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Abstract
Besides some remarks on hit-and-miss hyperspaces and (relative) com-

pactness of unions of (relative) compact sets, and using these together
with a natural map from a function space between topological spaces into
a function space between their Vietoris hyperspaces, we derive Ascoli-like
theorems for some set-open topologies, nearly related to the compact-open,
and mainly for the compact-open topology itself. Some Ascoli-like state-
ments are given, where all requirements are focused on the set of functions,
whose (relative) compactness is in question, not on the base spaces.

MSC: 54C35; 54D30, 54C05, 54C25, 54C60

1 Introduction

As general references to topological function spaces, the book of H. Poppe, [28],
is recommended, as well as the book of R.A. McCoy and I. Ntantu, [13]. A really
good overview, including historical aspects, is given by S. Naimpally in [19].

In the very interesting paper [16], Mizokami proved, that for Hausdorff topologi-
cal spaces (X, τ), (Y, σ) the function space C(X, Y ), endowed with the compact-
open topology τco, is isomorphic to a closed subspace of the function space
C(K(X), K(Y )), endowed with the pointwise topology τp, where the families
K(X), K(Y ) of compact sets are equipped with Vietoris topology. Inspired from
this and the fundamental investigations of Poppe ([22], [24], [28]), we will try to
find out here, what can be done, in order to derive Ascoli-like theorems, with the
map, that Mizokami used.

We denote by F(X),F0(X),F(ϕ),F0(ϕ) the families of all filters on a set X, all
ultrafilters on X, all refining filters of a filter ϕ and all refining ultrafilters of ϕ,
respectively. A filter is not allowed to contain the empty set ∅. P(X) denotes
the power set of the set X, P0(X) means the power set without the empty set.
By

.
x we denote the singleton filter generated from the base {{x}}.

For a topological space (X, τ) we denote by qτ the convergence on X induced by
τ , i.e. the relation qτ := {(ϕ, x) ∈ F(X) ×X| ϕ ⊇ .

x ∩ τ} between the filters on
X and the points of X.

Besides the absolutely basic facts concerning filters and ultrafilters, we will use
here a fact, that is not commonly stated explicitly, although it seems to be some-
times explored, implicitly. So, we prove it here, for convenience.
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1.1 Lemma
(Content Detector)
Let X be a set, A ⊆ P(X) and ϕ ∈ F(X). Assume, A is closed under finite
unions of its elements. Then holds

ϕ ∩ A 6= ∅ ⇐⇒ ∀ψ ∈ F0(ϕ) : ψ ∩ A 6= ∅ ,

i.e. a filter contains an A–set, iff each refining ultrafilter contains an A–set.

Proof: Suppose ∀ψ ∈ F0(ϕ) : ∃Aψ ∈ A : Aψ ∈ ψ. Now, assume ϕ ∩ A = ∅.
From this automatically follows X 6∈ A.
Consider B := {X \ A| A ∈ A}. Because of the closedness of A under finite
unions, B is closed under finite intersection of its elements, and ∅ 6∈ B, because
X 6∈ A. For any F ∈ ϕ,B ∈ B we have F ∩B 6= ∅, because F ∩B = ∅ would im-
ply F ⊆ X \B ∈ A and therefore ϕ∩A 6= ∅. So, ϕ∪B is a subbase of a filter and
consequently, there exists an ultrafilter ψ, containing ϕ∪B, therefore containing
ϕ and the complement of every A–set - in contradiction to ∀ψ ∈ F0(ϕ) : ψ∩A 6= ∅.
The other direction of the lemma’s statement is obvious.

2 Some remarks on hit-and-miss hyperspaces

Let (X, τ) be a topological space. By Cl(X) and K(X) we denote the family
of all closed subsets and the set of all compact subsets of X, respectively. For
B ∈ P(X) and A ⊆ P(X) we define B−A := {A ∈ A|A ∩ B 6= ∅} (hit–set) and
B+A := {A ∈ A|A∩B = ∅} (miss–set). Please note, that this is a deviation from
the otherwise and recently quite commonly used notation, where the same set
would be denoted by ”(X \B)+”. By τl,A we denote the topology for A, generated
by the subbase of all G−A , G ∈ τ . Now consider ∅ 6= α ⊆ P(X); by τα,A we denote
the topology for A which is generated from the subbase of all B+A , B ∈ α and
G−A , G ∈ τ . Of course, for every possible α we have τl,A ⊆ τα,A; for α = Cl(X)
we get the Vietoris topology and for α = K(X) we get the Fell topology for A.
If α = ∆ ⊆ Cl(X), τα,A is called ∆–topology1 by Beer and Tamaki [5].

If X is a set, τ,A are subsets of P(X), then we call A weakly complementary
w.r.t. τ , iff for every subset σ ⊆ τ there exists a subset B ⊆ A, s.t.

⋃
B∈BB =

X \
⋃
S∈σ S. Obviously, if τ is a topology on X, then Cl(X) and K(X) are weakly

complementary w.r.t. τ . Now, we ask for the reader’s attention for a not even
surprising, but quite useful set-theoretical lemma.

1Research on such topologies was initiated by H. Poppe in 1965, see [22],[24].
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2.1 Lemma
(Covering Equivalence)
Let X be a set, τ,A ⊆ P(X) and K ⊆ X. Then holds⋃

i∈I

Gi ⊇ K =⇒
⋃
i∈I

G−A
i ⊇ K−A

for every collection Gi, i ∈ I,Gi ∈ τ .
If A is weakly complementary w.r.t. τ , then for every collection Gi, i ∈ I,Gi ∈ τ
the implication ⋃

i∈I

Gi ⊇ K ⇐=
⋃
i∈I

G−A
i ⊇ K−A

holds, too.

