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Abstract

In this paper we study the spectrum of super–simple (v, 5, 2)–
designs. We show that a super–simple (v, 5, 2)–design exists if and
only if v ≡ 1 or 5 (mod 10), v 6= 5, 15, except possibly when v ∈
{75, 95, 115, 135, 195, 215, 231, 285, 365, 385, 515}.

1 Introduction and Motivation

A (v, k, λ)–design is a pair (V,B), where V is a v–element set of points and
B is a collection of k–element subsets of V called blocks such that every pair
of points is in exactly λ blocks. A (v, k, λ)–design (V,B) is super–simple if
|B1 ∩ B2| ≤ 2 for all blocks B1, B2 ∈ B, B1 6= B2. In this article we are
interested in super–simple (v, 5, 2)–designs.

The concept of super-simple designs was introduced by Gronau and
Mullin in [7]. In the papers by Adams, Bryant and Khodkar [3], Khod-
kar [13] and Chen [5] the spectrum of super-simple (v, 4, λ)–designs was
determined for 2 ≤ λ ≤ 4. Hartmann [9], [12] and [11] proved that the usual
necessary conditions are asymptotically sufficient for arbitrary k and λ.

It seems natural to ask for the existence of (v, k, λ)–designs in which the
blocks are not only different (such designs are called simple), but are also ”as
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far apart from each other as possible”, i.e. any 2 blocks share at most two
points. Furthermore super-simple designs appear as suborthogonal double
covers of special graphs, see Gronau, et al. [8].

We will frequently use Wilson’s fundamental construction in which a
primary ingredient is the group divisible design. A group divisible design
(GDD) is a triple (V,G,B), where V is a set of points, G = [G1, G2, ..., GN ]
is a partition of V into subsets which we call the groups and B is a collection
of subsets of V such that every pair of points is either in a group or in exactly
λ blocks. The type of a GDD is the multiset {|G1|, |G2|, . . . , |GN |} of group
sizes. It is our custom to write the type of a GDD as gn1

1 gn2
2 · · · gnm

m if there
are ni groups of size gi, i = 1, 2, . . . ,m.

If K is the set of block sizes, (i.e. |B| ∈ K, for all B ∈ B) then we
say the design is a (K, λ)–GDD If K = {k}, we write (k, λ)–GDD instead
of ({k}, λ)–GDD. When λ = 1 it is omitted. Thus a k–GDD is a (k, 1)–
GDD. A special type of GDD is the transversal design. A transversal design
TD(k, g) is a k–GDD of type gk.

A (v, 5, 2)–design or (k, 2)–GDD (X,B) is super–simple if |B1 ∩B2| ≤ 2
for all blocks B1, B2 ∈ B, B1 6= B2.

The necessary conditions for the existence of a (v, 5, 2)–design is that
v ≡ 1 or 5 mod 10. It is well-known that there is no (15, 5, 2)–design. For
nontrivial (v > 1) super-simple (v, k, λ)–designs we have v ≥ λ(k − 2) + 2,
see [7]. Hence, the necessary condition for the existence of a super-simple
(v, 5, 2)–design is that v ≡ 1 or 5 mod 10 and v 6= 5, 15. In this article
we show that this necessary condition is sufficient, except possibly when
v ∈ {75, 95, 115, 135, 195, 215, 231, 285, 365, 385, 515}.

2 Ingredients

In this section, we give some direct constructions of super–simple designs
that will be used in the recursive constructions given in section 3.

Lemma 2.1 There exists a super–simple (5, 2)–GDD of type v5 when v 6≡ 2
(mod 4).

Proof: Let v = pr1
1 pr2

2 . . . prn
n be the usual factorization of v into primes.

Since v 6≡ 2 (mod 4) we have pri
i ≥ 3 for any prime pi. From the existence

of a generalized Hadamard matrix of order pri
i and the product construction

of TDs, see Hartmann [10], there exists a super–simple (5, 2)–GDD of type
v5 when v 6≡ 2 (mod 4).
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Given a subgroup G ≤ Sym(X), the set–system generated by the base
blocks D ⊆ P(X) is the collection of blocks given by

DG =
⋃

B∈D
BG.

An orbit BG is said to be a short orbit of the group G, if |BG| < |G|.
Theorem 2.2 Let G be an Abelian group, and D be a set of base blocks
generating a (k, 1)–GDD of type gu with no short orbits. Then, D ∪ −D
generates a super–simple (k, 2)–GDD of type gu.

