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Abstract

Intensity maps are nonnegative matrices describing the intensity modulation
of beams in radiotherapy. An important step in the planning process is to
determine a segmentation, that is a representation of an intensity map as
a positive combination of special matrices corresponding to fixed positions
of the multileaf collimator, called segments. We consider the problem of
constructing segmentations with small total numbers of monitor units and
segments. Generalizing the approach of [5] so that it applies to the segmen-
tation problem with interleaf collision constraint, we show that the minimal
number of monitor units in this case can be interpreted as the length of a
longest path in a layered digraph. In addition we derive an efficient algorithm
that constructs a segmentation with this minimal number of monitor units.

Key words: leaf sequencing, radiation therapy optimization, intensity mod-
ulation, multileaf collimator, IMRT



1 Introduction

The objective in radiotherapy planning for cancer treatment is to irradiate
the tumor as efficient as possible without damaging the organs near to it.
The first step is to determine an intensity function which describes the dis-
tribution of radiation over a rectangular target area. After discretization an
intensity function can be considered as an m×n matrix A with nonnegative
entries. One way of realizing such an intensity map is the usage of a multileaf
collimator (MLC). An MLC has a pair of leaves for each row of the matrix,
which can be shifted in horizontal direction and so open certain regions of
the rectangle. By irradiating successively with different leaf-positions (called
segments) it can be achieved that every region receives the amount of radia-
tion that is prescribed by the intensity map. Due to technological restrictions
in some of the currently used MLCs there is an additional condition for the
possible segments: The interleaf collision constraint (ICC) excludes positions
in which the left leaf of row i and the right leaf of row i± 1 overlap.
In this paper we consider the problem of determining the segments for a given
matrix A in a good way. Two important objectives in this step are to mini-
mize the total number of monitor units (TNMU) and the number of segments
(NS). For the case of an MLC without ICC there are several segmentation
algorithms (see [2–4, 6, 8–10]), some of them providing the optimal TNMU
but a large NS, others reducing the NS at the price of an increased TNMU. In
principle both, TNMU and NS, can be optimized by integer programming and
this method can be adapted to additional restrictions like ICC (see [7]). But
this approach is applicable only for small problem sizes. Another approach
is the reformulation of the segmentation problem in a network flow setting.
In [1] this is done for MLC-segmentation with ICC. In [5] there is presented
an efficient segmentation algorithm which yields the optimal TNMU and a
very small NS for the segmentation problem without ICC. The algorithm is
derived from an explicit formula for the smallest possible TNMU. Here we
generalize this approach to characterize the smallest possible TNMU with
ICC as the maximal length of a path in a layered digraph.

2 A Linear Programming formulation

Throughout we use the notation [n] := {1, 2, . . . , n} for positive integers n.
Let A = (ai,j) 1≤i≤m

1≤j≤n
be an m× n-matrix with nonnegative integer entries. In
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addition we put

ai,0 = ai,n+1 = 0, i ∈ [m],

di,j = ai,j − ai,j−1, i ∈ [m], j ∈ [n + 1].

A segment is a matrix that corresponds to a position of an MLC with interleaf
collision constraint. This is made precise in the following definition.

Definition. A segment is an m× n-matrix S = (si,j), such that there exist
integers li, ri (i ∈ [m]) with the following properties:

li ≤ ri + 1 (i ∈ [m]), (1)

si,j =

{
1 if li ≤ j ≤ ri

0 otherwise
(i ∈ [m], j ∈ [n]), (2)

ICC: li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m− 1]). (3)

A segmentation of A is a representation of A as a sum of segments, i.e.

A =
k∑

i=1

uiSi

with segments Si (i = 1, 2, . . . , k) and positive integers ui (i = 1, 2, . . . , k).
The segmentation problem is to find a segmentation of A with minimal value
of

∑k
i=1 ui. By F we denote the subsets of V := [m]× [n] that correspond to

segments, that is

F = {T ⊆ V : There exists a segment S with (i, j) ∈ T ⇐⇒ si,j = 1}.

The segmentation problem can be formulated as a linear program:

(P )

minimize
∑

T∈F
f(T ) subject to

f(T ) ≥ 0 ∀T ∈ F ,

∑
T∈F :(i,j)∈T

f(T ) = ai,j ∀(i, j) ∈ V.

The dual program is

(D)

maximize
∑

(i,j)∈V

ai,jg(i, j) subject to

∑
(i,j)∈T

g(i, j) ≤ 1 ∀T ∈ F .
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To solve the segmentation problem we proceed in two steps: first we construct
a feasible solution for the program (D) which yields a lower bound for the
minimal TNMU in a segmentation, and in the second step we construct a
sequence of segments that realizes this lower bound. We define a directed

acyclic graph
−→
G = (V ∪ {0, 1}, E). For E we take all possible edges of the

forms (0, (i, 1)) and ((i, n), 1), as well as all the edges between the j−th and
the (j + 1)−th column (j = 1, 2, . . . , n − 1), precisely E = E1 ∪ E2 ∪ E3,
where

E1 = {(0, (i, 1)) : i ∈ [m]},
E2 = {((i, n), 1) : i ∈ [m]},
E3 = {((i, j), (i′, j + 1)) : i, i′ ∈ [m], j ∈ [n− 1]}.

We define a length function δ (associated with A) on E by

δ(0, (i, 1)) = ai,1 (i ∈ [m]),

δ((i, n), 1) = 0 (i ∈ [m]),

δ((i, j), (i′, j + 1)) = max{0, di′,j+1} −
i′−1∑
k=i

ak,j

(i, i′ ∈ [m], i ≤ i′, j ∈ [n− 1]),

δ((i, j), (i′, j + 1)) = max{0, di′,j+1} −
i∑

k=i′+1

ak,j

(i, i′ ∈ [m], i ≥ i′, j ∈ [n− 1]).

For a path P = (v0, v1, . . . , vl) in
−→
G its length is

δ(P ) =
l∑

i=1

δ(vi−1, vi).

The distance D(v, w) of two vertices v, w ∈ V ∪ {0, 1} is defined by

D(v, w) = max
{

δ(P ) : P (v, w)− path in
−→
G

}
.

Finally, we define the complexity c(A) of the matrix A to be the distance of

0 and 1 in
−→
G ,

c(A) = D(0, 1).

Now we are prepared to formulate our main result.
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Theorem 1. For every segmentation A =
k∑

i=1

uiSi, we have

k∑
i=1

ui ≥ c(A).

In addition, there exists a segmentation with
k∑

i=1

ui = c(A).

Note that the minimal TNMU in a segmentation without ICC can be inter-
preted analogously. In this case the minimal TNMU equals (see [5])

max
1≤i≤m

n∑
j=1

max{0, di,j},

that is the maximal length of a (0, 1)−path in the graph that is obtained

from
−→
G by deleting all the edges ((i, j), (i′, j + 1)) with i 6= i′.

3 The lower bound

In this section we show how the (0, 1)−paths in
−→
G correspond to certain

feasible solutions for the program (D) and derive the lower bound of the

theorem. For a path P = (0, (i1, 1), (i2, 2), . . . , (in, n), 1) in
−→
G we put in+1 =

in and define a function g : V → {0, 1,−1} as follows:

g(i, j) =



1 if i = ij = ij+1, di,j ≥ 0, di,j+1 < 0,
1 if i = ij = ij+1 6= ij+2, di,j ≥ 0,
−1 if i = ij = ij+1 = ij+2, di,j < 0 and di,j+1 ≥ 0,
−1 if ij ≤ i < ij+1 or ij+1 < i ≤ ij,
−1 if i = ij+1 6= ij and di,j+1 ≥ 0,
0 otherwise.

(4)

Example 1. Fig. 1 shows a path of length 7 with respect to the matrix

A =


3 0 0 0 2 4
1 1 1 2 3 3
2 2 2 1 1 1
0 0 6 0 1 1


and the corresponding function g.
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Figure 1: A path of length 7 with respect to A and the corresponding function
g

We want to prove that for every (0, 1)−path P the corresponding function g
is a feasible solution for the program (D). Thus we have to show that, for
every T ∈ F , ∑

(i,j)∈T

g(i, j) ≤ 1.