2.2 Corollary
Let X be a set, τ,A ⊆ P(X) and K ⊆ X. Then holds⋃

i∈I

Gi ⊇ K ⇐⇒
⋃
i∈I

G−A
i ⊇ K−A

for every collection Gi, i ∈ I,Gi ∈ τ if and only if A is weakly complementary
w.r.t. τ .

2.3 Lemma
Let (X, τ) be a topological space and let A ⊆ P(X) be weakly complementary
w.r.t. τ . If A0 := A \ {∅} is compact in τl,A0 , then (X, τ) is compact.

2.4 Definition
Let (X, τ) be a topological space. A subset A ⊆ X is called weak relative complete
in X, iff

∀ϕ ∈ F(A) ∩ q−1
τ (X) : F(ϕ) ∩ q−1

τ (A) 6= ∅ ,

i.e. every filter ϕ on A, which converges in X, has a refinement, converging in A.

As another characterization, it follows immediately, that a subset A is weak
relative complete in X, iff every ultrafilter on A, which converges in X, converges
in A, too. Every closed and every compact subset is weak relative complete; for
Hausdorff-spaces, weak relative completeness coincides with closedness. Every
weak relative complete subset of a compact space is compact.

2.5 Theorem
Let (X, τ) be a topological space, and let α ⊆ P(X) consist of weak relative
complete subsets of X. Then holds for any A with Cl(X) ⊆ A ⊆ P(X):
(A0, τα,A0) is compact ⇐⇒ (X, τ) is compact.

Most of the well-known theorems for compactness w.r.t. the Fell– or the Vietoris–
topology follow immediately from this. For some more explanation, especially for
proofs of the foregoing statements, see [3].
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2.6 Lemma
Let (X, τ) be a topological space, A ⊆ P0(X) with Cl(X) ⊆ A and α ⊆ Cl(X).
If R ⊆ X is relative compact in X, then P0(R)∩A is relative compact2 in (A, τα).

Proof: Let B := {O−A
i | i ∈ I, Oi ∈ τ} ∪ {C+A

j | j ∈ J, Cj ∈ α} be an open cover
of A by subbase elements of τα. Let O :=

⋃
i∈I Oi.

If O = X, then there exist finitely many i1, ..., in ∈ I with
⋃n
k=1Oik ⊇ R, because

R is relative compact, and thus
⋃n
k=1O

−A
ik
⊇ R−A ⊇ P0(R) ∩ A, by lemma 2.1.

If O 6= X, then X \O is nonempty and closed, but not contained in the O−A
i -sets

from B. Thus, there must exist a j0 ∈ J with X \ O ∈ C+A
j0

, implying Cj0 ⊆ O.

Now, we have P0(R) ∩ A = (P0(R) ∩ C+A
j0

) ∪ (P0(R) ∩ C−A
j0

), and, of course,

P0(R) ∩ C+A
j0

is covered just by C+A
j0

∈ B. So, we have to find a finite subcover

for (P0(R)∩C−A
j0

), if this is not empty. Observe, that R∩Cj0 is relative compact
in X, because it is a subset of R. Furthermore, {Oi| i ∈ I}∪{X \Cj0} is an open
cover of X. Thus we find again finitely many i1, .., in ∈ I, s.t.

⋃n
k=1Oik ⊇ R∩Cj0

(because X \ Cj0 can be removed from any cover of R ∩ Cj0 without to lose the
covering property). Therefore

⋃n
k=1O

−A
ik

⊇ (R ∩ Cj0)
−A , by lemma 2.1. But

P0(R) ∩ C−A
j0

⊆ (R ∩ Cj0)−A holds, because any subset of R, which hits Cj0 ,
automatically hits R ∩ Cj0 .

2.7 Proposition
Let X be a set, X ⊆ P(X) and M ⊆ X. Then holds⋃

i∈I

C+X
i ⊇ M =⇒

⋃
i∈I

Cc
i ⊇

⋃
M∈M

M

for every collection Ci, i ∈ I.

Proof: For every M ∈ M there must exist an iM ∈ I with M ∈ C+X
iM

, because

of
⋃
i∈I C

+X
i ⊇ M. Thus M ⊆ Cc

iM
⊆

⋃
i∈I C

c
i .

2.8 Lemma
Let (X, τ) be a topological space, let X be the family of all relative compact
subsets of X and let M ⊆ X be relative compact in X w.r.t. the upper Vietoris
topology. Then

R :=
⋃
M∈M

M

is relative compact in (X, τ).

2According to [2], a subset R of a topological space (X, τ) is called relative compact in X, iff
every ultrafilter on R converges in X, or equivalently, iff every open cover of X admits a finite
subcover of R. Note, that this doesn’t imply the compactness of the closure of R. See [2], [28].
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Proof: Let
⋃
i∈I Oi ⊇ X with Oi ∈ τ, i ∈ I an open cover of X. Because of

the relative compactness of all P ∈ X, there is a finite subcover Oi1P
, ..., Oi

nP
P

for

every P ∈ X, i.e. OP :=
⋃nP

k=1OikP
⊇ M . Of course, OP ∈ τ and so (OP )c is

closed w.r.t. τ . Furthermore, P ∩ Oc
P = ∅, implying P ∈ (Oc

P )+X . Thus we have
X ⊆

⋃
P∈X(Oc

P )+X , where the (Oc
P )+X are just open w.r.t. the upper–Vietoris

topology. Because of the relative compactness of M w.r.t. the upper–Vietoris
topology, there must exist finitely many P1, ..., Pn ∈ X with M ⊆

⋃n
j=1(O

c
Pj

)+X .

Now, from proposition 2.7 we get R =
⋃
M∈MM ⊆

⋃n
j=1OPj

, where every OPj
is

a finite union of members of the original cover {Oi|i ∈ I} by construction.