Proof: Obviously D∪−D generates a (k, 2)–GDD of type gu, we need only
show that it is super–simple. Any two blocks from DG intersect in at most
one point, since D generates a (k, 1)–GDD of type gu. Also, any two blocks
from (−D)G intersect in at most one point. Thus, if two blocks A and B
intersect in 3 or more points, then we may assume that A ∈ D, B ∈ (−D)G

and −B ∈ (D)G. Then −B + g = D for some g ∈ G and D ∈ D. Suppose
x, y, z ∈ A ∩B and x 6= y 6= z 6= x. Then −x + g,−y + g,−z + g ∈ D and

{x, y} = {(−x + g) + x + y − g, (−y + g) + x + y − g} ⊆ D + (x + y − g).

Hence A = D+(x+y−g) = −B+(x+y), because distinct blocks in DG meet
in at most one point. Similarly, A = −B + (x + z) and A = −B + (y + z).
But, then B + (y − z) = B contrary to the assumption that any base block
generates |G| blocks.

We can obtain many super–simple (v, 5, 2)–designs in this manner, e.g.
the following

Lemma 2.3 There exists a super–simple (v, 5, 2)–design, if v = 21, 41, 61.

Proof: There are base blocks that generate a cyclic (v, 5, 1)–design without
using any short orbits for v = 21, 41, 61, see Abel [1].

Lemma 2.4 There exists a super–simple (5,2)-GDD of type 46.

Proof: A super–simple (5,2)-GDD of type 46 on V = Z24 is obtained by
developing the two base blocks

{0, 1, 2, 4, 17}, and {0, 3, 8, 13, 17}
modulo 24. The groups are: {0, 6, 12, 18}+ x : x = 0, 1, 2, . . . , 5.
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Lemma 2.5 There exists a super–simple (5, 2)-GDD of type 10n when n =
9, 13, 17.

Proof: There exists a cyclic 5-GDD of type 10n, with no short orbits, for
each n = 9, 13, 17, see Yin et al. [16]. Apply Theorem 2.2.

Lemma 2.6 There exists a super–simple (5,2)-GDD of type 4521.

Proof: Let V = Z20 ∪ {∞1,∞2}. The groups are {0, 1, 2, 3}, {4, 5, 6, 7},
{8, 9, 10, 11}, {12, 13, 14, 15}, {16, 17, 18, 19}, {∞1,∞2}. Develop the 8 base
blocks:

{0, 4, 9, 14, 17}, {0, 5, 9, 12, 19}, {0, 6, 11, 15, 18}, {1, 7, 10, 14, 19},
{∞1, 0, 6, 10, 12}, {∞1, 1, 7, 11, 13}, {∞2, 2, 5, 9, 14}, {∞2, 3, 4, 8, 15}

with the automorphism X 7→ X +4 to obtain a super–simple (5,2)–GDD
of type 4521.

Lemma 2.7 There exists a super–simple (5,2)-GDD of type 211.

Proof: Let V = Z22 and the groups are

{i, 11 + i} : i = 0, 1, 2, ..., 10

Develop the 2 base blocks:

{0, 1, 2, 5, 10}, and {0, 2, 6, 9, 16}
modulo 22 to obtain a super–simple (5,2)–GDD of type 211.

Lemma 2.8 There exists a super–simple (v, 5, 2)–design when v = 25, 45, 65.

Proof:
If v = 25, then let V = Z25. The 3 base blocks are

{0, 2, 8, 10, 16}, {0, 1, 5, 19, 23} and {0, 1, 2, 3, 4}
with the group of order 50 generated by the 2 permutations

(0,1,2,3,4)(5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24)
(1,5)(2,10)(3,15)(4,20)(7,11)(8,16)(9,21)(13,17)(14,22)(19,23).
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The first two base blocks have an orbit of size 25, each block is generated
twice, whereas the last base block have an orbit of size 10, each block is
generated five times. We take exactly one copy of any block and get the 60
blocks of the design.

