–devised field management and a field reduc-
tion as well as the use of basic leaf positions instead of pencil beams.

Because of the large number of possible fields, a huge number of dose
calculations are necessary. We work with high energy photon beams and
use a fast 3D–ray tracing algorithm mETMR (modified equivalent tissue–
maximum–ratio) with radiological depth correction and a modified scatter
model for field size and tissue–inhomogeneity scatter effects. Thus, in partic-
ular heterogeneity is considered in the dose calculation [5, 11, 19, 38, 41]. The
time–consuming kernel methods and Monte–Carlo–methods more precisely
take into account lateral scattering effects caused by the density and hence
electron disequilibrium. These effects occur especially on tissue boundaries
and in the case of a small field size and high energies [1, 10, 35, 55]. We
carried out computations where perturbations in dose calculations were in-
cluded, i.e. we simulated deviations from the correct dose values. It turned
out that these perturbations do not significantly influence the quality of the
solution which shows that our dose calculation algorithm is sufficient for the
optimization. The robustness of the method can be explained by the choice
of voxel–dependent bounds determined by dose calculations and by averag-
ing effects because a treatment plan does not consist of one field only, but of
several fields.

The size of the voxels used in the program are CT-slice dependent. De-
pending on the patient and on the location the size is between 3×3×5 mm3

and 7 × 7 × 10 mm3. Smaller size increases the number of voxels but does
not yield significantly better results.

We used a standard piecewise quadratic objective function. Clearly, one
is interested in a high tumor control probability (TCP) and in a small normal
tissue complication probability (NTCP). But, as emphasized by several au-
thors, [28] at the moment there does not exist a commonly accepted model for
calculating these probabilities. At least heuristically it seems to be clear that
an optimal value of the piecewise quadratic objective function corresponds
to optimal values of the aforementioned probabilities. Moreover, quadratic
functions can be handled very well numerically.

Our new method accelerates and improves the radiotherapy treatment
planning. In order to explain the ideas and their effects we cannot avoid
discussing the optimization in mathematical detail.
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2 Notation and terminology

An elaborate field management plays an essential role in our approach. Since
it must be implemented in an object–oriented way we use for several impor-
tant parameters a C++–similar notation. Let a field F be a class having the
following parameters:

(1) F → I (position of the isocenter)
(2) F → W (field width)
(3) F → L (field length)
(4) F → C (the positions of the leaves of an MLC)
(5) F → E (energy)
(6) F → β (field angle, i.e. collimator rotation)
(7) F → ϕ (gantry angle)
(8) F → θ (table angle)
(9) F → κ (kind of wedge)

A 10th distinguished parameter of a field F is its weight xF (i.e. the
time) which we consider separately. A treatment plan is a pair (F , x) where
F is a (small) set of fields and x is a function F → R+ representing the field
weights. We write briefly xF instead of x(F ) for all F ∈ F .

We emphasize that intensity modulated fields are usually realized as a
superposition of fields which differ only by the position of the leaves and
by the weight (step and shoot). Therefore we consider intensity modulated
fields as certain sets of fields.

Moreover, let a voxel v be a class having the following parameters:

(1) v → P (position and size in a given coordinate system)
(2) v → D (Electron density of the voxel)
(3) v → R (kind of region)

The (abstract) patient is a finite set V of voxels. The kind of region yields
a partition of the patient V into blocks. Usually, we have one block T which
is called the planning target volume (PTV), a family R of blocks R which are
the organs at risk (OAR), and one block S which consists of the remaining
voxels of V , i.e. the rest of body (ROB),

V =

(

⋃

R∈R

R

)

∪ S ∪ T.
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If there are more than one target, the set T must be replaced everywhere by
a union of the form ∪T∈T T . We emphasize that we do not allow intersections
of regions of interest.

In practice, these regions are given by contours drawn by the physician or
physicist on each CT–slice. In Figure 1 there is given one CT–slice containing
contours of the PTV and the OARs. This slice is illustrated on the left by
means of the Hounsfield–values and on the right by means of the Electron
density values (for dose calculation) in a low resolution which is sufficient
for the optimization. The voxels (on the right) are represented by (two–
dimensional) squares.

Figure 1: CT–slices representing Hounsfield values (left) and Electron density
values of voxels (right)

In this paper we suppose that there is given a fast algorithm which deter-
mines for each field F and each voxel v the dose DF (v) which is accumulated
at v by the field F with unitary weight xF = 1. It is well–known that we
have in the non–unitary case

D(F,x)(v) = xF DF (v)

and that the total dose D(F ,x)(v) which is accumulated at v by the treatment
plan (F , x) is given by

D(F ,x)(v) =
∑

F∈F

xF DF (v).
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3 Objective function

The physician fixes a value bT , i.e. the prescribed dose to the target, and the
aim is to find a treatment plan (F , x) such that D(F ,x)(v) is very near to bT

for each v ∈ T and that D(F ,x)(v) is as small as possible for each other voxel,
but in particular for the voxels in the OARs. It is a conventional method to
fix a value bR for each R ∈ R and to write the conditions

D(F ,x)(v) = bT for all v ∈ T

D(F ,x)(v) ≤ bR for all v ∈ R,R ∈ R.

This model has two disadvantages. Firstly, the choice of bR has a subjective
flavor and intuition as well as experience are necessary. Secondly, for voxels
which are far away from the PTV, the bound is often satisfied automatically
whereas for voxels near to the PTV the bound cannot be kept. Thus we
propose to fix for each voxel v ∈ V \ T an individual bound bv in order to
have finally

D(F ,x)(v) = bT for all v ∈ T

D(F ,x)(v) ≤ bv for all v ∈ V \ T.

In Section 5 we describe an algorithm for the calculation of the bounds bv.

Assume for a moment that F is fixed. Using the vector notation

dv = (DF (v))F∈F , x = (xF )F∈F

the system above can be rewritten as

d
T

v x = bT for all v ∈ T

d
T

v x ≤ bv for all v ∈ V \ T

x ≥ 0.