A (0, 1)−path P is uniquely determined by the indices of the colums in which
P changes the row and the indices of the rows in which P runs between the
row changes. So let x1, x2, . . . , xk−1 with 0 < x1 < x2 < · · · < xk−1 < n
denote the indices of the columns where P changes the row, i.e.

(i, xt), (i
′, xt + 1) ∈ P with i 6= i′ (t ∈ [k − 1]).

In addition let i∗t be the row index with (i∗t , xt) ∈ P (t = 1, 2, . . . , k − 1) and
i∗k the index with (i∗k, n) ∈ P . Finally, we put x0 = 0, and xk = n + 1. Thus

P = (0, (i∗1, 1), (i∗1, 2), . . . , (i∗1, x1), (i
∗
2, x1 + 1), . . . , (i∗2, x2), . . . , . . . , (i

∗
k, n), 1),

and P is uniquely determined by its parameters (i∗1, x1), . . . , (i
∗
k, xk).

Lemma 2. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (4). In addition let 1 ≤ l ≤ r+1 ≤ n+1. Then,
for every i ∈ [m],

r∑
j=l

g(i, j) ≤ 1,

and equality implies xt−1 < l ≤ r < xt for some t ∈ [k] with i∗t = i.

Proof. We choose an arbitrary i ∈ [m] and put

J(i) := {j ∈ [n] : g(i, j) 6= 0}.

We denote the elements of J(i) by j1, j2, . . . , jp (j1 < j2 < · · · < jp). Then
the following claims follow immediately from the definition of g.
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1. If i = i∗1 and k > 1 then x1 ∈ J(i) and the sequence

g(i, j1), g(i, j2), . . . , g(i, x1)

is an alternating (1,−1)−sequence ending with −1.

2. If i = i∗k, k > 1 and J(i) ∩ {xk−1, xk−1 + 1, . . . , n} 6= ∅ then for

q = min{τ : jτ ≥ xk−1},

g(i, jq), g(i, jq+1), . . . , g(i, jp) is an alternating (1,−1)−sequence start-
ing with −1 and ending with 1.

3. If i = i∗1 and k = 1 then the sequence g(i, j1), g(i, j2), . . . , g(i, jp) is
empty or an alternating (1,−1)−sequence starting and ending with 1.

4. If i = i∗t for 2 ≤ t ≤ k − 1 then xt ∈ J(i) and for

q = min{τ : jτ ≥ xt−1},

g(i, jq), g(i, jq+1), . . . , g(i, xt) is an alternating (1,−1)−sequence start-
ing and ending with −1.

5. If j ∈ J(i) and (i, j) does not correspond to a term in one of the
sequences described in the first 4 cases then j = xt for some t ∈ [k− 1]
with i 6= i∗t and i 6= i∗t+1 and g(i, j) = −1.

Consequently we obtain, for 1 ≤ q ≤ p− 1,

g(i, jq) = 1 ⇒ g(i, jq+1) = −1.

Now the first part of the lemma follows from

r∑
j=l

g(i, j) =

q′∑
τ=q

g(i, jτ ) for some q, q′ ∈ [p].

Suppose
r∑

j=l

g(i, j) =

q′∑
τ=q

g(i, jτ ) = 1.

Then the sequence g(i, jq), g(i, jq+1), . . . , g(i, jq′) has to be an alternating
(1,−1)−sequence starting and ending with 1. This implies

xt−1 < l < xt and xt′−1 < r < xt′
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for some t, t′ ∈ [k] with i = i∗t = i∗t′ . Assume t 6= t′ and put

t′′ = min{σ > t : i∗σ = i} and q′′ = min{τ : jτ ≥ xt′′−1}.

Then
jq < xt < jq′′ < jq′ , g(i, xt) = g(i, jq′′) = −1,

and g(i, j) ≤ 0 for all j with xt < j < jq′′ . So g(i, jq), g(i, jq+1), . . . , g(i, jq′)
contains two consecutive (−1)−terms, which is a contradiction. Hence t = t′

and the second part of the lemma follows.

The next lemma gives a condition that must hold if the sum of the g(i, j)
over a row of a segment vanishes. (By a row of a segment we mean the part
of the row that is left open by the MLC in the corresponding leaf position.)

Lemma 3. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (4). Assume i ∈ [m], 1 ≤ l ≤ r + 1 ≤ n + 1 and

r∑
j=l

g(i, j) = 0.

Suppose in addition that for t ∈ [k − 1] one of the following conditions holds

1. i∗t < i < i∗t+1 and l ≤ xt

2. t ≥ 2, i∗t = i < i∗t+1 and l ≤ xt−1

3. i∗t > i > i∗t+1 and l ≤ xt for some t ∈ [k − 1]

4. t ≥ 2, i∗t = i > i∗t+1 and l ≤ xt−1

Then r < xt.

Proof. We consider only the first two cases that are illustrated in Fig. 2.
The other two are treated analogously. Assume r ≥ xt. In order to derive
a contradiction we use the following observation several times. If P leaves
row i in (i, j) then g(i, j) = −1, and if P enters row i′ in (i′, j′), j′ > 1, then
either g(i′, j′ − 1) = −1 or the first nonvanishing g(i′, j′′) we meet on the
subpath starting with (i′, j′) equals −1. We put

J = {j : l ≤ j ≤ r, g(i, j) 6= 0},

and denote the elements of J by j1, j2, . . . , jp (j1 < j2 < · · · < jp). In
particular jq = xt for some q ∈ [p].
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i*t

i*t+1

xt

i i*t = i

i*t-1

li ri xtli = xt-1 ria) b)

Figure 2: Illustration of Lemma 3. a) i∗t < i < i∗t+1 and l ≤ xt, b) t ≥ 2,
i∗t = i < i∗t+1 and l ≤ xt−1.

Case 1: g(i, j1) = −1.

By assumption g(i, j1), . . . , g(i, jp) is an alternating (1,−1)−sequence
starting with −1 and ending with 1. From g(i, xt) = −1 follows q < p
and by construction of g the contradiction

g(i, jq) = g(i, jq+1) = −1.

Case 2: g(i, j1) = 1.

This implies l < xt′ for some t′ < t with i∗t′ = i, and consequently
jq′ = xt′ for some q′ ∈ [p− 1], q′ < q. Thus

g(i, jq′) = g(i, jq′+1) = −1,

and g(i, j1), g(i, j2), . . . , g(i, jp) contains two consecutive (−1)−terms.
By assumption this implies g(i, jp) = 1, hence p > q, and by construc-
tion of g,

g(i, jq) = g(i, jq+1) = −1.

But now g(i, j1), g(i, j2), . . . , g(i, jp) contains two pairs of consecutive
(−1)−terms (if q′+1 < q) or three consecutive (−1)-terms (if q′+1 = q).
Again this yields a contradiction.

The following lemma is the crucial step in the proof of the feasibility of g.
We show that the ICC implies that in any segment, between two rows in
which the values of g add up to 1 there is a row in which this sum is at most
−1.
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Lemma 4. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (4). Suppose S is a segment described by
l1, l2, . . . , lm,r1, r2, . . . , rm and there are row indices i0, i1 (1 ≤ i0 < i1 ≤ m)
such that

ri0∑
j=li0

g(i0, j) = 1 and

ri1∑
j=li1

g(i1, j) = 1.

Then there exists a row index i with i0 < i < i1 and
ri∑

j=li

g(i, j) ≤ −1.

Proof. W.l.o.g. we may assume that there is no row i with i0 < i < i1 and

ri∑
j=li

g(i, j) = 1.

Suppose that for all i with i0 < i < i1,
ri∑

j=li

g(i, j) = 0. By Lemma 2 there

are t, t′ ∈ [k] such that

xt−1 < li0 ≤ ri0 < xt, i∗t = i0 and

xt′−1 < li1 ≤ ri1 < xt′ , i∗t′ = i1.