If v = 45, then let V = {0, 1} × Z22 ∪ {∞}. The base blocks are

{(0, 0), (0, 2), (0, 3), (0, 10), (1, 3)}, {(0, 0), (1, 4), (1, 5), (1, 18), (1, 20)},
{(0, 0), (0, 1), (1, 7), (1, 10), (1, 18)}, {(0, 0), (0, 11), (0, 16), (1, 5), (1, 8)},
{(0, 0), (0, 9), (0, 13), (0, 16), (1, 11)}, {(0, 0), (1, 8), (1, 4), (1, 9), (1, 13)},
{(0, 0), (0, 20), (1, 10), (1, 12), (1, 0)}, {(0, 0), (0, 18), (0, 8), (1, 15), (1, 21)},
{(0, 0), (0, 17), (1, 1), (1, 16), (∞)}.

If v = 65, then let V = {0, 1} × Z32 ∪ {∞}. The base blocks are

{(0, 0), (0, 2), (0, 22), (0, 13), (1, 8)}, {(0, 0), (0, 19), (0, 26), (0, 31), (1, 19)},
{(0, 0), (0, 15), (0, 26), (0, 22), (1, 9)}, {(0, 0), (0, 16), (0, 24), (1, 13), (1, 14)},
{(0, 0), (0, 30), (0, 1), (1, 2), (1, 8)}, {(0, 0), (0, 18), (0, 15), (1, 11), (1, 31)},
{(0, 0), (0, 9), (1, 31), (1, 7), (1, 23)}, {(0, 0), (0, 14), (1, 17), (1, 3), (1, 24)},
{(0, 0), (0, 28), (1, 1), (1, 24), (1, 5)}, {(0, 0), (1, 4), (1, 11), (1, 26), (1, 6)},
{(0, 0), (1, 15), (1, 2), (1, 12), (1, 16)}, {(0, 0), (1, 18), (1, 20), (1, 23), (1, 29)},
{(0, 0), (0, 5), (1, 0), (1, 17), (∞)}.

A parallel class in a design is a collection of blocks that partition the
points of the design. If all the blocks can be partitioned into parallel classes
we say that the design is resolvable. An idempotent transversal design is a
transversal design with a parallel classes. An idempotent TD(k, n) exists
whenever a TD(k + 1, n) exists. Simply delete one of the groups, the blocks
that contained a fixed point in the deleted group are now a parallel class
in the new TD(k, n). A 2-parallel class in a design is a collection of blocks
that contain each point exactly twice. If all the blocks of the design can be
partitioned into 2-parallel classes we say that the design is 2-resolvable.

Lemma 2.9 There exists a super–simple (5, 2)–GDD of type 11651.

Proof: The 16 groups of size 1 are the 16 points of the super–simple
(16, 4, 2)–design exhibited in Figure 1. The 40 blocks of this design can be
partitioned into 5 2-parallel classes C1, C2, C3, C4, C5 consisting of 8 blocks
each. The remaining group consists of 5 new points x1, x2, x3, x4, x5 and we
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{0, 2, 9, 11}, {4, 6, 13, 15}, {5, 7, 12, 14}, {1, 3, 8, 10},
{0, 1, 2, 3}, {4, 9, 13, 14}, {5, 8, 11, 12}, {6, 7, 10, 15},
{0, 3, 5, 15}, {4, 8, 9, 12}, {6, 10, 11, 14}, {1, 2, 7, 13},
{0, 4, 5, 6}, {1, 8, 13, 15}, {2, 7, 11, 14}, {3, 9, 10, 12},
{0, 4, 7, 10}, {2, 5, 6, 8}, {3, 11, 12, 13}, {1, 9, 14, 15},
{0, 7, 8, 9}, {1, 5, 10, 14}, {2, 6, 12, 13}, {3, 4, 11, 15},
{0, 8, 13, 14}, {2, 10, 12, 15}, {3, 6, 7, 9}, {1, 4, 5, 11},
{0, 10, 11, 13}, {1, 4, 7, 12}, {2, 5, 9, 15}, {3, 6, 8, 14},
{0, 1, 6, 12}, {2, 3, 4, 14}, {5, 9, 10, 13}, {7, 8, 11, 15},
{0, 12, 14, 15}, {1, 6, 9, 11}, {2, 4, 8, 10}, {3, 5, 7, 13}

Figure 1: A special (16, 4, 2)–design

take as the blocks the sets A ∪ {xi}, where A ∈ Ci and i = 1, 2, 3, 4, 5. It is
easily checked that the result is a (5, 2)–GDD of type 11651.