In almost all practical situations this system does not have an admissible
solution. Thus we must search for “almost” admissible solutions. As men-
tioned in the introduction, there are standard linear and quadratic program-
ming techniques for doing this. To achieve high speed algorithms we prefer
quadratic programming. Let the real function z+ be defined by

z+ =

{

z, if z ≥ 0

0, otherwise.
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Associating with each voxel v an importance factor cv, we come to the fol-
lowing problem where a penalty function f(x) must be minimized subject to
the nonnegativity condition:

f(x) → min

x ≥ 0

where

f(x) =
∑

v∈T

cv(d
T

v x− bT )2 +
∑

R∈R

∑

v∈R

cv(d
T

v x− bv)
2
+ +

∑

v∈S

cv(d
T

v x− bv)
2
+. (1)

We call this problem the weight optimization problem (WOP). Hints for the
choice of the importance factors are given in Section 4. In Section 6 we
describe a fast algorithm for the WOP. In (1), for every target voxel a devi-
ation from bT is penalized. In a modified model, one can generate similarly
a penalty if d

T

v x < bT or d
T

v x > bT , where bT and bT are lower and upper
bounds for the prescribed dose, respectively.

The more difficult problem is the determination of the set of fields F
which gives minimal penalty values. We propose to fix the field parameters
(1)–(6) independently of the other fields in an “optimal way”, i.e. to do a
one–field–optimization for some properties. This is explained in Section
7. The main result of the paper is an approximation algorithm for an optimal
choice of the field parameters (7)–(9), i.e. angles and wedges are optimized
globally. This can be achieved by combining the fast algorithm for the
WOP with a sophisticated field management which is presented in Section 8.
If the number of fields is too large, a well devised field reduction, explained
in Section 9, provides the final treatment plan. In order to speed up the
computations and to decrease memory demand, we do not really work with
all voxels. We choose voxels randomly and forget all other voxels during the
optimization process. The random choice is described in Section 10.

First we place the leaves of an MLC in such a way that no part of the PTV
is covered by the leaves in the beam’s eye view. This seems to be sufficient
for convex PTVs. In the non–convex case, a partial covering of the PTV
should be allowed, therefore the first placement will be modified in several
ways. The optimal placement of the leaves in this case will be discussed in
Sections 11 and 12 where the leaf–setting is included in a specific way in the
field management.
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4 Importance factors

Though there exist algorithms for the determination of the importance factor,
[57], we believe that the choice of the importance factors in the objective
function (1) of the WOP is, at the moment, not a mathematical problem.
The physician must decide how important the conditions on the regions are.
Increasing the factor cv for one voxel v improves the results for this voxel but
makes, in general, results for other voxels worse. Thus a carefully directed,
dose–volume histogram adequate variation of the importance factors seems
to be unavoidable. But in order to be relatively independent of the concrete
structure of the patient we have the following propositions:

First choose for each region T,R ∈ R, S a general importance factor

cT , cR, cS (i.e. do variations only for these numbers). Then put for v ∈ R ∈ R
(and analogously for T and S)

cv =
cR

size of R
.

Here size of R could be e.g. the sum of the volumes of the voxels being
contained in R. Such a normalization was also used before, [28]. It is heuris-
tically clear (and experiments confirm this) that voxels at the boundary of
the regions are especially important, in particular boundary target voxels.
Low-dose values for some of these voxels make the treatment plan already
unacceptable for the physician.

Thus we propose to multiply cv with a factor greater than 1, say 2, for
these voxels. Finally, we make a small anticipation to the next section where
we calculate for each non–target voxel v an efficient upper bound bv. If
bv is “almost” zero, then the voxel v seems to be relatively unimportant
whereas voxels v with “large” bv seem to be important. Thus, having already
calculated bv, we put (with bv = bT for each target voxel)

cv := cv(bv + C),

where C is some constant which is proportional to bT , e.g. C = bT /4.

5 Upper bounds

Let F be a large set of, say 360, fields which can potentially serve as elements
of a practical treatment plan. We consider the treatment in an “aggressive
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manner”, i.e. our first aim is to avoid target voxels for which the dose is less
than the desired value. Let v ∈ V \ T be a non–target voxel. The minimal
dose–value for v, using the aggressive method, is obviously the minimum
value of the objective function in the following linear programming problem
(LPP):

d
T

v x → min

d
T

wx ≥ bT for all w ∈ T

x ≥ 0.

We could put the upper bound bv equal to this minimum value. But if we
have e.g. 2000 voxels this determination is too time–consuming. Moreover,
obviously in practice there cannot be a unique x which solves the LPP si-
multaneously for all v ∈ V \ T . So we will be content with another bound
which is still good enough.

For each v ∈ V \T let N(v) be a set of “neighboring” target voxels which
“imply” a great dose value for v. E.g., N(v) could contain from each CT–
slice such a target voxel which has minimum Euclidean distance to v. Now
it would be possible to replace the LPP by the new LPP

d
T

v x → min

d
T

wx ≥ bT for all w ∈ N(v)

x ≥ 0.

Here, the value of the objective function is in general smaller than for the old
LPP since we have much more restrictions in the old LPP. But in order to
save time we still want to avoid linear programming. Thus, to the new LPP,
we add the restriction that all solutions x have only one non–zero component
which then increases the minimal value bv of the objective function (i.e., we
assume that we have for v only one field in the treatment plan). It is easy to
see that we have

bv = min
F∈F

max
w∈N(v)

DF (v)

DF (w)
bT .

We call this bound the minimum bound. Considering for v not the best field
but randomly (using a uniform distribution) any field of F , we come to the
average bound

bv =
1

|F|

∑

F∈F

max
w∈N(v)

DF (v)

DF (w)
bT .
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Since in general bv < bv, the bound bv has more influence to the WOP with
respect to v than bv. In order to control this influence we use the general
importance factors to finally fix the bound bv. Let v belong to a region, say
R, with general importance factor cR (see Section 4). Then we put

bv =
1

cR + 1
bv +

cR

cR + 1
bv.

