ON THE EXISTENCE OF A PBD(30,{4,5,7,8})

MARTIN GRUTTMULLER AND KATY STRESO

ABSTRACT. In the present paper we will prove by an exhaustive search method that a
pairwise balanced design on 30 points with blocks of size 4,5,7 and exactly one block of
size 8 does not exist.

1. INTRODUCTION

Let K be a set of positive integers. Then a pairwise balanced design PBD(v, K) of
order v with block sizes from K is a pair (V, B), where V is a finite set (the point set) of
cardinality v and B is a family of subsets (called blocks) of V' which satisfy the following
properties:

(i) every pair of distinct elements of V' occurs in exactly one block of B;

(ii) if B € B, then |B| € K.
Let k be a positive integer. PBD(v, K U k*) denotes a PBD containing a block of size k.
If £ ¢ K, this indicates that there is only one block of size k£ in the PBD. We refer the
reader to [2] and [4] for undefined terms as well as a general overview of design theory.

The motivation for considering the existence question of a PBD(30, {4, 5,7, 8*}) comes
from a problem on self orthogonal Latin Squares. A self orthogonal Latin Square £ of
order n (short SOLS[n]) is a n x n square whose elements from Z,, fulfill the following
conditions:

4 S(xlvy) 7& S(x% y) and S(.T, yl) 7& ’S(xvyZ) for all T,T1,%2,Y,Y1,Y2 € Zna
® (2(331, yl)a S(yla 1‘1)) 7é ('8(372, y2)7 'S(yQ: .732)) for all Z1,%2,Y1,Y2 € Lo,

Already Brayton, Coppersmith and Hoffman [3] were able to prove that SOLS[v] exist
if and only if v # 2,3,6. Drake and Lenz [7] showed that the existence of a PBD(v, L)
with block sizes k from L := N\ {2, 3,6} implies the existence of an SOLS[v] with sub-
SOLS of order k. This is one reason why the research on PBD(v, L) with L = N\ {2,3,6}
attracted the interest of design theorists.

Drake and Larson [5] proved the existence of PBD(v, L) for all v except v = 30. Set-
tling the case v = 30 would complete the determination of the essential elements of the
PBD-closed set L. In a research Drake and Larson [6] worked on conditions for the
existence of PBD(30, K), K C L and showed that K has to be a subset of {4,5,7,8}.
Furthermore, they proved that the block size 8 occurs either exactly once or not at all in
a PBD(30, {4,5,7,8}). A recent investigation was described by Berg [1].

This article is restricted to PBD(30, {4,5,7,8*}), the pairwise balanced design with
30 points and exactly one block of size 8. In Section 2 we will briefly present the most
important results from [6] that lead to the prestructure of a PBD(30, {4,5,7,8"}), which
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FIGURE 1. Prestructure of a PBD(30, {4, 5,7,8*}) (from [6])

provides the foundation for the following work. In Section 3 it will be shown that the
existence of a PBD(30, {4,5,7,8*}) is equivalent to the existence of a certain 16-tupel
of permutations of the numbers 1,2,...,7. This relation is exploited for an exhaustive
search technique in Section 4 that proves the nonexistence of a PBD(30, {4, 5,7, 8"}).

2. PRELIMINARIES

In this section, we cite results from Drake and Larson [6] and define the terminology
which will be used in the sequel. Throughout Section 2 we assume the existence of a
PBD(30, {4,5,7,8*}), say X.

A block of size k is said to be a k-block. Let b, denote the number of k-blocks in .
Then (b, b7, bs, bs) is called the block type of ¥.. A point z from ¥ has point type 847°5°4¢
if x is contained in exactly a 8-blocks, b 7-blocks, ¢ 5-blocks and d 4-blocks.