Lemma 2.10 There exists a super–simple (v, 5, 2)–design when v = 85.

Proof: Take a super–simple (5, 2)–GDD of type 165. Add 5 new points
and construct on each 4 of the 5 groups a super–simple (5, 2)–GDD of type
11651. This GDD exists by Lemma 2.9. On the last group and 5 new points
construct a super–simple (21, 5, 2)–design, which exists by Lemma 2.3.

Lemma 2.11 There exists a super–simple (5, 2)-GDD of type 65.

Proof: A super–simple (5, 2)-GDD of type 65 on V = {0, 1, 2, 3, 4} × Z6

is obtained by developing the second coordinate of following 12 base blocks
modulo 6:

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)} {(0, 1), (1, 3), (2, 2), (3, 4), (4, 0)}
{(0, 2), (1, 0), (2, 1), (3, 5), (4, 2)} {(0, 3), (1, 1), (2, 5), (3, 4), (4, 2)}
{(0, 4), (1, 3), (2, 5), (3, 2), (4, 1)} {(0, 5), (1, 5), (2, 3), (3, 1), (4, 1)}
{(0, 0), (1, 2), (2, 3), (3, 2), (4, 3)} {(0, 1), (1, 2), (2, 4), (3, 0), (4, 5)}
{(0, 2), (1, 5), (2, 2), (3, 3), (4, 4)} {(0, 3), (1, 4), (2, 1), (3, 1), (4, 4)}
{(0, 4), (1, 1), (2, 0), (3, 3), (4, 5)} {(0, 5), (1, 4), (2, 4), (3, 5), (4, 3)}

The groups are {(i, 0), (i, 1), (i, 2), (i, 3), (i, 4), (i, 5)}, i = 0, 1, 2, 3, 4.
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Lemma 2.12 There exists a super–simple (5, 2)-GDD of type 66.

Proof: This GDD can be generated cyclicly on the point set V = Z36 by
developing the following 3 base blocks:

{0, 1, 2, 5, 15}, {0, 2, 9, 17, 25}, and {0, 3, 10, 14, 19}.

modulo 24. The groups are {0, 6, 12, 18, 24, 30}+ x : x = 0, 1, 2, . . . , 6.

Lemma 2.13 There exists a super–simple (5, 2)-GDD of type 6581.

Proof: First we generate a super–simple (4, 2)-GDD of type 65 that has a
partition into 2-parallel classes, i.e. is 2-resolvable. Let

g = (0, 1, 2, . . . , 23)(24, 25, 26)(27, 28, 29),

H = id, g8, g16 and let C be the set of 15 blocks generated by the base blocks

{5, 6, 23, 28}, {1, 3, 4, 28}, {1, 10, 20, 23}, {0, 10, 19, 24} and {0, 6, 13, 25}

under the subgroup H. Then
7⋃

i=0

Cgi

is a super–simple (4, 2)-GDD of type 56 that can be resolved into the 2–
parallel classes:

C,Cg, Cg2
, Cg3

, . . . , Cg7
.

The groups of this GDD are

{0, 4, 8, 12, 16, 20}, {1, 5, 9, 13, 17, 21}, {2, 6, 10, 14, 18, 22},
{3, 7, 11, 15, 19, 23}, {24, 25, 26, 27, 28, 29}

These are also the groups of size 6 in the desired (5, 2)-GDD of type
6581. The final group of the desired GDD consists of eight new points
x0,x1,x2,. . . , x7 and the blocks of the desired GDD are the 120 subsets of
the form A ∪ {xi} where A ∈ Cgi

and i = 0, 1, 2, . . . , 7.

Lemma 2.14 (Abel and Greig) [2] There exists a RBIBD(v, 5, 1) whenever
v ≡ 5 (mod 20) except possibly when v = 45, 225, 345, 465, 645.
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3 Recursive Construction

In this section we complete our proof of the sufficiency of the necessary con-
ditions. Our principal tool is to apply Wilson’s Fundamental Construction.
For example we have the following lemmas.

Lemma 3.1 If there is a ({5, 6}, 1)–GDD of type g1g2 · · · gN and there are
super–simple (4gi + 1, 5, 2)–designs for each i, i = 1, 2, . . . , N , then there
exists a super–simple (4

∑N
i=1 gi + 1, 5, 2)–design.