This value is a good estimate for the minimum possible dose at v. Hence we
very often have (in particular if the general importance factor cR is large)
that

(dT

v x − bv)
2
+ = (dT

v x − bv)
2.

The piecewise quadratic objective function (1) is consequently more similar to
a quadratic function than it would be in the case of general upper bounds bR

fixed by the physician. An (almost) quadratic function can be handled
much faster in the optimization process than a piecewise quadratic
function.

In addition, it is possible to finally multiply bv by a factor not greater
than 1 and decreasing with cR. Then the corresponding voxel can still be
better protected in the case of large importance factors, but this protection
is at the cost of not reaching the prescribed dose of some target voxels.

6 Fast solution of the WOP

Essentially, all previously used methods for the solution of the WOP (see the
references in the introduction) are variants of the scaled projection algorithm,
[4]. But this algorithm has still much freedom, in particular in the choice of
the scaling matrix. A standard classification is given by steepest descent, Ja-
cobi, Gauss–Seidel, conjugate gradient, quasi–Newton, Newton. Sometimes
it is difficult to extract from the literature which kind of algorithm is really
used, how the projection is carried out and how the line–search is realized.
We believe that it is indispensable to present precisely the concrete form of
our algorithm. It is based on a projected Newton method of Bertsekas 1982
[3] adapted to the special kind of the objective function. So we work with the
Hessian matrix, but in a relatively small dimension, similar to the active set
approach (using cg) in [29]. Generally, authors hesitated to use the Hessian
matrix, but it turned out that it does not pose numerical problems.
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The objective function (1) reads briefly

f(x) =
∑

v∈T

cv(d
T

v x − bv)
2 +

∑

v∈V \T

cv(d
T

v x − bv)
2
+

where for the sake of simplicity

bv = bT for all v ∈ T.

With
Ix = T ∪ {v ∈ V \ T : d

T

v x > bv}

we have
f(x) =

∑

v∈Ix

cv(d
T

v x − bv)
2. (2)

Note that the gradient of f is given by

∇f(x) = 2
∑

v∈Ix

cv(d
T

v x − bv)dv = Dx − d (3)

where

D = 2
∑

v∈Ix

cvdvd
T

v

d = 2
∑

v∈Ix

cvbvdv.

In the algorithm we start with any nonnegative vector x (or with some
heuristically good nonnegative x or with a solution of a previous WOP).
We describe one step of the algorithm xold → xnew. The idea is to use a
special method of descent. From the Karush–Kuhn–Tucker theorem, cf. [7],
it follows that the admissible vector x is an optimal solution of the (convex)
problem

f(x) → min subject to x ≥ 0

iff the KKT–conditions are satisfied:

∂f

∂xF

= 0 for all F ∈ F with xF > 0 (4)

∂f

∂xF

≥ 0 for all F ∈ F with xF = 0. (5)
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(It is not difficult to verify this also directly without the KKT–theorem.)
Thus, if the KKT–conditions are satisfied for x = xold, the algorithm stops.

Now we assume that the KKT–conditions are not satisfied for the admis-
sible vector x = xold. In order to find an admissible direction of descent for
xold we first change a little bit the representation (2) of f(x). Let x be any
fixed vector, e.g. x = xold. Let F ′ = F ′

x
be defined by

F ′ =

{

F ∈ F : xF > 0 or
∂f

∂xF

< 0

}

. (6)

The set F ′ contains all fields F for which the KKT–conditions (for x) are
not satisfied and moreover those fields F for which xF > 0 and ∂f

∂xF
= 0. We

call F ′ the set of free fields. By our assumption, F ′ 6= ∅. Note that

xF = 0 for all F ∈ F \ F ′.

We are looking for a direction z which leaves the F–component equal to zero
for all F ∈ F \ F ′, i.e.

xF + zF = 0 for all F ∈ F \ F ′.

Such a direction could be the projected negative gradient z
′ (depending on

x) which is given by

z′F =

{

− ∂f

∂xF
if F ∈ F ′

0 otherwise.
(7)

If we go along this direction, the index set Ix changes. For small λ > 0 we
have for v ∈ V \ T

d
T

v (x + λz
′) > bv if v ∈ Ix or d

T

v x = bv and d
T

v z
′ > 0.

Thus we define

I ′
x

= Ix ∪ {v ∈ V \ T : d
T

v x = bv and d
T

v z
′ > 0} (8)

and work with the new representation of f(x)

f(x) =
∑

v∈I′
x

cv(d
T

v x − bv)
2
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(recall that f(x) is not purely quadratic, because I ′
x

depends on x).

With this new representation we start the determination of the admissible
direction of descent for xold. For a moment, we consider two kinds of objects
to be constant. Firstly, we have already said that we want to leave F–
components of x equal to zero for F ∈ F \ F ′. Thus let x

′ and d
′

v be those
subvectors of x and dv, respectively, whose components are associated with
fields F ∈ F ′. This gives the function

g(x′) =
∑

v∈I′
x

cv(d
′T

v x
′ − bv)

2.

Secondly, we consider I ′
x

to be constant, i.e. I ′
x

= I ′
xold

. This provides the
new (purely quadratic) function

h(x′) =
∑

v∈I′
xold

cv(d
′T

v x
′ − bv)

2

with the gradient
∇h(x′) = D′

x
′ − d

′

where

D′ = 2
∑

v∈I′
xold

cvd
′

vd
′T

v (9)

d
′ = 2

∑

v∈I′
xold

cvbvd
′

v. (10)

In practice, the vectors x
′ and d

′

v often have few components. Thus the
dimension of D′ and d

′ is rather small which explains the high speed of the
algorithm.