Drake and Larson proved there is only one possible block type for 3, namely
(1,1,14,41), and that ¥ contains one point o of type 87*5'4%, two points pi, ps of type
81705%42, five points ps, pa, . . ., pr of type 817°548 six points q1, ¢o, . . ., g of type 8°715245,
four points 1,2, 3, 4 of type 8°7°5%4% and twelve points 5,6, ..., 16 of type 8°7°5247. The
blocks that pass through the point o are denoted by E (8-block), S (7-block), F' (5-block)
and Gy, Gq, G5, Gy (4-blocks). In ¥ there have to be exactly three 4-blocks, say Iy, I, I3,
which are disjoint from E' U S and partition the set {5,6,...,16}. All these blocks, which
we call the prestructure of ¥, and their incidences (determined by Drake and Larson)
are exhibited in Figure 1. For further reference to this structure we define a matrix

A= (Aij)i:l,...,lG;j:l,...,lG by
A — { 1, if {4,j} is a subset of one of the blocks F, I, I, I3, G1,Gs, G3, Gy;
1] O,

otherwise.
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For convenience we use the notation P = {p1,ps,...,p7}, @ = {¢1,92,---,46}, Z =
{1,2,3,4}, Y ={5,6,...,16} and V ={o} UPUQU ZUY.

Drake and Larson also found restrictions on the remaining 5-blocks and to the points
of type 8°7°5%43. Each of the eight 5-blocks through p;, p, intersects Z in a single point,
while the five 5-blocks through ps, ps, ..., p7 intersect Z in two points.

3. NECESSARY CONDITIONS FOR THE EXISTENCE OF A PBD(30,{4,5,7,8%})

In this section, we investigate the equivalence of a PBD(30, {4,5,7,8*}) and a tupel of
permutations. Let S; be the set of all permutations of the elements 1,2,...,7. The basic
idea (see Streso [9]) is that every point from Z UY lies on exactly seven of the missing
blocks, each block containing one of the seven elements from P and containing either one
of the six elements from () or missing the block S.

Theorem 3.1. There exists a PBD(30,{4,5,7,8%}) if and only if there exists a tupel
= (m, o, ..., M) (M € S7) such that the following conditions are all satisfied
(1) ‘{]{I : ’/TZ(]{J) = ’/Tj(li‘),k‘ € {1,2, .. ,7}}| =1- Aij foralli,je {1,2, ceey 16},Z #74;
(ii) the 7 x 7 matriz M given by

Mij = |{k : m (i) = j, k € {1,2,...,16}}|

is one of the following 3 matrices:

(3 333220 3 333 22 0\ 3 33322
3333220 3332320 3 32233
2222323 2223223 2 232 2 2

Mi=12 2 2 2 3 2 3|,Ma=1|2 222 3 23|, Ms=1222 3 2 2
2 22 2233 2222 233 2 22 2 3 2
22222 33 22222 33 22 2 2 2 3

\2 2 2 2 2 2 4) \2 2 2 2 2 2 4) \2 2 2 2 2 2

Proof. Assume that there exists a tupel 7 that satisfies conditions (i) and (ii). Define

blocks as follows: B;; = {pi,¢;} U{k : m(i) = j} fori =1,2,...,7;5 =1,2,...,6 and
B, = {p}U{k : m(l) =7} for I = 3,4,...,7. We claim that these 47 blocks together
with the blocks from the prestructure form the family B of a PBD. Indeed, condition (i)
ensures that every pair of points from Z UY occurs either in one of the blocks B;;, B; or
in a block from the prestructure. Every pair of points (z,p) from Z x P or (z,q) from
Z x @ occurs in B;j, By since 7, is a permutation from S7. Furthermore, since M is one
of My, My, M3 every pair of points from P x () occurs in some B;; and the size of a block
B;j or By is either 4 or 5. Thus, (V, B) is the desired PBD(30,{4, 5,7, 8*}).

Now assume that ¥ = (V,B) is a PBD(30, {4,5,7,8*}). Let B%* € B be the unique
block containing both p; and £ and define for £k = 1,...,16 a permutation 7 by

. 7 ifB*FNQ=10
1 (1) =9 . .. ’
( ) k() {] lfszﬂQ:{Qj}-
It is easy to see that the tupel 7y = (my,...,m6) satisfies condition (i) of the theorem,

since ¥ fulfills condition (i) of the PBD definition. Unfortunately, 7y, will generally not
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provide one of the desired matrices My, M, or M3. But, we will show that there exists a
PBD Y’ isomorphic to X that yields one of M;, M, or Ms.