W.l.o.g. we may assume t < t′. Now let i0 = z0 < z1 < . . . < zp = i1
be an increasing sequence of row indices such that there is a corresponding
sequence t = t0 < t1 < . . . < tp ≤ t′ with i∗tq = zq (0 ≤ q ≤ p) and in addition
for 0 ≤ q ≤ p − 1 there is no τ with tq < τ < tq+1 and zq < i∗τ ≤ zq+1.
Precisely, we put

t0 = t and z0 = i0,

and for q ≥ 1 and zq−1 < i1,

tq = min{τ : i∗τ > zq−1} and zq = i∗tq .

So for some q we obtain zq = i1, and then we put p = q (see Fig. 3).

Claim 1: For 0 ≤ q ≤ p− 1,

rzq < xtq ⇒ ri < xtq+1−1 for all i with zq ≤ i < zq+1.

Claim 2: For 0 ≤ q ≤ p− 1 we have rzq < xtq .
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x t x t
z 0 = i0

z 1

0 1

z 3 = i1

x t 2 x t'-1

z 2

x t3r i 0 l i 1

Figure 3: Situation in the proof of Lemma 4 with p = 3.

Proof of Claim 1. We proceed by induction on i. By assumption

rzq < xtq ≤ xtq+1−1.

So let zq < i < zq+1 and assume ri−1 < xtq+1−1. The ICC implies li ≤ xtq+1−1

and by Lemma 3 we obtain

ri < xtq+1−1.

Proof of Claim 2. Here we use induction on q. Clearly,

rz0 = ri0 < xt = xt0 .

So let q > 0 and assume by induction rzq−1 < xtq−1 . Then by claim 1,

rzq−1 < xtq−1.

Thus lzq ≤ xtq−1, and hence, again by Lemma 3, rzq < xtq .
Combining claims 1 and 2 we obtain

ri1−1 < xtp−1 ≤ xt′−1 < li1 ,

thus ri1−1 < li1 − 1 in contradiction to the ICC.

Lemma 5. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (4). Then g is feasible for (D).

Proof. Let T ∈ F be arbitrary and let S be the corresponding segment with
parameters li, ri (i ∈ [m]). Then∑

(i,j)∈T

g(i, j) =
m∑

i=1

ri∑
j=li

g(i, j).

10



By Lemma 2, for all i ∈ [m],
ri∑

j=li

g(i, j) ≤ 1, and by Lemma 4 between two

rows i and i′′ with i < i′′ and
ri∑

j=li

g(i, j) =

ri′′∑
j=li′′

g(i′′, j) = 1

there is always a row i′ with i < i′ < i′′ and
ri′∑

j=li′

g(i′, j) ≤ −1. Consequently,

∑
(i,j)∈T

g(i, j) ≤ 1,

that is the feasibility of g.

Lemma 6. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (4). Then

∑
(i,j)∈V

g(i, j)aij =
k∑

t=1

xt−1∑
j=xt−1+1

max{0, di∗t ,j}−
k−1∑
t=1

i∗t+1−1∑
i=i∗t

ai,xt +

i∗t∑
i=i∗t+1+1

ai,xt

 .

Proof. In terms of the i∗t and xt the definition of g is

g(i, j) =



1 if xt−1 < j < xt, i = i∗t , di,j ≥ 0, di,j+1 < 0,
1 if xt−1 < j = xt − 1, i = i∗t , di,j ≥ 0,
−1 if xt−1 < j < xt − 1, i = i∗t , di,j < 0, di,j+1 ≥ 0,
−1 if j = xt, i∗t ≤ i < i∗t+1 or i∗t+1 < i ≤ i∗t ,
−1 if j = xt, i = i∗t+1, di,j+1 ≥ 0,
0 otherwise.

This yields immediately

xt−1∑
j=xt−1

g(i∗t , j)ai∗t ,j =
xt−1∑

j=xt−1+1

max{0, di∗t ,j} (t = 1, 2, . . . , k).

The remaining nonzero g(i, j) correspond to the row changes of P , and we
have to add for t = 1, 2, . . . , k − 1,

i∗t+1−1∑
i=i∗t

g(i, xt)ai,xt = −
i∗t+1−1∑
i=i∗t

ai,xt if i∗t < i∗t+1 and

i∗t∑
i=i∗t+1+1

g(i, xt)ai,xt = −
i∗t∑

i=i∗t+1+1

ai,xt if i∗t > i∗t+1.
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For the length of P to be equal to the value of the program (D) for the corre-
sponding g we need an additional restriction on P . We call the (0, 1)−path P
with parameters (i∗1, x1), . . . , (i

∗
k, xk) feasible (with respect to A) if di∗t ,xt < 0

for t = 1, 2, . . . , k − 1, which in particular implies that the last edges of the
horizontal parts of P have length 0.

Lemma 7. Let P be a feasible (0, 1)−path and g defined according to (4).
Then ∑

(i,j)∈V

g(i, j)ai,j = δ(P ).

Proof. Let P be given by parameters (i∗1, x1), . . . , (i
∗
k, xk). For t ∈ [k] we

denote by Pt the subpath from (i∗t , xt−1 + 1) to (i∗t , xt). Thus

δ(P ) =
k∑

t=1

δ(Pt) + δ(0, (i∗1, 1)) +
k−1∑
t=1

δ((i∗t , xt), (i
∗
t+1, xt + 1)).

From the feasibility of P follows that the last edge of Pt has length 0 for all
t ∈ [k], and we obtain

δ(Pt) =
xt−1∑

j=xt−1+2

max{0, di∗t ,j} (t ∈ [k]).

In addition, δ(0, (i∗1, 1)) = ai∗1,1 = max{0, di∗1,1}, and for t ∈ [k − 1],

δ((i∗t , xt), (i
∗
t+1, xt + 1)) = max{0, di∗t+1,xt+1} −

i∗t+1−1∑
i=i∗t

ai,xt −
i∗t∑

i=i∗t+1+1

ai,xt .

Thus

δ(P ) =
k∑

t=1

xt−1∑
j=xt−1+1

max{0, di∗t ,j} −
k−1∑
t=1

i∗t+1−1∑
i=i∗t

ai,xt +

i∗t∑
i=i∗t+1+1

ai,xt

 ,

and the claim follows by Lemma 6.

Lemma 8. There exists a feasible (0, 1)−path P with δ(P ) = c(A).

Proof. For any (0, 1)−path P with parameters (i∗1, x1), . . . , (i
∗
k, xk) denote by

R(P ) ⊆ [k− 1] the subset of indices that destroy the feasibility of P , that is

R(P ) = {t ∈ [k − 1] : di∗t ,xt ≥ 0}.
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Then
λ(P ) =

∑
t∈R(P )

∣∣i∗t − i∗t+1

∣∣
measures how far P is from being feasible. Let P0 be a (0, 1)−path with
parameters (i∗1, x1), . . . , (i

∗
k, xk) and length δ(P0) = c(A). If λ(P0) = 0 then

P0 is feasible and there is nothing to do. So we assume that for r ≥ 1 we
have a (0, 1)−path Pr−1 with parameters

(i∗1, x1), . . . , (i
∗
k, xk),

δ(Pr−1) = c(A) and λ(Pr−1) > 0. From this we construct a (0, 1)−path Pr

with δ(Pr) = c(A) and λ(Pr) ≤ λ(Pr−1) − 1. This will prove the lemma,
since after finitely many steps we obtain a path P with δ(P ) = c(A) and
λ(P ) = 0. Let t be the smallest element of R(Pr−1).

Case 1: di∗t ,j ≥ 0 for xt−1 < j < xt.

We define Pr as follows.