Let x̂
′ be the optimal solution of

h(x′) → min,

i.e., a solution of
D′

x
′ = d

′. (11)

Let
ẑ

′ = x̂
′ − x

′

old. (12)
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As above, the boldface dash in ẑ
′ means that its components are associated

with fields F ∈ F ′, i.e. ẑ
′ = (ẑF )F∈F ′ . Note that

D′
ẑ

′ = −∇h(x′

old) (13)

and that D′ is the Hessian–matrix of h, i.e. ẑ
′ is a Newton–direction. As a

direction of descent we finally take the vector z which is defined by

zF =

{

ẑF if (ẑF > 0 or xoldF
> 0) and F ∈ F ′

0 otherwise.
(14)

Obviously, for small λ the vector xold + λz remains nonnegative, hence
z is an admissible direction. Before we continue with the description of the
algorithm, we will show that z is indeed a direction of descent. Let

ϕ(λ) = f(xold + λz). (15)

Note that ϕ is a piecewise quadratic convex function since f has, as a nonneg-
ative combination of piecewise quadratic convex functions, the same property
and that

ϕ′(λ) = z
T∇f(xold + λz).

Theorem 1 If the KKT–conditions are not satisfied, then ϕ′(0) < 0.

Proof We have to show that

∑

F∈F ′

zF

∂f(xold)

∂xF

< 0. (16)

Note that in view of xoldF
= 0 for all F ∈ F \ F ′

∂f(xold)

∂xF

=
∂g(x′

old)

∂xF

=
∂h(x′

old)

∂xF

for all F ∈ F \ F ′.

Since by supposition the KKT–conditions are not satisfied

∇h(x′

old) 6= 0

which establishes x
′

old 6= x̂
′ and moreover h(x̂′) < h(x′

old). Consequently,
ẑ

′ 6= 0 and ẑ
′ is a direction of descent for h, i.e.

ẑ
′T∇h(x′

old) < 0
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which is the same as
∑

F∈F ′

ẑF

∂f(xold)

∂xF

< 0. (17)

We show that for all F ∈ F ′

ẑF

∂f(xold)

∂xF

≥ zF

∂f(xold)

∂xF

. (18)

This is clear if zF = ẑF . If zF = 0 6= ẑF , in view of (14) necessarily ẑF ≤ 0
and xoldF

= 0. By the definition of F ′

∂f(xold)

∂xF

< 0

and hence (18) is satisfied. From (17) and (18) we obtain (16). �

Now, having found the direction of descent z, we have to describe how far
we are going along this direction. This part of the algorithm is called one–

dimensional minimization. We will not go farther than to x̂ and, moreover,
we have to leave all components nonnegative. Thus let

λmax = min{1, max{λ : xold + λz ≥ 0}}. (19)

If ϕ′(λmax) ≤ 0, ϕ is still non–increasing at λ = λmax and thus we put

xnew = xold + λmaxz.

Here the one-dimensional minimization is terminated and one iteration step
of the algorithm is completed.

If ϕ′(λmax) > 0, the minimum of ϕ lies in the open interval (0, λmax). If ϕ
was purely quadratic (i.e. if f had no items of the form (dT

v x− bv)
2
+), then ϕ

and ϕ′ would be a quadratic and linear real function, respectively. It is easy
to calculate the root λ0 of ϕ′(λ) for this case, i.e. the minimum λ0 of ϕ(λ):

λ0 = −
λmaxϕ

′(0)

ϕ′(λmax) − ϕ′(0)
.

We would then put
xnew = xold + λ0z.
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But f and thus also ϕ are only very similar to a quadratic function (by
our special choice of the upper bounds bv). In reality f and ϕ are piece-
wise quadratic, convex, differentiable functions. Consequently, λ0 could lie
in another piece of ϕ than 0 or λmax and possibly ϕ′(λ0) 6= 0. Hence we
substitute

λmax := λ0

and continue with the case distinction ϕ′(λmax) R 0 as before and iterate.
Since we have only finitely many pieces of ϕ, after a finite number of such
substitutions the case ϕ′(λmax) ≤ 0 must occur which shows that in finite
time one iteration step of the algorithm is completed. In numerical tests the
iteration was not necessary in most cases since the situation ϕ′(λmax) ≤ 0
was already in the beginning. In particular, it is not necessary to use other
line–search methods like golden section, Fibonacci, or descent rules using
derivatives [7, 22]. We summarize the whole procedure:

Algorithm WOP

Fix a starting vector x ≥ 0
Determine ∇f(x) by (3)
While the KKT–conditions (4) and (5) are not satisfied do

Determine F ′ by (6)
Determine z

′ by (7)
Determine I ′

x
by (8)

Determine D′ and d
′ by (9) and (10)

Determine z by (13) and (14)
Put ϕ(λ) = f(x + λz) as in (15)
Determine λmax by (19)
Determine ∇f(x + λmaxz) by (3)
while ϕ′(λmax) > 0 do

λmax = −λmaxϕ
′(0)/(ϕ′(λmax) − ϕ′(0))

Determine ∇f(x + λmaxz) by (3)
Put x = x + λmaxz

Clearly, some numerical precautions as the replacement of 0 by a small ε
must be included.

We tested also the use of other directions of descent, e.g. the projected
negative gradient and a variant of a projected conjugate gradient (two–
dimensional minimization in the subspace spanned by the projected gradient
and the projection of the last direction). However, the variant presented
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above in detail was the best one. The most time–consuming parts are the
determination of the gradient of f in (3) and the determination of the matrix
D′ in (9) (not the solution of the system (13)!). A slight acceleration can be
obtained if one replaces the Hessian–matrix D′ by a good estimation of D′

(non–standard quasi–Newton method). This can be done as follows: Choose
with probability p voxels v from I ′

xold
which gives the set Ip

xold
. Then replace

(9) by

D′ =
2

p

∑

v∈I
p
xold

cvd
′

vd
′T

v .

But numerical tests show that p cannot be taken small because otherwise
the number of iterations increases so much that the whole algorithm is not
faster. A good choice is e.g. p = 0.5.

7 One–field–optimization

For time and memory reasons it is useful to fix several field parameters
independently of the other fields with simple search strategies. By heuristic
reasons we do the following:

• Place the isocenter at the center of gravity of the PTV.