2.9 Corollary
Let (X, τ) be a topological space and let M ⊆ P0(X) consist of relative compact
subsets of X. If M is compact w.r.t. the upper–Vietoris topology, then

R :=
⋃
M∈M

M

is relative compact in (X, τ).

Proof: M is compact and therefore relative compact in every set, which contains
M, especially in the family of all relative compact subsets of X. So, lemma 2.8
applies.

For the Vietoris-topology on any A ⊆ P0(Z) for a topological space Z we will,
from now on, use the base consisting of all sets

< O1, ..., On >A:= A ∩ {M ∈ P0(Z)| n ∈ IN,M ⊆
n⋃
i=1

Oi, ∀i : M ∩Oi 6= ∅}

with open subsets Oi. If there seems to be no doubt, the index A will be omitted
from < O1, ..., On >.

3 Function Spaces

A very interesting and fairly wide class of function space structures, defined for
Y X or C(X, Y ), are the so called set–open topologies, examined in [1], [28].
According to [28], we use the following convention: Let X and Y be sets and
A ⊆ X, B ⊆ Y ; then let be (A,B) := {f ∈ Y X | f(A) ⊆ B}. Now let X be
a set, (Y, σ) a topological space and A ⊆ P0(X). Then the topology τA on Y X

(resp. C(X, Y )), which is defined by the open subbase {(A,W )| A ∈ A,W ∈ σ}
is called the set–open topology, generated by A, or shortly the A–open topology.
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3.1 Proposition
Let X be a set, (Y, σ) a topological space and A ⊆ P0(X), F ∈ F(Y X), f ∈ Y X .
Then holds (F , f) ∈ qτA if and only if for all filters ϕ on X with a base consisting
of A-members, holds F(ϕ) ⊇ f(ϕ) ∩ σ.

Proof: Let (F , f) ∈ qτA and ϕ ∈ F(X) with a base of A-members be given.
Then for any W ∈ σ ∩ f(ϕ), there is an A ∈ A, such that f(A) ⊆ W . This

means f ∈ (A,W ) ∈ τA, implying (A,W ) ∈ F by F τA−→ f . So, we have
W ⊇ ω(A, (A,W )) ∈ F(ϕ).
If for all filters with a base in A holds F(ϕ) ⊇ f(ϕ) ∩ σ, then we may chose the
principal filters [A] with A ∈ A for ϕ to get F(A) ⊆ W for all W ∈ σ ∩ f(A),
implying (A,W ) ∈ F for any A ∈ A,W ∈ σ.

Let (X, τ), (Y, σ) be topological spaces and A ⊆ P(X). By CY (A) we denote
the set CY (A) := {f(A)| A ∈ A, f ∈ C(X,Y )} of all continuous images in Y of
members of A.

We can naturally map the set Y X , into the set P(Y )A:

µ : Y X → P(Y )A : f → µ(f) : ∀A ∈ A : µ(f)(A) = f(A)

3.2 Proposition
Let (X, τ), (Y, σ) be topological spaces and A ⊆ P0(X). If the function f : X →
Y is continuous, then the function µ(f) : A → P0(Y ) is continuous w.r.t. the
Vietoris-topologies on A and P0(Y ).
If µ(f) is continuous and A is closed under finite unions and has the properties

(1) ∀V ∈ σ, x ∈ f−1(V ) : ∃Ax ∈ A : x ∈ Ax ⊆ f−1(V ) and

(2) ∀O ∈ τ : ∃B ⊆ A :
⋃
B∈BB = O,

then f is continuous, too.

Proof: Let < V1, ..., Vn > be an open base set of σV with all Vi ∈ σ. Then
we have A ∈ µ(f)−1(< V1, ..., Vn >) ⇔ A ∈ A ∧ f(A) ∈< V1, ..., Vn >⇔ A ∈
A ∧ f(A) ⊆

⋃n
i=1 Vi ∧ ∀i : f(A) ∩ Vi 6= ∅ ⇔ A ∈ A ∧ A ⊆

⋃n
i=1 f

−1(Vi) ∧ ∀i :
A ∩ f−1(Vi) 6= ∅ ⇔ A ∈< f−1(V1), ..., f

−1(Vn) >A. Thus µ(f)−1(< V1, ..., Vn >
) =< f−1(V1), ..., f

−1(Vn) > is an open base set of τV on A, because all f−1(Vi)
are open by the continuity of f .
Let A have the mentioned properties, µ(f) be continuous and V ∈ σ. Then
(µ(f))−1(< V >) is open in τV , i.e. ∀A ∈ (µ(f))−1(< V >) : ∃U1(A), ..., Uk(A)(A) ∈
τ : A ∈< U1(A), ..., Uk(A)(A) >⊆ (µ(f))−1(< V >). Now, by (1) we find
∀x ∈ f−1(V ) : ∃Ax ∈ A : x ∈ Ax ⊆ f−1(V ), implying Ax ∈ (µ(f))−1(< V >).
Thus there are U1(Ax), ..., Uk(Ax)(Ax) ∈ τ s.t. Ax ∈< U1(Ax), ..., Uk(Ax)(Ax) >A⊆
(µ(f))−1(< V >), so by property (2) we get ∀i = 1, ..., k(Ax) : ∃Bi ⊆ A :

⋃
Bi =
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Ui(Ax) and then we take C := {
⋃k(Ax)
i=1 Bi| Ai ∈ Bi} which is a subset of A by

closedness under finite unions. Now, we have
⋃

C =
⋃

B =
⋃k(Ax)
i=1 Ui(Ax), so

obviously C ⊆< U1(Ax), ..., Uk(Ax)(Ax) >, which is contained in (µ(f))−1(< V >),
implying ∀C ∈ C : µ(f)(C) ⊆ V and therefore f(

⋃
C) =

⋃
µ(f)(C) ⊆ V , im-

plying
⋃

C ⊆ f−1(V ), so Ox :=
⋃

C (=
⋃k(Ax)
i=1 ) is an open neighbourhood of x,

contained in f−1(V ). Taking these Ox for all x ∈ f−1(V ), we find f−1(V ) to be
open.