1. If i∗t < i∗t+1−1 and i∗t−1 6= i∗t +1 the parameters of Pr are (see Fig.
4 and 6)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t + 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

2. If i∗t > i∗t+1 +1 and i∗t−1 6= i∗t −1 the parameters of Pr are (see Fig.
9 and 11)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t − 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

3. If i∗t−1−1 = i∗t < i∗t+1−1 or i∗t−1 +1 = i∗t > i∗t+1 +1 the parameters
of Pr are (see Fig. 7 and 12)

(i∗1, x1), . . . , (i
∗
t−2, xt−2), (i

∗
t−1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

4. If i∗t + 1 = i∗t+1 6= i∗t−1 or i∗t − 1 = i∗t+1 6= i∗t−1 the parameters of Pr

are (see Fig. 5 and 10)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

5. If i∗t + 1 = i∗t+1 = i∗t−1 or i∗t − 1 = i∗t+1 = i∗t−1 the parameters of Pr

are (see Fig. 8 and 13)

(i∗1, x1), . . . , (i
∗
t−2, xt−2), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).
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Case 2: di∗t ,j < 0 for some j with xt−1 < j < xt.

We put
x := max{j ≤ xt : di∗t ,j < 0, di∗t ,j+1 ≥ 0},

and define Pr as follows.

1. If i∗t < i∗t+1 − 1 the parameters of Pr are (see Fig. 14)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t , x), (i∗t + 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

2. If i∗t > i∗t+1 + 1 the parameters of Pr are (see Fig. 16)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t , x), (i∗t − 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

3. If i∗t = i∗t+1 − 1 or i∗t = i∗t+1 + 1 the parameters of Pr are (see Fig.
15 and 17)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t , x), (i∗t+1, xt+1), . . . , (i

∗
k, xk).

We have to show that δ(Pr) = c(A) and λ(Pr) ≤ λ(Pr−1) − 1. The last
assertion follows from the fact that either

R(Pr) = R(Pr−1) or R(Pr) = R(Pr−1) \ {xt},

and consequently,

λ(Pr) = λ(Pr−1)− 1 or λ(Pr) = λ(Pr−1)−
∣∣i∗t − i∗t+1

∣∣ .

Now we check that in any case δ(Pr) ≥ δ(Pr−1) and hence δ(Pr) = c(A). In

the following let the vertices of
−→
G be denoted as in the corresponding figures.

In addition for two vertices X and Y on a path P we denote by DP (X, Y )
the length of the (X, Y )−subpath of P . Then in any case,

δ(Pr) = δ(Pr−1)−DPr−1(U,A)−DPr−1(A, B)−DPr−1(B, V )

+ DPr(U,A′) + DPr(A
′, B′) + DPr(B

′, V ). (5)

Cases 1.1(a), 1.4(a): (Fig. 4, 5)

Using di∗t ,j ≥ 0 for xt−1 < j ≤ xt we obtain

DPr−1(A, B) = ai∗t ,xt − ai∗t ,xt−1+1,

DPr(B
′, V ) = DPr−1(B, V ) + ai∗t ,xt ,

DPr(U,A′) = DPr−1(U,A)−
(
ai∗t ,xt−1+1 − ai∗t ,xt−1

)
− ai∗t ,xt−1 + max{0, di∗t +1,xt−1+1}

= DPr−1(U,A)− ai∗t ,xt−1+1 + max{0, di∗t +1,xt−1+1}.
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x t-1 x t

i*t

P r-1

x t-1 x t

i*t+1

P r

A B
U

V

U

A' B'

Vi*t+1 i*t+1

Figure 4: Transition from Pr−1 to Pr in Case 1.1.a) i∗t−1 < i∗t .

x t-1 x t

i*t

P r-1

x t-1 x t

P r

A B

U

V

U

A'
Vi*t+1 i*t+1

B'

Figure 5: Transition from Pr−1 to Pr in Case 1.4.a) i∗t−1 < i∗t .

Substituting into (5) yields

δ(Pr) = δ(Pr−1)−DPr−1(U,A)−
(
ai∗t ,xt − ai∗t ,xt−1+1

)
−DPr−1(B, V )

+
(
DPr−1(U,A)− ai∗t ,xt−1+1 + max{0, di∗t +1,xt−1+1}

)
+ DPr(A

′, B′) +
(
DPr−1(B, V ) + ai∗t ,xt

)
,

that is

δ(Pr) = δ(Pr−1) + max{0, di∗t +1,xt−1+1}+ DPr(A
′, B′)

≥ δ(Pr−1).

Cases 1.1(b), 1.3(a), 1.5(a): (Fig. 6, 7, 8)

Again,

DPr−1(A, B) = ai∗t ,xt − ai∗t ,xt−1+1,

DPr(B
′, V ) = DPr−1(B, V ) + ai∗t ,xt .

But in these cases

DPr(U,A′) = DPr−1(U,A)−
(
ai∗t ,xt−1+1 − ai∗t ,xt−1

)
+ ai∗t +1,xt−1 + max{0, di∗t +1,xt−1+1}.
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x t

i*t

P r-1

x t-1 x t

i*t+1

P r

A B

U
V

U

A' B'

Vi*t+1 i*t+1

x t-1

Figure 6: Transition from Pr−1 to Pr in Case 1.1.b) i∗t−1 > i∗t .

x t-1 x t

i*t

P r-1

x t-1 x t

i*t+1

P r

A B

U
V

U
B'

Vi*t+1 i*t+1

A'

Figure 7: Transition from Pr−1 to Pr in Case 1.3.a) i∗t−1 > i∗t .

x t-1 x t

i*t

P r-1

A B

U V i*t+1

x t-1 x t

P r
U V i*t+1A' B'

Figure 8: Transition from Pr−1 to Pr in Case 1.5.a) i∗t−1 > i∗t .
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And substituting into (5) yields

δ(Pr) = δ(Pr−1)−DPr−1(U,A)−
(
ai∗t ,xt − ai∗t ,xt−1+1

)
−DPr−1(B, V )

+
[
DPr−1(U,A)−

(
ai∗t ,xt−1+1 − ai∗t ,xt−1

)
+ ai∗t +1,xt−1+

max{0, di∗t +1,xt−1+1}
]
+ DPr(A

′, B′) +
(
DPr−1(B, V ) + ai∗t ,xt

)
,

that is

δ(Pr) = δ(Pr−1) + ai∗t ,xt−1 + ai∗t +1,xt−1 + max{0, di∗t +1,xt−1+1}+ DPr(A
′, B′)

≥ δ(Pr−1).

Cases 1.2(a), 1.4(b): (Fig. 9, 10)

x t-1 x t

i t*

P r-1

x t-1 x t

i t*-1

P r

A B
U

V

U

B'

Vi *t+1 i *t+1

A'

Figure 9: Transition from Pr−1 to Pr in Case 1.2.a) i∗t−1 > i∗t .

i*t

P r-1 P r

A
B

U

V

U

A' Vi*t+1 i*t+1

x t-1 x tx t-1 x t

B'

Figure 10: Transition from Pr−1 to Pr in Case 1.4.b) i∗t−1 > i∗t .

The computation is the same as in Case 1.1(a) but in the formula for
DPr(U,A′) we have to replace di∗t +1,xt−1+1 by di∗t−1,xt−1+1.

Cases 1.2(b), 1.3(b), 1.5(b): (Fig. 11, 12, 13)

The computation is the same as in Case 1.1(b) but in the formula for
DPr(U,A′) we have to replace di∗t +1,xt−1+1 by di∗t−1,xt−1+1.
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i*t

P r-1

x t-1 x t

i*t-1

P r
A B

U

V

U
B'

Vi*t+1 i*t+1

A'

x t-1 x t

Figure 11: Transition from Pr−1 to Pr in Case 1.2.b) i∗t−1 < i∗t .

x t-1 x t

i*t

P r-1

x t-1 x t

i*t-1

P r

A B
U

V

U B'

Vi*t+1 i*t+1

A'

Figure 12: Transition from Pr−1 to Pr in Case 1.3.b) i∗t−1 < i∗t .

x t-1 x t

i*t

P r-1
A B

U V i*t+1

P r

U V i*t+1

x t-1 x t
A' B'

Figure 13: Transition from Pr−1 to Pr in Case 1.5.b) i∗t−1 < i∗t .

x x t

i*t

P r-1

x t

i*t+1
P r

x

i*t

i*t+1 i*t+1

U

V

A
U

V

A'

B

B'

Figure 14: Transition from Pr−1 to Pr in Case 2.1.