Proof: Let (V,G,B) be a ({5, 6}, 1)–GDD of type g1g2 · · · gN . Give weight
4 to all of the points. That is replace each point x ∈ V with four new
points x1, x2, x3, x4. Now replace each block B ∈ B with a super–simple
(5, 2)–GDD of type 4|B| with groups [{x1, x2, x3, x4} : x ∈ B]. These GDDs
exist by Lemmas 2.1 and 2.4. Finally add a new point ∞ to the already
chosen 4

∑N
i=1 gi points and replace each group G ∈ G, by the blocks of a

super-simple (4|G|+ 1, 5, 2)–design on the point set G ∪ {∞}. It is elemen-
tary to check that the result is a super–simple (4

∑N
i=1 gi+1, 5, 2)–design.

Lemma 3.2 If there is a resolvable (5n, 5, 1)–design, a super–simple (4n +
1, 5, 2)–design and a super–simple (4x+1, 5, 2)–design, x < 5n−1

4 , then there
exists a super–simple (4(5n + x) + 1, 5, 2)–design.

Proof: A resolvable (5n, 5, 1)–design, (V,B), has 5n−1
4 parallel classes. Let

P0, P1, P2, ..., Px be x + 1 of them. Let X = {∞1,∞2, . . . ,∞x} be a set of
x new points. We construct a ({5, 6}, 1)–GDD on V ∪ X of type 5nx1 by
taking the groups to be the blocks in P0 and the set X and the set of blocks
to be

{B ∪ {∞i} : B ∈ Pi, i = 1, 2, . . . x} ∪ {B ∈ B : B /∈ Pi, i = 0, 1, 2, . . . x}.

Now applying Lemma 3.1 and using the super-simple (21, 5, 2)–design of
Lemma 2.3 we obtain a super–simple (4(5n + x) + 1, 5, 2)–design.

We divide the problem into 4 cases according to the congruence class of
v modulo 20.

3.1 v ≡ 1 (mod 20)

In this section we settle sufficiency when v ≡ 1 (mod 20).
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Lemma 3.3 If v ≡ 1 (mod 20), then there exists a super–simple (v, 5, 2).

Proof: Let v = 20t + 1. If 1 ≤ t ≤ 3, see Lemma 2.3. If t = 4, there exists
a (81, 5, 1)–design over EA(81) with no short orbits, see Beth et al. [4], so,
applying Theorem 2.2 we obtain a super–simple (81, 5, 2)–design.

Note that the TD exists for the orders we are interested in. If 5 ≤ t ≤ 24
and t /∈ {11, 16, 17, 18, 19}, then there exists a super–simple (v, 5, 2)–design
because we may apply Theorem 2.2 to the cyclic (v, 5, 1)-BIBD with no short
orbits given in Abel [1].

For the other values of t take a TD(6, n) and remove n− x points from
the last group to obtain a ({5, 6}, 1)–GDD of type n5x1, 1 ≤ x < n. Apply
Lemma 3.1.

If t = 11, there exists a ({5, 6}, 1)–GDD of type 511, see Greig [6], and if
t = 19, we remove a point from a (96, 6, 1)–design to obtain a (6, 1)–GDD of
type 519. We again apply Lemma 3.1 to obtain super–simple (20t + 1, 5, 2)–
designs, for t = 11 and t = 19.

If 16 ≤ t ≤ 18, then choose n = 15 and x = 5, 10, 15 and apply Lemma
3.1

If t ≥ 25, then choose n = 25 + 5y for y ≥ 0 with x = 0, 5, 10, 15, 20 and
apply Lemma 3.1.

3.2 v ≡ 5 (mod 20)

We next deal with the case when v ≡ 5 (mod 20).

Lemma 3.4 If v ≡ 5 (mod 100), then there exists a super–simple (v, 5, 2)–
design.

Proof: If v ≡ 5 (mod 100), then v
5 ≡ 1 (mod 20). Thus by Lemma 3.3

there exists a super–simple (v
5 , 5, 2)–design, and by Lemma 2.1 there exists

a super–simple (5, 2)–GDD of type (v
5 )5. So we can construct an (v

5 , 5, 2)–
design on each of the groups of the GDD to obtain a super–simple (v, 5, 2)–
design.

Lemma 3.5 If v ≡ 5 (mod 20) and v 6= 5, 285, 365 and 385, then there
exists a super–simple (v, 5, 2)–design.