If A is closed under finite unions and contains the singletons, then it has obvi-
ously all the properties required in the second part of the proposition. In any
case, proposition 3.2 ensures, that the image of C(X, Y ) under the mapping µ is
a subset of C(A, CY (A)), where A and CY (A) are equipped with Vietoris topology.

3.3 Proposition
Let (X, τ), (Y, σ) be topological spaces, A ⊆ P0(X) and let H ⊆ Y X be endowed
with τA. Then the map

µ : H → µ(H) := {µ(f)| µ(f) : A→ f(A), f ∈ H} ⊆ P0(Y )A

is open, where A and P0(Y ) are equipped with Vietoris topology and P0(Y )A

with pointwise topology.
If H ⊆ C(X, Y ) and A has the property

∀O ∈ τ, A ∈ A : O ∩ A 6= ∅ ⇒ ∃AO ∈ A : AO ⊆ A ∩O , (1)

then this map is continuous.

Proof: Let O :=
⋂n
i=1(Ai, Oi) with Ai ∈ A, Oi ∈ σ be a basic open set of τA.

Then holds f ∈ O ⇔ ∀i ∈ {1, ..., n} : f(Ai) ⊆ Oi ⇔ ∀i ∈ {1, ..., n} : µ(f)(Ai) ∈<
Oi >⇔ µ(f) ∈

⋂n
i=1({Ai}, < Oi >), yielding µ(O) =

⋂n
i=1({Ai}, < Oi >), which

is a basic open set of the pointwise topology on µ(H).
Let (F , f) ∈ qτA , so by taking principal filters in proposition 3.1, we get

∀A ∈ A : F(A) ⊇ [f(A)] ∩ σ . (2)

Now, let A0 ∈ A be given with f(A0) ∈ < V1, ..., Vn > for some V1, ..., Vn ∈ σ.
This means f(A0) ⊆ V0 :=

⋃n
i=1 Vi and ∀i ∈ {1, ..., n} : f(A0) ∩ Vi 6= ∅, implying

∀i ∈ {1, ..., n} : ∃Ai ∈ A : Ai ⊆ A0 ∩ f−1(Vi), because of the required property
of A and the continuity of f . Then from (2) follows ∀j ∈ {0, 1, ..., n} : ∃Fj ∈
F : Fj(Aj) ⊆ Vj, just meaning ∀g ∈ Fj : g(Aj) ⊆ Vj, thus from Aj ⊆ A0 we
get ∀g ∈ Fj : g(A0) ∩ Vj 6= ∅ and especially for j = 0 we have F0(A0) ⊆ V0.
But then F :=

⋂n
j=0 Fj is an element of F and fulfills µ(F )(A0) ⊆< V1, ..., Vn >.

This is valid for all basic open neighbourhoods of f(A0), so µ(F)(A0) converges
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to f(A0) = µ(f)(A0) w.r.t. σV – for all A0 ∈ A, thus µ(F) converges pointwise
to µ(f).

The property (1) is trivially fulfilled, if A contains the singletons. Moreover, in
this case we don’t need to restrict the map to C(X, Y ), in order to prove its
continuity.

3.4 Lemma
Let (X, τ), (Y, σ) be topological spaces, let A ⊆ P0(X) contain the singletons
and H ⊆ Y X be endowed with τA. Then the map

µ : H → µ(H) := {µ(f)| µ(f) : A→ f(A), f ∈ H} ⊆ P0(Y )A

is open, continuous and bijective, where A and P0(Y ) are equipped with Vietoris
topology, and P0(Y )A with pointwise topology.

Proof: It’s easy to see, that it is bijective, because each function f from X
to Y is uniquely determined by the images of µ(f) on the singletons. Proposi-
tion 3.3 says, that it is open and, as is easy to see, the proof of continuity in
proposition 3.3 will work fine even without continuity of the τA-limit function f
of the filter F , if we have in A all singletons, because the combination of prop-
erty (1) and continuity of f is only needed to ensure the existence of the subsets
A 3 Ai ⊆ A0 ∩ f−1(Vi) for i = 1, ..., n, but now we can always take singletons
{xi} instead of these Ai.

We will call this map

µ : (Y X , τA) → (µ(Y X), τp) ⊆ (P0(Y )A, τp) : f → µ(f) : A→ f(A)

the Mizokami–map, where A and P0(Y ) are endowed with Vietoris topology.

3.5 Proposition
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) contain the singletons.

If F is a filter on Y X s.t. µ(F)
p→ g ∈ P0(Y )A, where P0(Y ) is equipped with

Vietoris topology, then there exists g′ ∈ Y X , with ∀x ∈ X : g′(x) ∈ g({x}) and

F p→ g′.

Proof: µ(F)
p→ g especially means for each singleton {x} ⊆ X, that g({x}) ∈<

V, Y > with V ∈ σ implies ∃F ∈ F : ∀f ∈ F : f(x) ∈ V . Now, g({x}) is
never the empty set ∅, because this is not an element of our range space, so
there exists a function g′ : X → Y with g′(x) ∈ g({x}) for all x ∈ X. But
for arbitrary yx ∈ g({x}) and V ∈ .

yx ∩ σ we find g({x}) ∈< V, Y >, and con-
sequently V ∈ F(x). Thus F(x)

σ→ yx and therefore F converges pointwise to g′.
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3.6 Definition
Let (X, τ), (Y, σ) be topological spaces and A ⊆ P0(X). A subset H ⊆ Y X is
called A-evenly continuous, iff for all A ∈ A holds

∀F ∈ F0(H), ϕ ∈ F(A), x ∈ X : (F(x)
σ→ y) ∧ (ϕ

τ→ x) ⇒ F(ϕ)
σ→ y .