18



x x t

i*t

P r-1

x t

P r

x

i*t
i*t+1 i*t+1

U
A U

B' VV

B

A'

Figure 15: Transition from Pr−1 to Pr in Case 2.3.a) i∗t−1 < i∗t .

Cases 2.1, 2.3(a): (Fig. 14, 15)

Using di∗t ,j ≥ 0 for x < j < xt, and in particular DPr−1(U,A) = ai∗t ,x+1−
ai∗t ,x, we obtain

DPr−1(A, B) = ai∗t ,xt − ai∗t ,x+1,

DPr(B
′, V ) = DPr−1(B, V ) + ai∗t ,xt ,

DPr(U,A′) = max{0, di∗t +1,x+1} − ai∗t ,x

= max{0, di∗t +1,x+1}+ DPr−1(U,A)− ai∗t ,x+1,

and so with (5)

δ(Pr) = δ(Pr−1)−DPr−1(U,A)−
(
ai∗t ,xt − ai∗t ,x+1

)
−DPr−1(B, V )

+
(
max{0, di∗t +1,x+1}+ DPr−1(U,A)− ai∗t ,x+1

)
+ DPr(A

′, B′) +
(
DPr−1(B, V ) + ai∗t ,xt

)
,

that is

δ(Pr) = δ(Pr−1) + max{0, di∗t +1,x+1}+ DPr(A
′, B′)

7 ≥ δ(Pr−1).

Cases 2.2, 2.3(b): (Fig. 16, 17)

The computation is the same as in Case 2.1 but in the formula for
DPr(U,A′) we have to replace di∗t +1,x+1 by di∗t−1,x+1.
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x x t

i*t

P r-1

x txi*t+1
i*t-1

P r

i*t

i*t+1

U

V

A U

V

A'
B'

B

Figure 16: Transition from Pr−1 to Pr in Case 2.2.

x x t

i*t

P r-1

x tx
i*t+1

P r

i*t
i*t+1

U

V

BA U

VA' B'

Figure 17: Transition from Pr−1 to Pr in Case 2.3.b) i∗t−1 > i∗t .

From Lemmas 5, 7 and 8 we deduce by duality that c(A) is a lower bound for
the sum of the coefficients of a segmentation of A and thus we have already
proved the first half of the theorem.

4 The algorithm

In this section we assume c(A) > 0 and construct a segment S such that A−S
is still nonnegative and c(A− S) ≤ c(A)− 1. Iterating this construction we
obtain a sequence of c(A) segments whose sum is A. For (i, j) ∈ V we
denote by α1(i, j) the maximal length of a (0, (i, j))−path, by α2(i, j) the
maximal length of an ((i, j), 1)−path and by α(i, j) the maximal length of a
(0, 1)−path through (i, j), that is

α1(i, j) = D(0, (i, j)),

α2(i, j) = D((i, j), 1),

α(i, j) = α1(i, j) + α2(i, j).

Now we define two subsets V1, V2 ⊆ V . In V1 we collect the pairs (i, j)
that determine local maxima or right ends of plateaus in the sequences
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ai,1, ai,2, . . . , ai,n (i = 1, 2, . . . ,m), precisely

V1 = {(i, j) ∈ V : di,j ≥ 0, di,j+1 < 0}.

The second subset V2 is defined to be the set of pairs (i, j) ∈ V1 with the
following properties

1. There exists a (0, 1)−path P of length c(A) through (i, j).

2. The sequence ai,1, ai,2, . . . , ai,j is increasing, i.e. ai,1 ≤ ai,2 ≤ · · · ≤ ai,j.

3. The horizontal (0, (i, j))−path is a (0, (i, j))−path of maximal length.

In other words,

V2 = {(i, j) ∈ V1 : α(i, j) = c(A) and α1(i, j) = ai,j}.

Observe that for (i, j) ∈ V1, δ((i, j), (i, j + 1)) = 0 and thus, for j′′ > j,

δ((0, (i, 1), (i, 2), . . . , (i, j′′))) =

j′′∑
j′=1

max{0, di,j′}

≥
j∑

j′=1

di,j′ +

j′′∑
j′=j+2

di,j′ = ai,j + (ai,j′′ − ai,j+1)

> ai,j′′ ,

and hence α1(i, j
′′) > ai,j′′ . In particular, for any fixed row i there is at most

one column index j with (i, j) ∈ V2. To see that c(A) > 0 implies V2 6= ∅
consider a feasible (0, 1)−path P with δ(P ) = c(A). If P is a horizontal path
without any row change then δ(P ) > 0 implies that P contains an element
of V1. Otherwise let ((i, j), (i′, j + 1)) be the first row change of P . Then by
the feasibility of P , di,j < 0 und thus the subpath 0, (i, 1), . . . , (i, j) contains
an element of V1. In both cases the first vertex on P which is in V1 is in V2

as well. We denote the elements of V2 by

(i1, j1), (i2, j2), . . . , (it, jt),

such that i1 < i2 < · · · < it. A segment S (given by the parameters
l1, l2, . . . , lm, r1, r2, . . . , rm) is constructed according to the following strat-
egy. In row ik (k ∈ [t]) we choose the open part maximal under the condition
that the right boundary is jk, i.e. we put

rik = jk and lik = max{j ≤ jk : aik,j = 0}+ 1.
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In the remaining rows we choose the open part in some sense minimal under
the condition that the final result is a segment: The rows i < i1 and i > it
remain closed. If lik > rik+1

+1 we choose the open part in row ik+1 maximal
with rik+1 = lik − 1. If necessary we repeat this step in the following rows,
until finally li ≤ rik+1

+ 1 for some i with ik < i < ik+1. If lik+1
> rik + 1

we proceed analogously, starting in row ik+1 − 1. For the details of the
construction see Algorithm 1.

Example 2. Let

A =



0 0 0 0 0 0 0 5 9
0 0 0 0 1 1 2 4 2
0 0 2 2 3 3 3 2 1
1 1 2 2 1 1 1 1 1
1 3 4 2 2 2 4 4 7
2 2 2 2 1 2 2 3 3
0 2 2 7 2 2 2 1 1


.

Then c(A) = 9, V2 = {(1, 9), (5, 3), (7, 4)} and the algorithm yields the seg-
ment

S =



0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0


,

where the bold 1’s correspond to the elements of V2. For the resulting matrix

A− S =



0 0 0 0 0 0 0 4 8
0 0 0 0 0 0 1 4 2
0 0 1 1 3 3 3 2 1
1 1 2 2 1 1 1 1 1
0 2 3 2 2 2 4 4 7
2 2 2 2 1 2 2 3 3
0 1 1 6 2 2 2 1 1


we have c(A− S) = 8.

To prove the correctness of the algorithm we need an alternative description

of paths in
−→
G that yields some insight into the relation between the con-

structed segment S and the path lengths. For this let
−→
H be a directed
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Algorithm 1 Segment S(A, V2)

for (i, j) ∈ V2 do
li := max{j′ ≤ j : ai,j′ = 0}+1
ri := j

end for
5: for i = 1 to i1 − 1 do

li := li1 ; ri := li − 1
end for
for i = it + 1 to m do

li := lit ; ri := li − 1
10: end for

for k = 1 to t− 1 do
if jk > jk+1 then

i := ik
while i < ik+1 and li > rik+1

+ 1 do
15: i := i + 1

ri := li−1 − 1
li := max{j ≤ ri : aij = 0}+ 1

end while
for i′ = i + 1 to ik+1 − 1 do

20: ri′ := rik+1
; li′ := ri′ + 1

end for
else

i := ik+1

while i > ik and li > rik + 1 do
25: i := i− 1

ri := li+1 − 1
li := max{j ≤ ri : aij = 0}+ 1

end while
for i′ = ik + 1 to i− 1 do

30: ri′ := rik ; li′ := ri′ + 1
end for

end if
end for
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graph with vertex set V ∪ {0, 1}. As the edge set of H we take E0 =

E
(1)
0 ∪ E

(2)
0 ∪ E

(3)
0 ∪ E

(4)
0 , where

E
(1)
0 = {(0, (i, 1)) : i ∈ [m]} ∪ {((i, n), 1) : i ∈ [m]},

E
(2)
0 = {((i, j), (i, j + 1) : i ∈ [m], j ∈ [n− 1])},

E
(3)
0 = {((i, j), (i + 1, j)) : i ∈ [m− 1], j ∈ [n]},

E
(4)
0 = {((i, j), (i− 1, j)) : 2 ≤ i ≤ m, j ∈ [n]}.