Proof: If v = 25, 45, 65, 85, then there exists a super–simple (v, 5, 2)–
design by Lemma 2.8 and Lemma 2.10. If v = 105, the there exists a
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super–simple (105, 5, 2)–design by Lemma 3.4. Take a TD(6, n) and remove
points in one group to obtain a ({5, 6}, 1)–GDD of type n5x1. If n ≥ 30
and n ≡ 0 (mod 5), we take k = 6, 11, 16, 21, 26 and apply Lemma 3.1
to prove that whenever v ≥ 625 and v ≡ 5 (mod 20), then there exists
a super–simple (v, 5, 2)–design. Also, using Lemma 3.1 but taking k =
6, 11, 16, 21 and n = 25 constructs a super–simple (v, 5, 2)–design for v =
525, 545, 565, 585. If v = 205, 305, 405, 505 and 605, Lemma 3.4 shows that
a super–simple (v, 5, 2)–design exists. If v = 125, 225, 325, 425, a super–
simple (v, 5, 2)–design can be shown to exist by a method similar to Lemma
3.4. The required ingredients include the super–simple (v, 5, 2)–designs for
v = 25, 45, 65, and 85 constructed in Lemma 2.8 and Lemma 2.10.

A ({5, 6}, 1)–GDD of type 66, 116, 166 and 216 can be obtained by either
taking a TD(6, n) or removing a block in a TD(6, n + 1). Apply Lemma 3.1
to obtain super–simple (v, 5, 2)–designs when v = 145, 245, 345, 445.

If v = 165, take a (5, 1)–GDD of type 410. Give weight 4 to each point
and add five new points. On each of 9 of the 10 groups union the 5 new
points Construct a super–simple (5, 2)–GDD of type 11651. Construct a
super–simple (21, 5, 2)–design on the last group and the 5 new points.

If v = 185, there exists a ({5, 6}, 1)–GDD of type 5861, see Ling [14].
Apply Lemma 3.1.

If v = 265, consider an idempotent TD(6, 11). By adding the groups
as blocks we get a pairwise balanced design with blocks of sizes 6 and 11,
having a parallel class of blocks of size 6. Thus if we interpret the blocks
of a parallel class as groups it is also a {6, 11}–GDD of type 611. Apply
Lemma 3.1.

There exist resolvable (5n, 5, 1)–designs for n = 21 by Lemma 2.14. Thus
we may apply Lemma 3.2 with x = 11 and 16 and obtain super-simple
(v, 5, 2)–designs, when v = 465 and 485.

3.3 v ≡ 11 (mod 20)

In this section we settle the case when v ≡ 11 (mod 20).

Theorem 3.6 Let q ≡ 11 (mod 20) be a prime power and let ζ ∈ Fq be a
5-th root of unity. Then the orbit of

{1, ζ, ζ2, ζ3, ζ4}
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under the special affine group

SAF(q) = {X 7→ α2X + β : α, β ∈ Fq, α 6= 0}

is a super–simple (p, 5, 2)–design.

Proof: Write q = 20k + 11 and let B be the orbit of

B = {1, ζ, ζ2, ζ3, ζ4}

under G = SAF(q), then the 2–homogeninity of SAF(q) guarantees that B is
a (q, 5, λ)–design for some λ. We know that

|B| = q(q − 1)
5 · 4 λ

and on the other-hand
|B| = |G|

|GB|
where GB is the stabilizer of B in G. Hence noting that |G| = q(q − 1)/2
we see that

λ =
10
|GB| .

If ρ is a primitive root modulo q, then we may assume ζ = ρ(q−1)/5 = ρ2+4k.
Thus ζ is a square modulo q and consequently the map X 7→ ζX ∈ SAF(q).
This map has order 5 and fixes B, so 5 divides |GB|. The order of G is odd,
so we have |GB| = 5 and thus λ = 2.

Let B1, B2 ∈ B be the two blocks containing {0, 1}. If x, y ∈ Fq are any
two other points, there is a unique f ∈ SAF(q) such that f({0, 1}) = {x, y}.