Let the points in ¥ be labeled with o, p1,...,p7,¢1,...,¢¢,1,...,16 such that the point
types and prestructure incidences are as in Section 2 and in Figure 1. Moreover, let p; be
the unique point of type 8'7°5'4% whose 5-block does not intersect the 7-block S, and let
Qi ={qx : 3B € Bwith {p;,qs} C Band |B|=5}fori=1,...,7and P; = {p,: 3B € B
with {px,¢;} C B and |B| =5} for j = 1,...,6. We define in each of the three possible
cases (a) |Q1NQ:2| =4, (b) |[@Q1NQ2| =3, (¢) |@1NQ2| = 2 a bijective function ¢ : V — V
that will yield the isomorphism.

Let ¢ be the identity on the subset {o,pi,p2,p7,1,...,16} and, with the notation
o(X) ={¢(z) : x € X}, let in case (a) ¢(Q1) = {q1,..., ¢}, ¢(¢z) = ¢5 and (qy) = ¢s
where Q\ Q1 = {¢z, ¢y}, ©(Ps) = {p3, pa}, ©(Py) = {ps,ps}; let in case (b) p(Q1 N Q2) =
{g1, 02, 33}, 0(Q1\ Q2 = {q:}) = {aa}, p(Q2\ Q1 = {gy}) = {gs}, (@ \ (@1 UQ2) =
{@.}) = {as}, (P \ (1)) = {pa}, @B, \ {p2}) = {pa}, @(P.) = {pspo}; while in
case (c) let the bijection ¢ be defined such that ¢(Q1 N Q2) = {q1,%}, ¢(gw) = g¢s,
©(gz) = 1, ©(qy) = G5, ©(¢.) = g5 where Q1 \ Q2 = {qu, ¢z} and Q2 \ Q1 = {gy, ¢},
e(Pu\{p1}) = {5}, 0(Po\ {p1}) = {pa}, 0(P, \ {p2}) = o5} 0(P: \ {p}) = {s}-

Now ¥/ = (V, B') with B' = {p(B) : B € B} is also a PBD(30, {4, 5,7,8*}). If we define
for 3 a tupel of permutations 7y as in (1), it is easy to check that 7y satisfies condition
(i) and (ii) of the theorem, since X' fulfills the conditions of the PBD definition. This
completes the proof. O

4. EXHAUSTIVE SEARCH METHOD

In this section, we describe the way in which an exhaustive search technique (back-
tracking) was applied to search for a PBD(30, {4, 5,7,8*}). We do this by systematically
building up feasible partial tupel. For more information on search techniques used in
design theory see for example [8].

We call a tupel (my,79,...,m,) of length m a feasible tupel with respect to M, (x €
{1,2,3}) if

(i) {k:m(k) =mj(k),k€{1,2,...,7}} =1—A;; forall 4,5 € {1,2,...,m},i # j;
(ii) for the 7 x 7 matrix M given by
Mij = |{k : ﬂ-k:(i) = ]ak € {172a s am}}|
M S Mz hOldS, i.e. MZ] S (Mm)m for Z,] € {]_, ceey 7}
The backtracking algorithm is now given below.

Backtracking algorithm to find a feasible tupel of length 16

1. procedure Search(m,(m1, o, ..., Tm),My)

2. begin

3 if m =16

4. then print(m, 7o, ..., m6); STOP

5 else

6 for each 7,1 € S7 do

7 if (71,7, ..., Tmy1) is a feasible tupel with respect to M,
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8. then Search(m + 1,(m, T2, ..., Tmy1),My)
9. end

We made improvements in execution time by rejecting feasible tupel which are isomor-
phic to feasible tupel that have been generated earlier in the search. We remark that the
results from Section 2 concerning 5-blocks and points from Z are not used so far and that
in the proof of Theorem 3.1 there is some degree of freedom left to choose the bijection
@. This allows us to state the following lemma:

Lemma 4.1. There exists a PBD(30,{4,5,7,8*}) if and only if there exists a tupel m =
(1,7, ..., me) (m € S7) such that the conditions (i) and (ii) from Theorem 3.1 and the
following conditions are all satisfied

(111) {7'('1(k),71'2(]€),71’3(]€),7T4(k)} = {_] € {1,,6} : Mkj = 3} for k = 1,2,
{m1(k), mo(k), m3(k), ma(k)} \ {j € {1,...,6} : My; = 3} =2 for k = 3,4,5,6
and [{m1(7), m2(7), m3(7), ma ()} \ {7} = 2;

(iv) (a) if M = M, then m(3) < m(4) and 7 (5) < m(6), (b) if M = My, then
m1(5) < m1(6);

(v) let m (i) = 1,m(5) = 2,m(k) = 3 and m(£) = 4, (a) if M = My, theni < j <
k<t (b)if M =DM, theni<j <k, (c)if M = Ms, theni < j;

(Vi) 71 <iex T2, T3 <iex Ta, T5 <iez To, Where <o, denotes the lexicographic ordering.

Proof. We only need to show that the existence of a PBD(30, {4,5,7,8*}) X implies that
there is a tupel 7 that satisfies all conditions. With regard of the proof of Theorem 3.1
we may assume that 7y satisfies (i) and (ii).

Let £k = 1 or 2. Every 5-block containing p, contains exactly one point from S and
exactly one point from Z. For each such block {py, ¢;, 2, . . .} we have My; = 3 (since it is a
5-block) and 7, (k) = j with z € Z = {1, 2,3,4}. Therefore, {m(k), mo(k), m3(k), m4(k)} =
{j €{1,...,6} : My; = 3}. Now, let k£ = 3,4,5 or 6. The 5-block containing pj contains
exactly one point ¢; from S and exactly two points 21, 2o from Z. Thus, M;; = 3 and
7, (k) = 7., (k) = j. All pairs of points from Z are covered by 5-blocks and, therefore,
{m1(k), ma(k), m3(k), m4(k)} \ {j}| = 2. Now, by the choice of p; in the proof of Theorem
3.1 the 5-block containing p; misses S and contains exactly two points 21, zo from Z. Thus,
Ty (k) = 7o (k) = 7 and {m1(7), (7)), w3(7), m4(7)} \ {7} contains exactly two elements
proving claim (iii).

For the proof of (iv) and (v) we consider only case (a) M = M;. The arguments in cases
(b) and (c) are similar. In the proof of Theorem 3.1 we defined ¢ to be a bijection which
maps P, — {ps,psa} and P, — {ps,ps}. Obviously, we can redefine ¢ on the sets Py, P,
such that 71(3) < m1(4) and 71(5) < 7m1(6). Also, ¢ bijectively mapping @1 — {q1,---, 4}
can be defined such that i < j < k < £if m(3) = 1, m(j) = 2,m(k) = 3,m1(¢£) = 4. This
redefinition will not affect conditions (i),(ii) and (iii).

Finally, for the proof of (vi) we redefine ¢ on the set Z UY. If m; >, 7 define
e1(1) = 2,01(2) = 1, 01(5) = 7,01(6) = 8,91(7) = 5,01(8) = 6,¢1(11) = 12,¢:(12) =
11, 1(13) = 14, ¢1(14) = 13, ¢1(15) = 16, ¢;(16) = 15 and ¢ (z) = z for z = 3,4, 9, 10,
otherwise define ¢; to be the identity on ZU Y. If m3 >, 74 define po(3) =4, p2(4) = 3
and @o(x) =z for x € (ZUY)\ {3,4}, otherwise define ¢y to be the identity on Z U Y.
If 5 >ep w6 define @3(5) =7, 3(6) = 8, p3(7) = 5, p3(8) = 6, 3(9) = 10, ¢3(10) =9 and
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p3(x) =z forx € (ZUY)\ {5,6,7,8,9,10}, otherwise define @3 to be the identity on
ZUY. Now, define ¢ on ZUY by ¢ = @1 0@y 0 p3. Again, it is simple to check that this
redefinition proves claim (vi) and will not affect conditions (i),. . .,(v). O