Let the length function δ0 on E0 be defined by

δ0(0, (i, 1)) = ai,1 (i ∈ [m]),

δ0((i, n), 1) = 0 (i ∈ [m]),

δ0((i, j), (i, j + 1)) = max{0, di,j+1} (i ∈ [m], j ∈ [n− 1]),

δ0((i, j), (i + 1, j)) = −ai,j (i ∈ [m− 1], j ∈ [n]),

δ0((i, j), (i− 1, j)) = −ai,j (2 ≤ i ≤ m, j ∈ [n]).

It is easy to see that there is a bijection between the paths in
−→
G and the

paths in
−→
H with the additional restriction that the last edge is in E

(1)
0 ∪E

(2)
0 .

In addition this bijection preserves the length, that is for a path P in
−→
G and

the corresponding path Q in
−→
H we have

δ(P ) = δ0(Q).

In particular, there is a length–preserving bijection between the (0, 1)−paths

in
−→
G and

−→
H . The advantage of Q compared to P is that possibly existing

,,long, skew” edges in P are replaced by a sequence of vertical edges and
one horizontal edge, and the lengths of these edges are easier to control. For
v, w ∈ V ∪ {0, 1} we put

D0(v, w) = max{δ0(Q) : Q (v, w)− path in
−→
H},

and analogous to α, α1 and α2 we define for (i, j) ∈ V ,

β1(i, j) = D0(0, (i, j)),

β2(i, j) = D0((i, j), 1),

β(i, j) = β1(i, j) + β2(i, j).

We need some information about the connection between the distances in
−→
G

and
−→
H . Obviously β2(i, j) = α2(i, j) for all (i, j) ∈ V . The next lemma is an

analogous result about α1 and β1 for the vertices on (0, 1)−paths of maximal
length.
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Lemma 9. For all (i, j) ∈ V with α(i, j) = c(A), we have β1(i, j) = α1(i, j).

Proof. β1(i, j) ≥ α1(i, j) is trivial, since for every (0, (i, j))−path in
−→
G there

is the corresponding (0, (i, j))−path in
−→
H of the same length. Let Q1 and

Q2 be a (0, (i, j))−path in
−→
H and a ((i, j), 1)−path in

−→
H , respectively, with

δ0(Q1) = β1(i, j) and δ0(Q2) = β2(i, j) = α2(i, j).

By concatenating Q1 and Q2 we obtain a (0, 1)−path Q in
−→
H with

δ0(Q) = β1(i, j) + α2(i, j).

Since the last edge of Q is in E
(1)
0 , this implies the existence of a (0, 1)−path

P in
−→
G with δ(P ) = β1(i, j) + α2(i, j). So

β1(i, j) + α2(i, j) ≤ c(A) = α1(i, j) + α2(i, j),

and thus β1(i, j) ≤ α1(i, j).

Lemma 10. Let (i, j), (k, l) ∈ V , i > k and put p = i− k.

1. If j < l and there are column indices j′1, j
′
2, . . . , j

′
p such that

j ≤ j′1 ≤ j′2 ≤ · · · ≤ j′p < l and

ai−q,j′q = 0 for q = 1, 2, . . . , p,

then there exists a ((i, j), (k, l))−path P in
−→
G with

δ(P ) ≥ ak,l − ai,j.

2. If j > l and there are column indices j′1, j
′
2, . . . , j

′
p such that

l ≤ j′1 ≤ j′2 ≤ . . . ≤ j′p < j and

ak+q,j′q = 0 for q = 1, 2, . . . , p,

then there exists a ((k, l), (i, j))−path P in
−→
G with

δ(P ) ≥ ai,j − ak,l.
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lka ,

0
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0
0

j'1=j'2 j'3 j'4

(i,j)

(k,l)

Figure 18: A part of a matrix A as described in the first case of Lemma 10
and the corresponding path Q.

Proof. We consider only the first case that is illustrated in Fig. 18. The
second one is treated analogously. First we construct a ((i, j), (k, l))−path

Q in
−→
H . We take ((i, j), (i − 1, j)) with length −ai,j as the first edge and

complete this edge to a ((i, j), (k, l))−path Q in such a way, that row changes
occur only along the edges

((i− q, j′q), (i− q − 1, j′q)) (1 ≤ q ≤ p− 1).

This is possible by our assumption on the j′q. Thus the vertical edges of Q,
except for the first one, have length 0 and since the horizontal edges have
nonnegative length in any case we conclude that the ((i, j), (k, j′p))−subpath
of Q has length at least −ai,j. Finally the length of the path

(k, i′p), (k, i′p + 1), . . . , (k, l)

is at least ak,l and from l > i′p follows that the last edge of Q is in E
(2)
0 and

thus there exists a ((i, j), (k, l))−path P in
−→
G with

δ(P ) = δ(Q) ≥ ak,l − ai,j.

Lemma 11. Algorithm 1 yields a segment S.

Proof. Suppose the algorithm does not yield a segment. This is possible only
if for some k ∈ [t − 1] the condition of the while–loop in line 14 (resp. line
24) holds for all i ∈ {ik, ik + 1, . . . , ik+1 − 1} (resp. for all i ∈ {ik + 1, ik +
2, . . . , ik+1}). If jk = jk+1 then

lik ≤ rik+1
and lik+1

≤ rik .

26



So we may assume jk 6= jk+1. Let jk > jk+1. (The case jk < jk+1 can be
treated analogously.) We put p = ik+1 − ik and

j′q = lik+1−q − 1 (q = 1, 2, . . . , p).

The assumption that the while–condition is fulfilled for all ik+1 − q (q =
1, 2, . . . , p) implies

rik+1
+ 1 ≤ j′1 ≤ j′2 ≤ . . . ≤ j′p < jk and

aik+1−q,j′q = 0 (q = 1, 2, . . . , p).

Thus by Lemma 10 there is a ((ik+1, jk+1 + 1), (ik, jk))−path P0 in
−→
G of

length at least aik,jk
− aik+1,jk+1+1. Using (ik+1, jk+1) ∈ V2 this yields

δ0(P0) > aik,jk
− aik+1,jk+1

.

Now we concatenate the path 0, (ik+1, 1), (ik+1, 2), . . . , (ik+1, jk+1 + 1) with
P0 to obtain a (0, (ik, jk))−path of length at least

aik+1,jk+1
+ δ(P0) > aik,jk

,

in contradiction to (ik, jk) ∈ V2.

Let S = (si,j) be the result of algorithm 1. By construction si,j = 1 implies
ai,j > 1 and so the entries of A− S ar nonnegative. We put

a′i,j = ai,j − si,j (i ∈ [m], j ∈ [n]),

a′i,0 = ai,n+1 = 0 (i ∈ [m]),

d′i,j = a′i,j − a′i,j−1 (i ∈ [m], j ∈ [n]).

By δ′ and δ′0 we denote the length functions on
−→
G and

−→
H , respectively, which

correspond to A′ = (a′i,j), and by D′ and D′
0 the corresponding distance

functions. For (i, j) ∈ V we put

α′1(i, j) = D′(0, (i, j)),

α′2(i, j) = D′((i, j), 1),

α′(i, j) = α′1(i, j) + α′2(i, j),

β′1(i, j) = D′
0(0, (i, j)),

β′2(i, j) = D′
0((i, j), 1),

β′(i, j) = β′1(i, j) + β′2(i, j).
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By T we denote the subset of V which corresponds to the segment S, that is

T = {(i, j) ∈ V : si,j = 1}.