• Determine field width and field length in such a way that the jaws touch
a “security strip” around the PTV and do the same for the leaves of an
MLC. At this stage, in the beam’s eye view, it remains an open area
which contains the whole PTV and is sufficiently small.

• Determine the field angle such that the open area has minimum size.

• Determine for each energy the quotient of a good estimate of the ratio of
the total dose accumulated at the PTV and the total dose accumulated
at all OARs (e.g. compute the dose of several randomly chosen voxels).
Take that energy which yields the greatest ratio.

We emphasize that it is possible to determine the energy also globally like
the gantry angle, table angle and kind of wedge. There is no theoretical and
practical obstacle. The only problem is that this increases time and memory
demand. Tests have shown that global determination of energy does not
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have such great influence as global determination of angles and wedges. Thus
we described the one–field–energy–optimization here. The algorithms for all
items of this section are straightforward, hence we omit a detailed discussion.

8 Field management

Because of our one–field–optimization procedure we have finally only 4 es-
sential field parameters: gantry angle F → ϕ, table angle F → θ, kind
of wedge F → κ and the distinguished parameter xF . We assume that
there is a set Φ of g possible gantry angles Φ = {ϕ0, . . . , ϕg−1} (usually
Φ = {0, . . . , 359}), a set Θ of t possible table angles Θ = {θ0, . . . , θt−1}
(usually Θ = {0, . . . , 179}), and a set K of w possible kinds of wedges
K = {κ0, . . . , κw−1} (e.g. K = {0, . . . , 4}, where 0 means no wedge and
1–4 means a wedge in one of 4 positions differing in rotations of 90 degrees).
From all these triples (ϕ, θ, κ) often not all are allowed. Firstly, there are
technical reasons and secondly there are reasons to forbid several triples. For
example, one should forbid those angle pairs (ϕ, θ) which yield a small angle
between the central axis of the patient and the central ray, because in these
cases the ray runs through the whole body and there are not enough CT–
slices for the dose calculation. Moreover, table–gantry–collisions may occur.
Thus let

A ⊆ Φ × Θ ×K

be the set of allowed triples. We call a field F allowed if (F → ϕ, F → θ, F →
κ) ∈ A. Now we could apply our Algorithm WOP to

F = {F : (F → ϕ, F → θ, F → κ) ∈ A}

But in our example Φ×Θ×K has 360 ·180 ·5 = 324, 000 elements. Thus the
set F of allowed fields is also very large. For each such triple the one–field–
optimization should be carried out. Having moreover, e.g. 2000, voxels we
would need 648,000,000 dose calculations. This is too time–consuming and
poses memory problems. Thus we first restrict ourselves to a subset A′ of the
set A of all allowed triples whose elements are uniformly distributed in A:
Let Φ′ ⊆ Φ, Θ′ ⊆ Θ, K′ ⊆ K, and let A′ := (Φ′ ×Θ′ ×K′)∩A. For example,
if Φ′ = {0, 30, 60, . . . , 330}, Θ′ = {0, 30, . . . , 150},K′ = {0, 1, 2, 3, 4}, then
|Φ′ ×Θ′ ×K′| = 360 and therefore |A′| ≤ 360. Here the angles are uniformly
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distributed and “roughly all” directions are possible. We first solve the WOP
for the set

F ′ = {F : (F → ϕ, F → θ, F → κ) ∈ A′}. (20)

Now the main idea is the following: We do not start with F ′. In-
stead, we work with an increasing sequence of subsets of the set A′

whose elements are again uniformly distributed in A. The optimal
solution for an element of the sequence (i.e. for a subset of allowed
triples) can be taken as the starting vector for the next element of
the sequence. Then at each moment the number of fields having
nonzero weight remains very small and this yields high speed in
the solution of the WOP.

Formally, we describe this as follows. Keeping in mind uniform distribu-
tions of the angles, we fix sequences Φ0 ⊆ Φ1 ⊆ · · · ⊆ Φs = Φ′, Θ0 ⊆ Θ1 ⊆
· · · ⊆ Θs = Θ′, K0 ⊆ K1 ⊆ · · · ⊆ Ks = K′, we put Ai := (Φi × Θi ×Ki) ∩ A
and solve the WOP for the sets

Fi = {F : (F → ϕ, F → θ, F → κ) ∈ Ai}, i = 0, . . . , s.

Note that F0 ⊆ F1 ⊆ · · · ⊆ Fs. The aforementioned advantage is that we
can take the optimal solution xi for Fi as a starting vector for Fi+1 where
we put

xF = 0 for all F ∈ Fi+1 \ Fi, i = 0, . . . , s − 1.

This yields the small number of nonzero components which essentially in-
fluences the speed. Many experiments have shown that still in the optimal
WOP–solution x

′ for F ′ there are only a few nonzero components which can
be considered to represent roughly the significant fields. So we first delete
all non–significant fields by putting

F ′′ := {F ∈ F ′ : xF > 0}.

Reducing correspondingly x
′ yields x

′′.

Hitherto we did not allow all triples from A, but only the triples from
A′. Now we essentially allow all triples from A using an analogue procedure
(we avoid introducing further subsets of A, but work immediately with sets
of fields and consider here only angles): In the neighborhood of the
remaining significant fields, we permit step by step more fields
until all fields corresponding to triples from A are allowed. Again
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more formally: Let h1 and h2 be the difference between neighboring angles
in Φ′ and Θ′, in our example we have h1 = 30 and h2 = 30. Now we add to
F ′′ those (allowed) fields G for which there exists a field F in F ′′ differing
from G only in the gantry angle by h1/2 (mod 360), i.e. we put

F ′′′ = F ′′ ∪ {G : G is allowed and there is some F ∈ F ′′ such that

F → ϕ − G → ϕ = ±h1/2 (mod 360) and

F → θ = G → θ, F → κ = G → κ}.

Starting with x
′′, the Algorithm WOP provides a solution x

′′′. Then we
proceed in the same way for table angles:

F (iv) = F ′′′ ∪ {G : G is allowed and there is some F ∈ F ′′′ such that

F → ϕ
.
= G → ϕ, F → θ − G → θ = ±h2/2, F → κ = G → κ}.