H is called evenly continuous, iff it is {X}-evenly continuous.
H is called evenly continuous on a subset K, iff the set of restricted functions
H|K := {f|K : K → Y | f ∈ H} is evenly continuous.

3.7 Proposition
Let (X, τ), (Y, σ) be topological spaces and H ⊆ C(X, Y ).
If H is {K}-evenly continuous for a subset K ⊆ X, then it is evenly continuous
on K.
If Y Hausdorff, K a compact subset of X, and H evenly continuous on K, then
it is {K}-evenly continuous.

Proof: The first statement follows trivially from the definition. So, let Y be
Hausdorff, K compact and H be evenly continuous on K.
Furthermore, let F be a filter on H, x ∈ X, ϕ ∈ F(K) s.t. ϕ → x and
F(x) → y ∈ Y . Now, we have for each refining ultrafilter ϕ0 of ϕ, that it
converges to x, too. But it must also converge to an element a ∈ K. Then
for all continuous functions f follows f(ϕ0) → f(a) and f(ϕ0) → f(x), yielding
f(a) = f(x), because of the Hausdorffness of Y . Thus F(a) = F(x), because
all members of F consist of continuous functions. Consequently, F(a) → y, thus
F(ϕ0) → y, too, because H is evenly continuous on K. So, for an arbitrary
V ∈ .

y∩σ there must exist F ∈ F , P ∈ ϕ0, s.t. F (P ) ⊆ V . Obviously, the family
AV := {A ⊆ X| ∃F ∈ F : F (A) ⊆ V } is closed under finite unions, because F
is closed under finite intersections, and we have seen, that ϕ0 ∩AV 6= ∅ for every
refining ultrafilter ϕ0 of ϕ. So, lemma 1.1 applies, yielding ϕ ∩ AV 6= ∅. This is
valid for all open neighbourhoods of y, implying F(ϕ) → y.

3.8 Proposition
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff, and let H be a relative
compact subset of C(X, Y ) w.r.t. the compact-open topology τco. Then H is
evenly continuous on all compact subsets of X.

Proof: Let A ⊆ X be compact, ϕ ∈ F(A), a ∈ A and F ∈ F(H), s.t.
F(a) → y ∈ Y and ϕ→ a.
Then each refining ultrafilter F0 of F τco-converges to a continuous function g, be-
cause of the relative compactness of H in C(X, Y ). So, y = g(a) follows, because
F0(a) → y, F0 converges especially pointwise to g and Y is Hausdorff. Moreover,
g(ϕ) → y = g(a) ∈ g(A) holds, and g(A) is compact and therefore closed, because
A is compact, thus g(A) is T3, because Y is Hausdorff. Now, let V0 ∈

.
y ∩ σ, then
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there exists V1 ∈ σ, s.t. y ∈ V1 ∩ g(A) ⊆ V1 ∩ g(A) ⊆ V0 ∩ g(A). Furthermore,
there exists P1 ∈ ϕ, s.t. g(P1) ⊆ V1 ∩ g(A) ⊆ V1 ∩ g(A) (remember, ϕ is a filter
on A) and consequently g−1(V1 ∩ g(A)) ∈ ϕ and g−1(V1 ∩ g(A)) is closed in X,
thus B := g−1(V1 ∩ g(A))∩A is compact. But g(B) ⊆ V1 ∩ g(A) ⊆ V0 holds and
F0 converges w.r.t. τco to g, thus (B, V0) ∈ F0 and we have B ∈ ϕ, so V0 ∈ F0(ϕ)
follows. Now, the family AV0 := {F ⊆ H| ∃P ∈ ϕ : F (P ) ⊆ V0} is closed under
finite unions of it’s members, because ϕ is closed under finite intersections, and
we have seen, that every refining ultrafilter of F contains a member of AV0 . Thus,
lemma 1.1 applies, yielding F ∩ AV0 6= ∅, and this is valid for every V0 ∈

.
y ∩ σ.

So, F(ϕ) converges to y.

3.9 Lemma
Let (X, τ), (Y, σ) be topological spaces, R ⊆ X a compact (resp. relative com-
pact) subset and let H ⊆ C(X,Y ) be {R}-evenly continuous. Then holds:
If for every ultrafilter on R among its convergence-points exists a point x ∈ R
(resp. x ∈ X), s.t. the set H(x) := {f(x)| f ∈ H} is compact (resp. rela-
tive compact) in Y , then H(R) := {f(x)| f ∈ H, x ∈ R} is compact (relative
compact) in Y , too.

Proof: Let ψ ∈ F0(H(R)). We have ∀y ∈ H(R) : ∃xy ∈ R, fy ∈ H : y = fy(xy),
thus there exists a map π : H(R) → R × H : π(y) = (xy, fy), fy(xy) = y. Now,
π(ψ) is an ultrafilter on R×H and consequently π1(π(ψ)) and π2(π(ψ)) are ultra-
filters onR andH, respectively, where π1 : R×H → R and π2 : R×H → H are the
canonical projections. So, π1(π(ψ)) converges to a point x0 ∈ R (resp. x0 ∈ X),
s.t. H(x0) is compact (resp. relative compact) in Y . Furthermore, π2(π(ψ))(x0)
is an ultrafilter on H(x0), thus it converges in H(x0) ⊆ H(R) (resp. in Y ) to a
point y0. But then the {R}-even continuity of H implies that π2(π(ψ))(π1(π(ψ)))
converges to y0, too. But we have naturally π2(π(ψ))(π1(π(ψ))) ⊆ ψ, so ψ con-
verges in H(R) (resp. in Y ).