Thus the two blocks that contain {x, y} are f(B1) and f(B2). Hence,
if two blocks intersect in i ≥ 2 points then every pair of blocks intersect
in 0, 1 or i points. Suppose i > 2 and let B1 = {x1, x2, x3, x4, x5} be any
block. Then there is a unique other block B2 that contains {x1, x2}. It must
intersect B1 in i > 2 points, so B2 contains an additional point x3 of B1.
Similarly there is a unique other block B3 that contains {x4, x5} and it must
contain a third point say x3 of B1. Since B1 6= B2 we may assume x5 /∈ B2.
Similarly we may assume x1 /∈ B3. Let B4 6= B1 be the unique other block
containing {x1, x5}. But |B1 ∩ B4| = i > 2, so B4 contains another point
of B1, but there is no point that can be chosen that avoids covering a pair
more then twice. Thus i = 2, and the design is super–simple.
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Lemma 3.7 If v ≡ 11 (mod 20), v 6= 231, then there exists a super-simple
(v, 5, 2)–design.

Proof: If v = 11, 31, 71, 131, 151, 191, 211, 251, 271, 311, 331, 431, 491, 571, a
super–simple (v, 5, 2)–design exists by Theorem 3.6. If v = 51 we construct
a super–simple (51,5,2) by developing the 5 base blocks

{0, 1, 14, 31, 35}, {0, 1, 9, 23, 33}, {0, 11, 16, 18, 42},
{0, 7, 13, 36, 39} and {0, 4, 10, 12, 15}

under the the cyclic group Z51. If v = 91 or 171, then the designs exist by
Lemma 2.5 for n = 9 or 17. Take a TD(6, 5n) for n = 1 and n ≥ 3. Give
weight 4 to all points in 5 groups. Let 0 ≤ k ≤ 5

3n and give weight 4 to
2k points, weight 2 to k points and weight 0 to the last 5n − 3k points of
the last group. Applying Lemmas 2.1, 2.6 and 2.4 we get a super–simple
(5, 2)-GDD of type (20n)5(10k)1.

Applying Lemma 3.1 when k = 1, 3, 5, 7, 9, n ≥ 1 and n 6= 6 yield
super-simple (v, 5, 2)–design for all v ≡ 11 (mod 20) and v ≥ 600. For
the pairs (n, k) = (1, 1), (3, 5), (4, 1), (4, 5), (5, 1), (5, 3), (5, 5) we get the or-
ders v = 111, 351, 411, 451, 511, 531, 551. Now we modify the last construc-
tion by giving k points of the last group the weight 4 and l the weight
2, where 0 ≤ k + l ≤ 5n. Then we get super–simple (5, 2)-GDD of type
(20n)5(4k+2l)1. For the pairs (n, k, l) = (4, 17, 1), (5, 22, 1) we get the orders
v = 471, 591. Thus, we have all orders except when v = 231, 291, 371, 391.
Take a RBIBD(20n+5, 5, 1) (see Lemma 2.14) and extend the parallel classes
to obtain a 6-GDD of type 54n+1(5n)1. Give weight 4 to the points in all
groups of size 5, and weight 0, 2 or 4 to the point in the last group, as
above. This leads to a super–simple (5, 2)-GDD of type (20)4n+1(10k)1

when 10k ≤ 5. Add a new point. Construct on the groups of size 20
and the new point a super-simple (21, 5, 2)–design and on construct on
the groups of size 10k a super-simple (10k + 1, 5, 2)–design. This yields a
(80n+20+10k +1, 5, 2)–design. Apply this with (n, k) = (3, 3), (4, 3), (4, 5)
to obtain super-simple (v, 5, 2)–designs with v = 291, 371, 391.

3.4 v ≡ 15 (mod 20)

Here we settle the case when v ≡ 15 (mod 20).