We call a feasible tupel (my, 7o, ..., T,) with respect to M, a proper feasible tupel if

(i) Ui {mi(k)} € {5 € {1,...,6} : My; = 3} for n = min{4,m} and k = 1,2,
| Uiz {mi(R)}\ {7 € {1,...,6} : My; =3} < 2for k =3,4,5,6 and | U;_; {mi(7) }\
{7}| <€ 2, with equality in each case if m > 4;

(iv) (a) x = 1 implies m1(3) < 71 (4) and 71(5) < m1(6), (b) z = 2 implies 71 (5) < 71(6);

(v) (a) z =1 impliesi < j < k < £, (b) x = 2 implies i < j < k, (¢) x = 3 implies
i < j where (i) = 1,m1(j) = 2, m1(k) = 3 and 7, (¢) = 4;

(vi) m > 2 implies m <yep T2, m > 4 implies 13 <;ep 4 and m > 6 implies 75 <y 7.

Now replace line 7. of the algorithm above by:

7. if (71,79, ..., Tmy1) is a proper feasible tupel with respect to M,

Running the improved algorithm with Search(0,(),M;), Search(0,(),M,) and
Search(0,(),M3) in two independent implementations did not reveal a proper feasible tupel
of length 16 and thus we conclude:

Theorem 4.2. A PBD(30,{4,5,7,8*}) does not ezist.

We remark that the search without applying Lemma 4.1 would have taken years. With
the improved algorithm we found 340 proper feasible tupel of length four in Case (a)
which are checked to be non completable in 1 hour on a 650 MHz PC. In Cases (b) and
(c) we considered 765 and 3822 proper feasible tupel of length four in 2 and 11 hours,
respectively.

5. CONCLUSIONS

We can conclude that a PBD(30, {4, 5,7,8*}) does not exist, but we cannot say anything
about the existence of PBD(30,{4,5,7,8}) in general. This means it is necessary to take
a closer look at PBD(30, {4, 5,7}). This has been done, in part, by the second author and
shall be presented briefly.

Drake and Larson [6] showed that the block type (b7, bs,bs) of a PBD(30,{4,5,7}) is
one of the following: (3, 24, 22), (3, 15, 37), (1, 27, 24), (1, 24, 29) or (1, 15, 44). Then a
PBD(30, {4, 5, 7}) with three 7-blocks can have two different basic structures: the 7-blocks
either meet all in one point or they intersect in pairs in three different points. The latter
case has been studied closer so that the prestructure looks as shown in Figure 2.

The points a,b, s = t¢ have point type 72524% and 1,2,...,12 have type 7°5°4% or
795247, The points p;, s; and t; (i = 1,...,5) have either type 715245 or 7'5%4'. One
can also show that each point on a 7-block can be connected by a single 4- or 5-block
to none, one or two points on the other 7-blocks. In order to fill in the blocks missing
in Figure 2 one might try to complete Table 1 with each entry being a pair (i, j) where
i,7€{0,1,...,6}.  So, an entry (i, j) in row r, and column ¢ for example corresponds
to a block containing s;,t;, 74, ¢ (if ¢,5 # 0). The last two rows are necessary for those
blocks which do not intersect R. If the filled table satisfies some obvious conditions it is
equivalent to a PBD(30,{4, 5, 7}). For a more detailed description see [9]. Unfortunately
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FIGURE 2. Prestructure of a PBD(30, {4, 5, 7}) with three 7-blocks inter-
secting in pairs in three points (from [9])

1 2 3 4 5 6 7 8 9 10 11 12
a|(1,0) (1,0) (1,0) (2,0) (20) (3,00 (3,0) (40) (40) (5,00 (50) (5,0)

™
T2
T3
Ty
Ts

TABLE 1. 4- and 5-blocks in a PBD(30,{4,5,7}) with three 7-blocks in-
tersecting in pairs in three points (from [9])

an exhaustive search with this approach did not lead to a result because of the time
consuming complexity of this structure. However, the idea might be useful with additional
conditions or as a model for different structures of a PBD(30, {4, 5, 7}).
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