The next lemma asserts that for (i, j) ∈ T the sequence ai,1, . . . , ai,j is in-
creasing and the horizontal path from 0 to (i, j) has maximal length with

respect to A in both of
−→
G and

−→
H .

Lemma 12. For (i, j) ∈ T we have

β1(i, j) = α1(i, j) = ai,j and α(i, j) = c(A).

Proof. Let (i, j) ∈ T . Clearly,

β1(i, j) ≥ α1(i, j) ≥ ai,j.

Assume P0 is a (0, (i, j))−path in
−→
G with δ(P0) > ai,j. We claim that for

some k ∈ [t] there is an ((i, j), (ik, jk))−path P1 in
−→
G of length at least

aik,jk
− ai,j. To see this we distinguish 3 types of vertices in T :

1. i = ik and j ≤ jk for some k ∈ [t]:

The path (ik, j), (ik, j + 1), . . . , (ik, jk) has length aik,jk
− aik,j.

2. ik < i < ik+1 for some k ∈ [t− 1] with jk > jk+1:

By construction of S there are column indices j′1, j
′
2, . . . , j

′
p, where p =

i− ik, such that

j ≤ j′1 ≤ j′2 ≤ · · · ≤ j′p < jk and

ai−q,j′q = 0 (q = 1, 2, . . . , p).

Thus the claim follows by Lemma 10.

3. ik−1 < i < ik for some k ∈ {2, 3, . . . , t} with jk−1 < jk:

By construction of S there are column indices j′1, j
′
2, . . . , j

′
p, where p =

ik − i, such that

j ≤ j′1 ≤ j′2 ≤ . . . ≤ j′p < jk and

ai+q,j′q = 0 (q = 1, 2, . . . , p).

Thus the claim follows by Lemma 10.
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But now we can concatenate P0 and P1 to obtain a (0, (ik, jk))−path P

in
−→
G with δ(P ) > aik,jk

, in contradiction to (ik, jk) ∈ V2. This proves
α1(i, j) = ai,j. In addition, concatenating the paths (0, (i, 1), (i, 2), . . . , (i, j)),
P1 and a ((ik, jk), 1)−path of maximal length yields α(i, j) = c(A) and thus
also β1(i, j) = α1(i, j) by Lemma 9.

Now we want to prove that for (i, j) ∈ T the horizontal (0, (i, j))−path is
still maximal with respect to A′. We need the following necessary condition
for β1(i, j) > ai,j.

Lemma 13. Suppose β1(i, j) > ai,j and Q is a (0, (i, j))−path in
−→
H with

δ0(Q) = β1(i, j). Then there exists a vertex (i′, j′) ∈ V1 such that either

• j′ = 1 and ((i′, 1), (i′, 2)) is an edge of Q or

• 1 < j′ < n and ((i′, j′ − 1), (i′, j′)), ((i′, j′), (i′, j′ + 1) are edges of Q.

If in addition β(i, j) = c(A) then we can choose (i′, j′) even in V2.

Proof. Let Q be a (0, (i, j))−path with δ0(Q) = β1(i, j) and assume there
is no such vertex in V1. We show δ0(Q) = ai,j which gives the desired
contradiction. Clearly, δ0(Q) ≥ ai,j. The first edge of Q is of the form
(0, (i′, 1)) and has length ai′,1. So we may assume that Q has more than one
edge and proceed by induction on the number of edges of an initial subpath
of Q.

Case 1: The last edge of Q is in E
(3)
0 ∪ E

(4)
0 .

W.l.o.g. the last edge is ((i− 1, j), (i, j)) with length −ai−1,j. Since by
induction δ0(Q \ {(i, j)}) = ai−1,j, we obtain δ0(Q) = 0 ≤ ai,j.

Case 2: The last edge of Q is in E
(2)
0 , and the second last edge is in E

(3)
0 ∪

E
(4)
0 . W.l.o.g. the last two edges of Q are ((i − 1, j − 1), (i, j −

1)) and ((i, j − 1), (i, j)). By induction the length of the (0, (i −
1, j − 1))−subpath of Q is ai−1,j−1. Thus the length of the (0, (i, j −
1))−subpath is 0 and by maximality of Q follows ai,j−1 = 0, hence
δ0(Q) = ai,j.

Case 3: The last two edges of Q are in E
(1)
0 ∪ E

(2)
0 .

By induction the (0, (i, j − 1))−subpath of Q has length ai,j−1. By
maximality of Q this implies di,j′ ≥ 0 for all j′, 1 ≤ j′ ≤ j − 1. Now
di,j ≥ 0, since otherwise (i, j − 1) is a vertex in V1 that fulfills the
conditions of the lemma. Thus δ0(Q) = ai,j.
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Now suppose β(i, j) = c(A). Then we can complete Q to a (0, 1)−path Q′ of

length c(A). Let P be the corresponding (0, 1)−path in
−→
G , and let (i′, j′) ∈

V1 be the first vertex on Q that has the claimed properties. Then (i′, j′) ∈ P
and the (0, (i′, j′))−subpath of P has length ai′,j′ , that is (i′, j′) ∈ V2.

Lemma 14. For (i, j) ∈ T we have β′1(i, j) = α′1(i, j) = a′ij.

Proof. Again trivially,

β′1(i, j) ≥ α′1(i, j) ≥ a′i,j.

Let (i, j) ∈ T and assume β′1(i, j) > a′i,j. In particular, j > 1 since obviously

β′1(i, 1) = a′i,1 for all i ∈ [m]. There is a (0, (i, j))−path Q in
−→
H with

δ′0(Q) = β′1(i, j) > a′i,j.

W.l.o.g. we may assume that (i, j) is the first counterexample to the lemma
on Q, i.e.

β′1(i0, j0) = a′i0,j0
for all (i0, j0) ∈ (Q \ {(i, j)}) ∩ T.

Case 1: (Q \ {(i, j)}) ∩ T = ∅.
Let e be the last edge of Q. Then δ0(e1) = δ′0(e1) for all edges e1 6= e
of Q.

Case 1.1: e ∈ E
(2)
0 .

Then δ0(e) = δ′0(e)+1, hence δ0(Q) = δ′0(Q)+1, and consequently
(using Lemma 12),

β′1(i, j) = δ0(Q)− 1 ≤ β1(i, j)− 1 = a′i,j.

Case 1.2: e ∈ E
(3)
0 ∪ E

(4)
0 .

W.l.o.g. e = ((i − 1, j), (i, j)) and δ0(e) = δ′0(e) = −ai−1,j, and
thus

δ0(Q) = δ′0(Q) = β′1(i, j).

Assume δ0(Q) = β1(i, j) = ai,j. Then δ0(Q) > 0, and thus

δ0(Q \ {(i, j)}) > ai−1,j.

By Lemma 12, β(i, j) = α(i, j) = c(A) and consequently by
Lemma 13, Q \ {(i, j)} contains a vertex (i0, j0) ∈ V2 ⊆ T . This
is a contradiction and we conclude

β′1(i, j) = δ0(Q) < β1(i, j) = ai,j,

and thus β′1(i, j) = a′i,j.
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Case 2: (Q \ {(i, j)}) ∩ T 6= ∅.
Let (i0, j0) be the last vertex on Q \ {(i, j)} that is in T and denote by
Q1 and Q2 the (0, (i0, j0))−subpath and the ((i0, j0), (i, j))−subpath of
Q, respectively. By assumption δ′0(Q1) = a′i0,j0

, and so w.l.o.g. we may
assume Q1 = (0, (i0, 1), (i0, 2), . . . , (i0, j0)). We denote the edges of Q2

by e1, e2, . . . , ep. For p = 1 we obtain

δ′0(Q) = δ′0(Q1)− a′i0,j0
= 0 if e1 ∈ E

(3)
0 ∪ E

(4)
0 and

δ′0(Q) = δ′0(Q1) + max{0, d′i,j} if e1 ∈ E
(2)
0 .