3.10 Lemma
(Essential Ascoli)
Let (X, τ), (Y, σ) be topological spaces and A ⊆ P0(X). Let H ⊆ C(X, Y ) and
F be an ultrafilter on H, which converges pointwise to a function g ∈ C(X, Y ).
Then hold:

(1) If A consists only of relative compact subsets ofX,H is A-evenly continuous
and the images of all members of A under g are closed in Y , then µ(F)
converges pointwise to µ(g) in C(A, CY (A)).

(2) If A consists only of compact subsets of X and H is evenly continuous on
all members of A, then µ(F) converges pointwise to µ(g) in C(A, CY (A)).
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Proof: The continuity of µ(g) is ensured by proposition 3.2.
Assume, µ(F) would not converge pointwise to µ(g). Then there are A ∈ A and
V1, ..., Vn ∈ σ such that g(A) ∈< V1, ..., Vn >, but ∀F ∈ F : ∃f ∈ F : f(A) 6∈<
V1, ..., Vn >. Thus, {f ∈ H| f(A) 6∈

⋃n
i=1 Vi} ∪

⋃n
i=1{f ∈ H| f(A) ∩ Vi = ∅} is a

member of F , because it’s complement is not. Because F is an ultrafilter, one of
the unified sets above must itself belong to F .
Assume, it would Fi := {f ∈ H| f(A) ∩ Vi = ∅} ∈ F hold (1 ≤ i ≤ n).
We have g(A) ∩ Vi 6= ∅, implying ∃xg ∈ A : g(xg) ∈ Vi, so Vi is an open
neighbourhood of g(xg). Thus ∃Fg ∈ F : ∀f ∈ Fg : f(xg) ∈ Vi, because of the
pointwise convergence of F to g. But now Fg ∩ Fi = ∅ holds - a contradiction to
the filter-properties of F .
So, F0 := {f ∈ H| f(A) 6∈

⋃n
i=1 Vi} ∈ F must hold. Let VA :=

⋃n
i=1 Vi, then

∀f ∈ F0 : ∃xf ∈ A : f(xf ) 6∈ VA. Thus, a map π : F0 → A exists, s.t.
∀f ∈ F0 : f(π(f)) 6∈ VA. Then π(F) is an ultrafilter on A, which must converge
to a point x0 ∈ X (resp. x0 ∈ A), because A is relative compact (resp. compact).
Because of the pointwise convergence of F to g, it follows F(x0)

σ→ g(x0). From
this and π(F)

τ→ x0 follows F(π(F))
σ→ g(x0) by the A-even continuity of H,

just meaning

∀V ∈
.

g(x0) ∩ σ : ∃FV ∈ F , AV ∈ π(F) : FV (AV ) ⊆ V . (3)

On the other hand, g(π(F))
σ→ g(x0) follows from the continuity of g. But

g(π(F)) is a filter on g(A) and g(A) is closed in the first of the lemma’s state-
ments, thus g(x0) ∈ g(A) holds, which follows in the second statement directly
from x0 ∈ A. Therefore, VA is an open neighbourhood of g(x0) and from (3) we get
∃FV ∈ F , AV ∈ π(F) : ∀f ∈ FV , a ∈ AV : f(a) ∈ VA. But then FV ∩π−1(AV ) = ∅
and π−1(AV ) is a member of F - a contradiction to the filter-properties of F . So,

our assumption µ(F) 6 p→ µ(g) must be false.

3.11 Corollary
Let (X, τ), (Y, σ) be topological spaces. Let A ⊆ P0(X) contain the singletons
and consist only of relative compact subsets of X. Let H ⊆ C(X, Y ) be A-evenly
continuous and weakly relative complete in Y X w.r.t. pointwise convergence and
let all members of A have closed images under elements of H.
Then µ(H) is weak relative complete in P0(Y )A w.r.t. pointwise convergence,
where P0(Y ) is equipped with Vietoris topology.

Proof: Let G be an ultrafilter on µ(H), which converges pointwise to a
function g ∈ P0(Y )A. At first, it is clear, that there exists an ultrafilter F
on H, s.t. G = µ(F). From g we derive a function g′ : X → Y : for all
singletons {x} ∈ A, we can chose an element yx from g({x}), because the
empty set doesn’t belong to our range space. Then for each open neighbour-
hood V of yx we find g({x}) ∈< V, Y >, so there must exist a F ∈ F with
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∀f ∈ F : µ(f)({x}) ∈< V, Y >, just implying F p→ g′, where g′ is chosen s.t.
g′ : X → Y : g′(x) := yx ∈ g({x}). Now, because of the weak relative complete-

ness of H, there must exist a function g1 ∈ H with F p→ g1. From lemma 3.10
follows µ(F) = G p→ µ(g1) ∈ µ(H).

3.12 Corollary
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff. Let A ⊆ P0(X) contain
the singletons and consist only of compact subsets of X. Let H ⊆ C(X, Y )
be A-evenly continuous and weakly relative complete in Y X w.r.t. pointwise
convergence.
Then µ(H) is closed in K(Y )A w.r.t. pointwise convergence, where K(Y ) is
equipped with Vietoris topology.

Proof: Of course, compact subsets are relative compact. Continuous images
of compact sets are compact and therefore closed in the Hausdorff-space Y . So,
corollary 3.11 applies, yielding µ(H) to be weak relative complete in P0(Y )A and
consequently in K(Y )A (since K(Y )A is a subspace of P0(Y )A w.r.t. pointwise
convergence). But if Y is Hausdorff, then K(Y ) with Vietoris-topology is, and
consequently, the function space is Hausdorff, too. So, as a weak relative com-
plete subset, µ(H) is closed.

Note, that this is somewhat other than Mizokami showed. We require the addi-
tional condition of A-even continuity and get the stronger result of closedness in
K(Y )A, not only in C(A, CY (A)).