Here the θ–difference is considered (mod 180). If in this construction G → θ
becomes less than 0 or greater or equal to 180 then we have to add or subtract
180 from this angle. Reversing the direction of the table requires also the
reflection of the gantry angle with respect to a vertical line in order to get the
same beam–direction for the patient. Hence in that case we must replace the
gantry angle G → ϕ by 360 − G → ϕ. Because of this additional condition
we write F → ϕ

.
= G → ϕ instead of F → ϕ = G → ϕ.

We start the Algorithm WOP with x
′′′ and finally obtain x

(iv). Now h1/2
and h2/2 still may be too large. Thus we put

F ′ := F (iv),x′ := x
(iv), h1 := h1/2, h2 := h2/2

and iterate until we obtain the desired refinement. Again, deleting the
nonzero components, at the end we have a set F∗ with an associated vector
x
∗ that has no zero component. The pair (F∗,x∗) can be considered as the

optimal treatment plan though we used little heuristics (restricting at the
end only to neighbors of significant fields) in order to avoid to work with all
allowed triples from Φ × Θ ×K.

9 Field reduction

The treatment plan (F∗,x∗) obtained so far has for concrete patients often
between 15 and 30 fields. This is for practical purposes too much. Assume
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that the objective function has for (F∗,x∗) a value z∗. We are looking for
a treatment plan (F ,x), having z as the value of the objective function, for
which

z

z∗
≤ 1 + ε

where ε is a small positive number, e.g. 0.1. Such a treatment plan is still
good enough, i.e. ε–approximatively optimal. The idea is trivial: Delete
step by step one or simultaneously several fields from F∗ and up-
date the optimal solution x using the Algorithm WOP. For the dele-
tion we choose such (non–significant) fields F for which xF

∑

v∈T DF (v), i.e.
the total dose contribution to the PTV, is small. If F∗ is large, the optimal
value of the objective function still remains almost constant in the beginning
of this process. But if the actual treatment plan has a few fields after a while,
this fast deletion heuristics is not good enough. So at some moment we start
new, slower reduction heuristics consisting of two steps:

1. Greedy deletion: Running through all fields we determine that field
F which yields the smallest optimal value of the objective function after its
deletion. This field will be deleted.

2. Local search: After deletion of the most unimportant field, the remaining
set Fold of fields is generally not the best one compared with all sets of fields
of same cardinality. But one can expect that only a small adjustment is
necessary to get again a new, really good set Fnew of fields (adjustment only
at the end, i.e. after greedily deleting many fields, would pose much more
problems with local optima and e.g. time–consuming simulated annealing
would be necessary). The adjustment will be done by a special kind of local
search. Suppose that Fold = {F1, . . . , Fn}. With each field Fi we associate
the set of neighboring fields

N(Fi) = {G : G is allowed , Fi → κ = G → κ, and

(Fi → ϕ − G → ϕ = ±h and Fi → θ = G → θ) or

(Fi → ϕ
.
= G → ϕ and Fi → θ − G → θ = ±h)

where h is some distance, e.g. h = 1 or 2, and the subtraction is (mod 360)
or (mod 180) analogously as at the end of Section 8. In general, |N(Fi)| = 5,
i = 1, . . . , n. We put

F̃ =
n
⋃

i=1

N(Fi)
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and, starting with the actual solution, we apply the Algorithm WOP to F̃
which gives the solution x̃. Deleting from F̃ all fields with x̃F = 0 could
provide a set of fields which has more elements than Fold. Hence we would
not have a field reduction and we would be unsuccessful. Consequently, we
do the following: For each i, i = 1, . . . , n, we look for the most significant
field F̃i in N(Fi), i.e. for which xF

∑

v∈T DF (v) is maximal, F ∈ N(Fi).
Then we put

Fnew = {F̃1, . . . , F̃n}.

If for i 6= j, N(Fi) ∩ N(Fj) 6= ∅, it is possible that F̃i = F̃j and hence
|Fnew| < |Fold|, but on the one hand this only accelerates the reduction
process and on the other hand in practical tests this never appeared. Let zold

and znew be the optimal values of the objective function for Fold and Fnew,
respectively. If zold > znew, we replace Fold by Fnew and iterate. At some
moment we will have the situation zold ≤ znew; then we do not replace and
the reduction step is completed.

The field reduction is now carried out as long as the desired number of
fields is reached. The ratio z/z∗ gives a hint, how much the real world patient
has to “pay” for being treated with a smaller than the optimal number of
fields. But we emphasize that e.g. a ratio of 2 does by no means say that
the probability of being cured is divided by 2.

10 Choice of voxels

The most time–consuming assignments (3) and (9) show that the algorithm
WOP, and thus also the whole algorithm is more or less time–proportional
to the number of voxels. Hence we have to make a good choice of voxels.
Random choice of voxels was used e.g. in [32, 40]. We propose to consider 4
types of voxels and to associate with them probabilities p0 > p1 > p2 > p3,
e.g. p0 = 1, p1 = 1/2, p2 = 1/4, p3 = 1/16. A voxel v is of type 0 or 1
if it is on the geometrical boundary of the PTV T or of an OAR R ∈ R,
respectively. The voxels on the boundary seem to have most influence to the
treatment plan. A voxel is of type 2 if it is in the interior of the PTV or of
an OAR. Moreover, voxels of the rest S which are “near” to the PTV are
also considered as voxels of type 2. Finally, all remaining voxels of S are of
type 3 .
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In addition, we distinguish visible and non–visible voxels. A voxel v is
visible iff there is at least one field F in the starting set F ′ (20) such that v
is not covered in the beam’s eye view by the jaws or the leaves given by F .

Running through the complete set V of voxels, we select visible voxels
of type i with probability pi, i = 0, 1, 2, 3. This gives the working set V ′ of
voxels for which the optimization process is really carried out.