Lemma 3.8 There exists a super–simple (v, 5, 2)–design whenever v ≡ 15
(mod 20) and v ≥ 535 and 415 ≤ v ≤ 495.
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Proof: Take a RBIBD(20n + 5, 5, 1), which exists by Lemma 2.14 for all
n 6= 2, 11, 17, 23, 32. This design has 5n + 1 parallel classes. For all but
one of the parallel classes add a new point to each of the blocks in that
parallel class. Remove the 4n + 1 blocks of the final parallel class. This
yields a 6-GDD of type 54n+1(5n)1. The groups of size 5 are the 4n + 1
blocks of the final parallel class and the 5n new points form the last group.
Give weight 6 to the points in the first 4n + 1 groups of size 5 and weight
0, 6 or 8 to the points in the last group to form a super-simple (5, 2)-GDD
of type (30)4n+1(x)1 where 24 ≤ x ≤ 40n. Since there exists a super–
simple (x + 1, 5, 2) when x + 1 ≡ 5 (mod 20) and x 6= 5, 285, 265, 285 by
Lemma 3.5 and a super–simple (31, 5, 2)–design by Lemma 3.7, we obtain
a super–simple (120n + 30 + x + 1, 5, 2)–designs by adding a new point and
constructing super–simple (31, 5, 2) or (x+1, 5, 2)–designs on the groups and
the new point. If n ≥ 4 and x + 1 = 25, 45, 65, 85, 105, 125, we get all orders
with v ≥ 535. If n = 11, 17, 23, 32 apply the same method, but reduce n
by one and increase x by 120. If n = 3, we use x + 1 = 25, 45, 65, 85, 105
and obtain a super–simple (v, 5, 2)–design whenever v ≡ 15 (mod 20) and
415 ≤ v ≤ 495.

Lemma 3.9 There exists a super–simple (v, 5, 2)–design whenever v ≡ 15
(mod 20) and v 6= 15, 75, 95, 115, 135, 195, 215, 515.

Proof: The previous lemma shows that we need only consider v ≤ 395.
First we construct a super–simple (35,5,2)–design by developing the 7 base
blocks

{0, 1, 2, 18, 20}, {1, 2, 4, 6, 9}, {1, 5, 18, 25, 31}, {1, 7, 21, 28, 30},
{1, 7, 26, 29, 34}, {1, 8, 29, 30, 33} and {1, 9, 27, 32, 33}

under the group generated by (0)(1, 2, ..., 17)(18, 19, ..., 34).
If v = 55, 155, 175, 255, 275, 355, then we use a super–simple (5, 2)−GDD

of type (v
5 )5, which exists by Lemma 2.1, with v

5 = 11, 31, 35, 51, 55, 71.
Construct on the each of groups a super–simple (v

5 , 5, 2)–designs.
Now we apply the construction used in the previous Lemma, i.e. we take

a RBIBD(20n + 5, 5, 1), add new points points to all but one of 5n + 1 par-
allel classes and remove the blocks of the final parallel class; this yields
a 6-GDD of type 54n+1(5n)1. Give weight 4 to the points in the first
4n + 1 groups of size 5 and weight 0, 2 or 4 to the points in the last
group to form a super-simple (5, 2)-GDD of type (20)4n+1(x)1 where x ≤
20n. There exists a (21, 5, 2)–designs by Lemma 3.3. Thus if there is a
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super–simple (x + 1, 5, 2) we can add a new point to this (5, 2)-GDD and
construct super–simple (u, 5, 2)–designs on the groups and the new point,
to obtain a super–simple (80n + 20 + x + 1, 5, 2)–design. Applying this
with (n, x) = (3, 34), (3, 54), (4, 34), (4, 54) to obtain super–simple (v, 5, 2)–
designs with v = 295, 315, 375, 395.

Next take a TD(6, 15) and give weight 4 to points in 5 groups and weight
4 to 8 points, weight 2 to 1 point and weight 0 to the remaining 6 points in
the last group. This constructs a super–simple (5, 2)-GDD of type (60)5x1.
Since there is a super–simple (35, 5, 2) and a super–simple (61, 5, 2)–design,
then there exists a super–simple (335, 5, 2)–design.

A PBD on 47 points with block sizes 5,7 and 9 can be constructed from
the projective plane of order 8 as follows: take a projective plane of order
8 and remove the points in a hyperoval as well as the points in 2 exterior
lines to the hyperoval except for the point of the intersection. Every other
line intersects these 26 points either 0,2 or 4 times. Removing these points
yields a PBD on 47 points, furthermore, we can construct a GDD with block
sizes 5,7,9 and group sizes 5,7,9 by looking at the lines through a point in
the hyperoval. This gives a {5, 7, 9}-GDD of type 5x7y9z for appropriate
x, y, z. Give weight 5 to each point to obtain a super–simple (5, 2)-GDD
on 235 points with group sizes 25,35 and 45. There exists a super–simple
(5, 2)-GDD of type 5q for q = 5, 7, 9 by Lemma 2.1. Fill in the groups yields
a super–simple (235, 5, 2)–design.
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