3.13 Corollary
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff and T3. Let A ⊆ P0(X) con-
tain the singletons and consist only of compact subsets of X. Let H ⊆ C(X, Y )
be evenly continuous and weakly relative complete in C(X,Y ) w.r.t. pointwise
convergence. Then µ(H) is closed in K(Y )A.

Proof: If an ultrafilter F on H converges pointwise in Y X to a function g,
then from the even continuity of H follows, that F converges continuously to g
and then with theorem 30 in [2] from T3 the continuity of g. So, F converges
in C(X, Y ) and therefore in H, because of the weak relative completeness in
C(X,Y ). Thus, H is indeed weak relative complete in Y X and corollary 3.12
applies.

3.14 Theorem
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) contain the singletons.
Then a set H ⊆ Y X is relative compact in (Y X , τA) if and only if

12



(1) For all ultrafilters F on H with F p→ f ∈ Y X exists a function g ∈ Y X , s.t.

µ(F)
p→ µ(g) ∈ P0(Y )A, where P0(Y ) is equipped with Vietoris topology,

and

(2) for all A ∈ A, the family µ(H)(A) := {f(A)| f ∈ H} is relative compact in
P0(Y ) w.r.t. Vietoris topology.

Proof: Because A contains the singletons, the Mizokami-map µ : (H, τA) →
(µ(H), τp) is continuous, open and bijective by lemma 3.4. Now, (P0(Y )A, τp) is
naturally isomorphic to

∏
A∈A P0(Y )A with Tychonoff product topology, where

all P0(Y )A are clones of P0(Y ) (see [28],2.2), let

π : (P0(Y )A, τp) →
∏
A∈A

P0(Y )A : f → (f(A))A∈A

be the isomorphism. Then in fact, π(µ(H)) is just a subset of the product∏
A∈A µ(H)(A).

Let (1) and (2) be fulfilled. Then all µ(H)(A) are relative compact in P0(Y ) by
(2), so the product

∏
A∈A µ(H)(A) is relative compact in

∏
A∈A P0(Y )A by the

Tychonoff-theorem for relative compact subsets (see 1.44 in [28]). Thus, as a sub-
set of a relative compact set, π(µ(H)) itself is relative compact in

∏
A∈A P0(Y )A.

Let F be an ultrafilter on H, then π(µ(F)) is an ultrafilter on π(µ(H)), which
now must converge in

∏
A∈A P0(Y )A, implying µ(F) converges pointwise to a

function f ∈ P0(Y )A, by isomorphism. Then by proposition 3.5, F converges
pointwise to a function f ′ ∈ Y X . From (1) now follows the existence of a function

g ∈ Y X with µ(F)
p→ µ(g) and thus F τA→ g, because the Mizokami-map is open

between (Y X , τA) and (µ(Y X), τp), by lemma 3.4.
If otherwise H is relative compact in Y X w.r.t. τA, then every ultrafilter F on
H τA-converges to a function g ∈ Y X , and therefore µ(F) converges pointwise to
µ(g) by the continuity of the Mizokami-map, and of course, F converges point-
wise to g, because A contains the singletons - so, (1) is fulfilled. Furthermore,
an ultrafilter G on µ(H)(A) induces an ultrafilter G ′ on µ(H), whose evaluation
on A is just G, and therefore an ultrafilter F on H exists, with µ(F) = G ′, by
bijectivity of the Mizokami-map. Now, F τA-converges to a function f ∈ Y X , by
the relative compactness of H, thus µ(F)(A) = G converges to µ(f)(A), because
of the continuity of the Mizokami-map - so, (2) is fulfilled.

3.15 Corollary
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) contain the singletons.
Then a set H ⊆ Y X is relative compact in (Y X , τA), if

(1) For all ultrafilters F on H with F p→ f ∈ Y X exists a function g ∈ Y X , s.t.

µ(F)
p→ µ(g) ∈ P0(Y )A, where P0(Y ) is equipped with Vietoris topology,

and
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(2) for all A ∈ A, the set H(A) :=
⋃
f∈H f(A) is relative compact in Y .

Proof: If H(A) is relative compact in Y , then P0(H(A)) is relative compact in
P0(Y ) w.r.t. Vietoris topology, by lemma 2.6, thus the subset µ(H)(A) is, and
then the theorem 3.14 applies.

3.16 Corollary
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) consist only of relative
compact subsets of X and contain the singletons. Let H ⊆ C(X, Y ) have the
following properties:

(1) H is weakly relative complete in Y X w.r.t. pointwise convergence,

(2) H is A-evenly continuous,

(3) the images of all members of A under elements of H are closed in Y and

(4) for all A ∈ A, each ultrafilter ϕ on A converges to a point x0 ∈ X, s.t.
H(x0) := {f(x0)| f ∈ H} is relative compact in Y .

Then H is compact w.r.t. τA.
If otherwise H is compact w.r.t. τA, then (1) follows and for all A ∈ A is
H(A) :=

⋃
f∈H f(A) relative compact in Y .

Proof: Condition (1) ensures, that every ultrafilter F on H, which pointwise
converges in Y X , converges in H, too. From (2) and (3) follows, that for each

ultrafilter F on H always F p→ g ∈ C(X,Y ) implies µ(F)
p→ µ(g), by lemma

3.10(1). From (2) and (4) follows the relative compactness of all H(A) for A ∈ A,
by lemma 3.9.
Thus, corollary 3.15 applies, yielding the relative compactness of H in Y X . Now,
from (1), which is carried over to τA, by corollary 3.11, follows the compactness.
If otherwise H is compact w.r.t. τA, then it is compact w.r.t. pointwise con-
vergence, too, and so (1) follows trivially, and the relative compactness of all
H(A), A ∈ A follows by corollary 2.9, because µ(H)(A) is compact w.r.t. Vi-
etoris topology by the continuity of both, the Mizolami-map and the projections
pA : P0(Y )A → P0(Y ) : g → g(A).