11 PTV–oriented placement of the leaves of

an MLC

The MLC enables each field F to open a certain region which can be de-
scribed as follows: There is given a rectangle of size (F → W ) × (F → L).
This rectangle is divided into m inner–point–disjoint subrectangles having
size (F → W ) × hi, i = 1, . . . ,m, where

∑m

i=1 hi = F → L. For each sub-
rectangle there are given values li and ri, i = 1, . . . ,m, which indicate the
positions of the edges of the left and right leaf. Let l = (l1, . . . , lm) and
r = (r1, . . . , rm). The shape of the field is consequently given as a quadru-
ple (F → W,F → L, l, r) and collects the field parameters (2)–(4). This is
illustrated in the left part of Figure 2.

Figure 2: Field–shape (left) and field shape with P = ((1, 2), (1, 3)) (right)

Up to now we determined l and r in such a way that the leaves touch a
“security strip” around the PTV (see Section 7), but note that for real world
MLCs the parameters F → W and F → L are fixed and in particular greater
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than the corresponding results in the one–field–optimization. From now on
we allow that parts of the PTV are covered by leaves. We already mentioned
that this is particularly interesting for non–convex PTV’s.

The standard way is the discretization of the leaf–positions. This leads
to a partition of the rectangle into several subrectangles (resp. subsquares)
which are irradiated by “pencil–beams”. In conventional algorithms, the in-
tensity (relative fluence) is calculated for every subrectangle during the opti-
mization process. Then these intensities can be realized as a superposition of
several leaf–positions which are calculated by a leaf–segmentation algorithm,
cf. [44]. But since one has a large number of subrectangles the computation
must be restricted to a small number of allowed beam–orientations. On the
contrary, our aim is the simultaneous optimization of the beam–orientations,
i.e. of the angles, and of the intensities. So we work out two ideas: The
discretization should be done relative to the PTV, it should not
be too fine and larger open regions should be allowed in order to
avoid a subsequent leaf–segmentation.

For this purpose, we will introduce a notational system so that we will
be able to represent certain subregions of the PTV efficiently. To motivate
this notation, consider the field–shapes shown in Figure 2. The shape on the
right is a subregion of the field on the left formed in a very specific way as
follows. First, we divide the nonempty rows up into p = 3 groups of roughly
equal size (group 0 = rows 0–5, group 1 = rows 6–10, and group 2 = rows
11–16). We then completely close leaves in group 0. More generally, we
would close off groups at the beginning, end, or both, leaving open one or
more contiguous groups. To denote which groups are left open, we use the
notation (i2, j2) = (1, 3), which corresponds to groups i2 to j2 − 1 being left
open. For the rows that are not closed off, the opening in each row is divided
into p = 3 roughly equal subintervals, and the first and third subintervals
are closed off, leaving only the middle subinterval open. More generally,
subintervals can be closed off at the beginning, the end, or both, leaving one
or more contiguous subintervals open. The notation (i1, j1) = (1, 2) is used
to indicate that subintervals in the range i1 to j1 − 1 are left open.

Now, in order to describe this procedure formally, we introduce the fol-
lowing basic positions: Let λ and ρ be defined by

λ = min {i ∈ {1, . . . ,m} : li < ri}

ρ = max{i ∈ {1, . . . ,m} : li < ri}.
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Thus λ (resp. ρ) is the first (resp. last) number of a pair of leaves which do
not cover the corresponding subrectangle completely. We consider l and r as
fixed (given by one–field–optimization) and describe new positions with two
pairs (i1, j1), (i2, j2) where 0 ≤ i1 < j1 ≤ p, 0 ≤ i2 < j2 ≤ p and p is some
fixed number, say p = 3 or 4. Let briefly

P = ((i1, j1), (i2, j2)).

Under the leaf–pairs with indices λ, . . . , ρ we close a certain number com-
pletely, namely: We divide the interval [λ, ρ] into p almost equal parts of
average length (ρ−λ)/p and we completely close exactly the parts 0, . . . , i2−
1, j2, . . . , p − 1. The remaining leaf–pairs which do not completely cover the
corresponding rectangle have indices k, . . . , k, where k and k are integers
near to λ + i2(ρ − λ)/p and λ + j2(ρ − λ)/p, respectively, more precisely,

k =

{

⌊

(p−i2)λ+i2ρ

p

⌋

+ 1 if i2 > 0

λ if i2 = 0 and j2 > 0

k =

⌊

(p − j2)λ + j2ρ

p

⌋

For each such remaining leaf–pair with index k ∈ [k, k] we describe new posi-
tions of the leaves in the following way: The open region of the corresponding
subrectangle is divided into p equal parts, each of length (rk − lk)/p. The
part i1 starts at position lk + i1(rk − lk)/p and the part j1 − 1 ends (and the
part j1 starts) at position lk + j1(rk − lk)/p. We move the leaves in such a
way, that the parts i1, . . . , j1 − 1 remain open. Formally this means that we
associate with P the new vectors l

P and r
P as follows: Let for k = 1, . . . ,m

lPk =

{

(p−i1)lk+i1rk

p
if k ≤ k ≤ k

lk otherwise

rP
k =

{

(p−j1)lk+j1rk

p
if k ≤ k ≤ k

lk otherwise.

If the shape (F → W,F → L, l, r) is considered as a distorted rectangle,
then (F → W,F → L, lP , rP ) can be considered as a distorted subrectangle.
In order to be able to work with such fields we assign with each field F the
4 new shape–parameters
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(10) F → i1
(11) F → j1

(12) F → i2
(13) F → j2.

If the parameters (1)–(9) of a field are fixed, then variation of the pa-
rameters (10)–(13) yields “dependent” fields. One could think that it would
be enough to restrict to parameters where j1 − i1 = 1 and j2 − i2 = 1. But
firstly one field with a large open region is better than a superposition of
many fields with inner–point–disjoint small open regions because also leaf–
covered voxels get a certain small dose which can be in the sum large, and
secondly numerical tests have shown that the admission of this larger set of
dependent fields numerically saves time and behaves better.