Since e1 ∈ E
(2)
0 implies (i, j), (i, j − 1) ∈ T and thus d′ij = di,j ≥ 0

(Lemma 12), we obtain δ′0(Q) ≤ a′i,j and consequently β′1(i, j) = a′i,j.
So let p > 1. Then

δ′0(ei) = δ0(ei) (2 ≤ i ≤ p− 1),

δ′0(e1) =


δ0(e1) + 1 if e1 ∈ E

(3)
0 ∪ E

(4)
0 ,

δ0(e1) + 1 if e1 ∈ E
(2)
0 and di0,j0+1 ≥ 0,

δ0(e1) if e1 ∈ E
(2)
0 and di0,j0+1 < 0 and

δ′0(ep) =

{
δ0(ep) if ep ∈ E

(3)
0 ∪ E

(4)
0 ,

δ0(ep)− 1 if ep ∈ E
(2)
0 .

Case 2.1: δ′0(Q2) ≤ δ0(Q2).

δ′0(Q) = δ′0(Q1) + δ′0(Q2) ≤ a′i0,j0
+ δ0(Q2) < δ0(Q) implies

β′1(i, j) < β1(i, j) = ai,j,

and thus β′1(i, j) = a′i,j.

Case 2.2: δ′0(Q2) = δ0(Q2) + 1.

In this case δ′0(Q) = δ0(Q) and ep ∈ E
(3)
0 ∪ E

(4)
0 , w.l.o.g. e =

((i − 1, j), (i, j)) with length −ai−1,j. Assume δ0(Q) = β1(i, j).
Then δ0(Q) > 0 and thus

β1(i− 1, j) > ai−1,j.

By Lemma 12, β(i, j) = α(i, j) = c(A), and by Lemma 13 there is
a vertex (i1, j1) ∈ V2 such that Q contains the edge ((i1, j1), (i1, j1+
1)). Now δ′0(Q2) = δ0(Q2) + 1 is possible only if

e1 ∈ E
(3)
0 ∪ E

(4)
0 or (e1 ∈ E

(2)
0 and di0,j0+1 ≥ 0).
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0

(i0,j0)

(i,j)
0

(i0,j0)

(i,j)

a) b)
(i1,j1) (i1,j1)

Figure 19: Paths Q as in Case 2.2. a) e1 ∈ E
(3)
0 ∪ E

(4)
0 , b) e1 ∈

E
(2)
0 and di0,j0+1 ≥ 0.

Hence, using di0,j′ ≥ 0 for 1 ≤ j′ ≤ j0, (i1, j1) 6∈ Q1 and we obtain
the contradiction

(i1, j1) ∈ (Q \ {(i, j), (i0, j0)}) ∩ V2.

Thus δ′0(Q) = δ0(Q) < β1(i, j) = ai,j, and so β′1(i, j) = a′i,j.

Now we are prepared for the final step.

Lemma 15. c(A′) ≤ c(A)− 1.

Proof. Let Q be a (0, 1)−path in
−→
H with δ0(Q) = c(A′) and let (i0, j0) be

the last vertex on Q that is in T . We denote the (0, (i0, j0))−subpath and
the ((i0, j0), 1)−subpath of Q by Q1 and Q2, respectively. By Lemmas 12
and 14,

β1(i0, j0) = ai0,j0 = a′i0,j0
+ 1 = β′1(i0, j0) + 1,

and w.l.o.g. we may assume Q1 = (0, (i0, 1), (i0, 2), . . . , (i0, j0)). For the first
edge e0 of Q2 we have δ0(e0) = δ′0(e0) or δ0(e0) = δ′0(e0)− 1, and for all edges
e 6= e0 of Q2, δ0(e) = δ′0(e).

Case 1: δ0(e0) = δ′0(e0).

δ0(Q) = δ0(Q1) + δ0(Q2) = δ′0(Q1) + 1 + δ′0(Q2)

= δ′0(Q) + 1 = c(A′) + 1,

and thus c(A) ≥ c(A′) + 1.

Case 2: δ0(e0) = δ′0(e0)− 1.

By the same argument as in the first case we only get

δ0(Q) = c(A′).
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Now assume δ0(Q2) = α2(i0, j0). From

α(i0, j0) = c(A) and α1(i0, j0) = ai0,j0

we deduce δ0(Q) = c(A). By Lemma 13 either Q contains an edge
((i1, j1), (i1, j1 +1)) with (i1, j1) ∈ V2 or the last edge of Q is ((i1, j1), 1)
with j1 = n and (i1, j1) ∈ V2. From δ0(e0) = δ′0(e0) − 1 follows that
either

e0 ∈ E
(3)
0 ∪ E

(4)
0 or (e0 ∈ E

(2)
0 and di0,j0+1 ≥ 0).

Hence, using di0,j′ ≥ 0 for 1 ≤ j′ ≤ j0, (i1, j1) 6∈ Q1 and we obtain the
contradiction

(Q2 \ {(i0, j0)}) ∩ V2 6= ∅.

Consequently, δ0(Q2) < α2(i0, j0) and there exists an ((i0, j0), 1)−path
Q∗

2 with δ0(Q
∗
2) > δ0(Q2). By concatenating Q1 and Q∗

2 we obtain a
(0, 1)−path Q∗ with δ0(Q

∗) > c(A′), and thus

c(A) ≥ c(A′) + 1.

Now we collect the lemmas to prove the theorem.

Proof of the theorem. The lower bound is an immedate consequence of the
Lemmas 5, 7 and 8 and duality. The existence of a segmentation with∑k

i=1 ui = c(A) is proved by induction on c(A). If c(A) = 0 then A = 0
and there is nothing to do. For c(A) > 0 we apply Algorithm 1 to construct
a segment S with c(A − S) ≤ c(A) − 1. By induction there are segments
S2, S3, . . . , Sk and positive integers u2, u3, . . . , uk such that

A− S =
k∑

i=2

uiSi and
k∑

i=2

ui = c(A− S) ≤ c(A)− 1,

and thus with S1 = S and u1 = 1,

A =
k∑

i=1

uiSi and
k∑

i=1

ui = c(A− S) + 1 ≤ c(A).
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L TNMU TNMU
(with ICC) (without ICC)

3 15.4 14.0
4 19.5 17.9
5 23.6 21.7
6 27.7 25.6
7 31.8 29.4
8 35.7 33.2
9 39.7 37.0
10 43.7 40.9
11 47.7 44.7
12 51.7 48.5
13 55.8 52.3
14 59.7 56.2
15 63.7 59.8
16 67.7 63.3

Table 1: Test results for m = n = 15.

5 Results

Table 1 shows some test results of our algorithm in comparison with the opti-
mal TNMU without ICC. The results of the third column are taken from [5].
For each row we computed segmentations for 10000 matrices with randomly
chosen entries from {0, 1, . . . , L} (uniformly distributed). On a 1.3 GHz
PC the computation for the whole table took 206 seconds. In addition we
mention that for m = n = 15 and L = 10000 the algorithm provides segmen-
tations with an average of 39823.0 monitor units, compared to 37880.2 that
are needed without ICC ([5]). With respect to time consumption the algo-
rithm is completely practicable: The segmentation of one 100× 100−matrix
takes 14 seconds.

6 Conluding remarks

An important next step to make our method applicable to real world prob-
lems is to reduce the number of segments in the segmentation, that is the k
in

A =
k∑

i=1

uiSi.
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A priori our algorithm yields a segmentation with ui = 1 for all i and thus
with c(A) segments. A rather trivial approach is to determine how often
successive calls of the algorithm yield the same segment and then merge these
segments. But the reduction of the number of segments that is achieved
by this method is not sufficient, and further research on this problem is
necessary.
Acknowledgement. I would like to thank Prof. Konrad Engel for in-
troducing the problem to me and making many helpful comments on the
presentation of the results.
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