3.17 Corollary
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) consist only of compact
subsets of X and contain the singletons. Let H ⊆ C(X, Y ) have the following
properties:

(1) H is weak relative complete in Y X w.r.t. pointwise convergence,
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(2) H is A-evenly continuous,

(3) for all A ∈ A, each ultrafilter ϕ on A converges to a point x0 ∈ X, s.t.
H(x0) := {f(x0)| f ∈ H} is relative compact in Y .

Then H is compact w.r.t. τA.
If otherwise H is compact w.r.t. τA, then (1) follows and for all A ∈ A is
H(A) :=

⋃
f∈H f(A) compact in Y .

Proof: Copy the proof of corollary 3.16, but use part (2) of lemma 3.10, instead
of part (1), then the closedness of the images is not needed.

Note, that all requirements, in order to make H compact, are focused on H and
A. There is no condition concerning the spaces X, Y (except, that they should be
topological spaces). This seems to be natural, because in fact, the compactness
of H is in question, not the compactness of X or Y . But, of course, special
properties of the range space may simplify the requirements, as the following
shows. At this point, we come back to a classical looking form of Ascoli-like
statements.

3.18 Corollary
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff. Then a set of functions
H ⊆ C(X, Y ) is compact w.r.t. the compact-open topology τco, if and only if it
has the following properties:

(1) H is closed in Y X w.r.t. pointwise convergence,

(2) H is evenly continuous on all compact subsets and

(3) for all x ∈ X is H(x) := {f(x)| f ∈ H} relative compact in Y .

Proof: Proposition 3.7 ensures, that we can apply lemma 3.9, yielding

(4) For all A ∈ K(X) is H(A) :=
⋃
f∈H f(A) compact in Y .

Now, let A := K0(X), the set of all nonempty compact subsets of X, so τA is
just the compact-open topology τco. Because Y is Hausdorff, from (2) we get
the A-even continuity of H, by proposition 3.7, so, if (1), (2), (4) are fulfilled,
corollary 3.17 applies, yielding H to be compact w.r.t. τco.
If otherwise H is compact w.r.t. τco, we get (1) and (4) (thus (3)) from corollary
3.17 again, and (2) from proposition 3.8.

Note, that sufficiency of the three conditions for compactness w.r.t. τco could be
also obtained from theorem 3.36(I) in [28], together with proposition 3.7 here.
To require closedness for H here, instead of weak relative completeness as in
corollary 3.17, is not really stronger, because Y X is Hausdorff w.r.t. pointwise

15



convergence, whenever Y is, and so closedness and weak relative completeness
coincide.
This corollary is just a repaired version of Edwards’ statement 3.13 in [9], where
only closedness of H in C(X, Y ) - not in Y X - is required, 3.18(4) is required
instead of 3.18(3) and condition 3.18(2) is omitted3. The following shows, that
this would indeed not be enough to get compactness for H, and especially, that
an essential reason for this is the absence of properties like some kind of even
continuity, for example.

3.19 Example: Let X = Y = [0, 1] ⊆ IR be equipped with euclidian topology.
Now, let

cs : X → Y : cs(x) = s, s ∈ [0, 1]

and let H1 := {cs| 0 ≤ s ≤ 1}. Furthermore, let

wn : X → Y : wn(x) =


0 ; 0 ≤ x ≤ 1

3n

3nx− 1 ; 1
3n
< x ≤ 2

3n

−3nx+ 3 ; 2
3n
< x ≤ 1

n

0 ; 1
n
< x ≤ 1

with n ∈ IN, n ≥ 2 and then let H2 := {wn| n ∈ IN, n ≥ 2}.
Then H := H1 ∪ H2 is closed in Y X w.r.t. pointwise convergence and for all
subsets K (especially for all compact subsets) of X is H(K) compact. But H is
not compact w.r.t. the compact-open topology.

Proof: It is clear, that H1(K) = [0, 1] for all nonempty subsets K of X. So, in
any case H2(K) ⊆ H1(K) and consequently H(K) = H1(K) ∪ H2(K) = H1(K)
is compact.
To see, that H is closed in Y X , let F be an ultrafilter on H, which converges
pointwise to a function g ∈ Y X . Then F either contains H1 or H2, because it is
an ultrafilter. If F contains H1, then its evaluation filter on every point of X is
the same - and as an ultrafilter in the compact Y this converges to a point of Y ,
thus F converges pointwise to the associated constant function. If F containsH2,
then either F is a singleton-filter (and therefore converges pointwise to its gener-
ating element of H2) or it contains the filter G := [{{wk| k ≥ n}| n ∈ IN, n ≥ 2}].
But this filter obviously converges pointwise to c0 ∈ H, and so all refining ultra-
filters do. Thus, F converges in H, whenever it converges in Y X , so H is closed
in Y X w.r.t. pointwise convergence, because Y X is Hausdorff.

3His statement is false. Nevertheless, the gap in his argumentation is quite sophisticated:
he deals with functions from a hyperspace to a hyperspace and forgets at an essential position,
that not all of these functions need to be induced from a function between the base spaces,
especially, they are not enforced to fulfill f(A) =

⋃
x∈A f({x}).
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Otherwise, just the filter G fails to converge w.r.t. the compact-open topology
τco: the convergence w.r.t. τco coincides with continuous convergence, because X
is locally compact. The only function, to which G could converge w.r.t. τco is c0,
because it converges pointwise only to this function. So, for the neighbourhood-
filter U(0) of zero, G(U(0)) should converge to 0 - but it doesn’t, because for any
G ∈ G and any open neighbourhood U of 0 we find 1 ∈ G(U). Thus, there must
exist a refining ultrafilter of G, which doesn’t τco−converge to c0 and therefore
completely fails to converge w.r.t. τco.

The author wishes to thank the referee for some hints concerning references.
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