In this approach we consider the leaves for each field as static. If move-
ments of the leaves are allowed (dynamic case) then adequate combinations
of our basic fields should be taken as new basic fields and the optimization
process must be carried out for this new basic set.

If p = 3 or 4 we have already 36 or 100 choices for the shape–parameters
(recall 0 ≤ i1 < j1 ≤ p, 0 ≤ i2 < j2 ≤ p). Hence, if we try to optimize
globally all field parameters (7)–(13) instead of only parameters (7)–(9), then
the starting set F ′ in (20) (here given by 7–tuples instead of triples) is much
larger than before. We have two ways out:

1. Slow method: We first admit only fields with i1 = 0, j1 = p or i2 =
0, j2 = p and later we admit also other pairs (i2, j2) using a refinement
procedure like the angle–refinement from Section 8.

2. Fast method: We first optimize the parameters (1)–(9) as described in
Sections 4–10 and obtain the treatment plan (F ,x). For each field F ∈ F
we have here

F → i1 = F → i2 = 0 and F → j1 = F → j2 = p.

Then we extend F = F0 step by step as in the beginning of Section 8. We
put for i = 1, . . . , p − 1

Fi = {F : F → j1 − F → i1 ≥ p − i and

F coincides in all other parameters with some field of F}.

We obtain a sequence F0 ⊂ F1 ⊂ · · · ⊂ Fp−1. Further, we put for i =
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1, . . . , p − 1

Fp−1+i = {F : F → j2 − F → i2 ≥ p − i and

F coincides in all other parameters with some field of Fp−1}.

Again, we obtain a sequence Fp−1 ⊂ Fp ⊂ · · · ⊂ F2p−2. An optimal vector
xi for Fi can be taken as a starting vector for Algorithm WOP applied to
Fi+1, i = 0, . . . , 2p−3. With the field reduction from Section 9 we ultimately
obtain the desired treatment plan.

One must find a good compromise between the number of beam–orienta-
tions and the number of fields (recall that we consider equal beam–orienta-
tions but different leaf–positions as different fields). The best results can be
obtained if each field has its own beam–orientation. In this case there cannot
arise tongue and groove effects that cause underdosage. But nowadays a
change of the table angle needs more time than a change of the leaf–position,
hence one should restrict to a small number of beam–orientations. This can
be obtained e.g. by the aforementioned fast method. Also here underdosage
is not significant because we are working in advance with large open fields
and for each beam–orientation the number of fields is small.

Moreover we mention that for the basic positions in almost all cases the
interleaf collision constraint (forbidding collision of neighboring leaves) is not
violated because the open region in a basic position is, in some sense, similar
to the PTV. But if this once occurs one only has to modify the concrete basic
position slightly (shifting a leaf a little bit back) in order to avoid collision.
This modification does not have significant influence to the algorithm.

Finally we recall (see Section 2) that fields which differ only in the leaf–
setting and the weight can be considered as one intensity modulated field,
only. With a leaf–setting algorithm, cf. [44], one can try to realize this field
in a better way, i.e. with fewer fields (segments) or with less total time. New
such algorithms are given in [20, 30].

12 PTV– and OAR–oriented placement of the

leaves of an MLC

In the last section we determined basic fields independently of the OARs.
Here we present another, more geometric method. Suppose, some beam
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orientation is fixed and suppose that we have r OARs R1, . . . , Rr. Then we
introduce 2r + 1 basic fields as follows: F0 is the field as in the beginning
of Section 11, where the leaves touch a security strip around the PTV. Fi

(respectively Fr+i), i = 1, . . . , r, are those fields which can be obtained from
F0 by shifting the left leaves to the right (respectively the right leaves to the
left) as few as possible such that the OAR Ri is just covered.

In the field management, we first only allow fields of type F0, then fields
of type F0, F1 and so on until finally all types are allowed. With this method
e.g. the rectum and the spinal cord can be protected in a good way.

13 Results

The aim of the paper is the detailed mathematical presentation of the algo-
rithm. A complete description of results for several kinds of patients would
lie beyond the scope of the paper and thus we postpone this to further, more
clinically oriented publications. We tested the algorithm already for many
patients. Qualitatively, the following statements can be made. The results
are significantly better if one uses

• optimized angles instead of equidistant angles (also in the case of an
MLC),

• non–coplanar beams instead of coplanar beams,

• compensators or MLCs instead of standard rectangular fields.

The placement of the leaves of an MLC described in Sections 11 and 12
plays an essential role only in the case of non–convex PTVs. We emphasize,
that the optimization of the beam–orientation is more important than the
optimization of intensity maps of fields with equidistant angles.

The field reduction process from Section 9 can be carried out up to a
relatively small number of fields without significantly increasing the objective
function. A steep ascent of this function starts, depending on the patient,
with about 4 to 8 fields.

In the optimal solution almost all fields contain wedges. This shows that
one may better prevent a dose–decrease in the boundary region of the PTV
by means of wedges.
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14 Concluding remarks

Clearly, the time for the whole optimization process depends on the patient
and on the choice of several algorithm parameters which can be easily ad-
justed. The time is in the range from 20 seconds to 5 minutes on a PC with
a 1.8 GHz processor and 256 MB RAM. High speed can be obtained via
an efficient implementation. In particular, the dose values DF (v) should be
only computed if they are really needed and they should be stored as long
as they are needed. Thus a good interaction between optimization and dose
calculation is necessary.

It is not a problem to replace the dose calculation method by another
method, if the method is not essentially slower. But e.g. a factor of 10 is still
completely practicable. If the factor is greater than 100 the other method
should be used only at the end of the optimization process.

In our version the most time–consuming steps are the determination of
the coordinates of the dose calculation point in the beam’s–eye–view coordi-
nate system having the central ray as one axis and the determination of the
(density weighted) distances which are covered by the ray resp. central ray.

Our module can be included into a complete treatment planning system
without problems. Improvements in the conformity of the dose distribution
and in the protection of normal tissue provides higher tumor control and
fewer complications.
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