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Abstract

An orthogonal double cover (ODC) of the complete graph K, by a
graph G is a collection G of n spanning subgraphs of K,,, all isomorphic
to G, such that any two members of G share exactly one edge and every
edge of K, is contained in exactly two members of G. In the 1980’s
Hering posed the problem to decide the existence of an ODC for the
case that G is an almost-Hamiltonian cycle, i.e. a cycle of length n— 1.
It is known that the existence of an ODC of K, by a Hamiltonian
path implies the existence of ODCs of Ky, and Kig),, respectively,
by almost-Hamiltonian cycles. Horton and Nonay introduced two-
colorable ODCs and showed: If for n > 3 and a prime power ¢ > 5
there are an ODC of K, by a Hamiltonian path and a two-colorable
ODC of K, by a Hamiltonian path, then there is an ODC of K,
by a Hamiltonian path. In [12], two-colorable ODCs of K,, and Koy,
respectively, by Hamiltonian paths were constructed for all odd square
numbers n > 9. Here we continue this work and construct cyclic two-
colorable ODCs of K,, and Koy, respectively, by Hamiltonian paths
for all n of the form n = 4k? + 1 or n = (k? + 1)/2 with some integer
k.
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1 Introduction

In this paper, we construct a new large class of solutions to the well-studied
problem of finding an orthogonal double cover of the complete graph K, by
Hamiltonian paths (or, equivalently, a self-orthogonal factorization of 2K,
into Hamiltonian paths).

An orthogonal double cover (ODC) of K,, by some graph G is a collection
G = {G1,Gy,...,G,} of spanning subgraphs of K, all isomorphic to G,
such that every edge of K, is contained in exactly two members of G and
such that every two distinct members of G share exactly one edge. By this
definition, the existence of an ODC of K,, by G immediately implies that GG
has exactly n — 1 edges.

The first question in this context was to decide the existence of an ODC
of K, by the graph G consisting of a cycle of length n — 1 and an isolated
vertex [9]. In this case we speak of an ODC of K, by an almost-Hamiltonian
cycle. Tt is conjectured that the answer is affirmative for all n > 4. Although
there has been some progress on this problem [9, 10, 8, 11, 2, 3, 13, 6, 12, 4],
it is far from being solved completely.

Here, we focus on ODCs of K,, by P,, the path on n vertices. These are
of interest also for the original problem because of the following implication.

Theorem 1 [8, 14| If for some n there is an ODC of K, by P,, then there
are ODCs of K4, and of Kig,, respectively, by almost-Hamiltonian cycles.

Fortunately, there is a multiplication theorem for ODCs by Hamiltonian
paths which can be applied recursively. To formulate it, we need the notion
of a two-colorable ODC. An ODC G of K, by P, is called two-colorable if
it is possible to assign to each path in G a proper edge coloring, using just
the colors red and blue for every path, in such a way that every edge of the
underlying K, receives the same color in the both paths containing it.

Theorem 2 [11] Let n > 3 be an integer, and let ¢ > 5 be a prime power.
If there ezists an ODC of K, by P, as well as a two-colorable ODC of K, by
P,, then there is an ODC of Ky, by Py,

In this article we deal with cyclic ODCs, exclusively. Therefore, through-
out we suppose that V(K,) = Z,. Let G be a graph on the same vertex



set. For ¢ € Z, let G + i be the graph defined by V(G + i) = Z, and
(@ +i, y+i) € B(G+i) < (,y) € B(G). UG +Zy :={G+i|i€ L)
is an ODC of K,, (by G), then it is called a cyclic ODC.

The length of an edge e = (z,y) € E(G) is defined to be the set £(e) :=
{z—vy, y—x}, where the distance of two distinct edges e; = (z,y) € E(G) and
es = (r+2, y+2) € E(G) of the same length is the set d(eq, e2) := {2z, —2}.
Furthermore, we put Z; := Z, \ {0}.

Lemma 3 (cf. [5]) Let G be a graph with V(G) = Z, and |E(G)| = n — 1.
The set G + Zy, is a (cyclic) ODC of K, by G if and only if the following
conditions are satisfied:

(1) For every x € Z, with 2z # 0, there are exactly two edges of length
{z, -z} in E(G).

(2) The union of all distances d(e1, es) with ey, es € E(G), ey # ey, l(ey) =
U(eq) is equal to {x € Zy, | 2z # 0}.

To decide whether a cyclic ODC of K,, by P, is two-colorable is easily
done just looking at one of its members. Let G be a Hamiltonian path G' on
the vertex set Z,, such that G+7Z,, is an ODC of K,,. We call G two-colorable
if there is a proper edge-coloring of G with two colors in which edges of the
same length have the same color.

Lemma 4 Let G be a Hamiltonian path on the vertex set Z,, such that G+Z,
1s an ODC of K,,. If G 1is two-colorable, then G + Z,, is two-colorable.

For a more detailed motivation of and introduction into the subject we
refer to [5] and to the references given there, especially to [1, 7, 12].

2 The main result

In [12], two-colorable ODCs of K,, by P, were constructed for the case that
n = m? or n = 2m? for some odd m > 3. These ODCs are group-generated
but not cyclic.

Here we use a similar construction to obtain the following result.



Theorem 5 Let k > 2 be an integer, and let n = k? + 1.

(a) There is a two-colorable cyclic ODC of K, by P,.
(b) If n is even, then there is a two-colorable cyclic ODC of Ky o by Py )s.
(c) If n is odd, then there is a two-colorable cyclic ODC of Kay, by Pay,.

Together with Theorem 1 and Theorem 2, this gives large new classes of
ODGCs by Hamiltonian paths and almost-Hamiltonian cycles.

3 Proof of Theorem 5

Let m > 5 be an odd integer such that —1 is quadratic modulo m, i.e. all
prime factors of m are congruent 1 modulo 4. In the sequel, we operate in
Z.,, Where i € Z,, satisfies the equation i? = —1.

Consider the graph G on the the vertex set Z,, with (z,y) € E(G) if and
only if y € {iz, —iz}. Clearly, G consists of (m — 1)/4 disjoint cycles, each
of the form (z, iz, —z, —ixz, ) for some x € ZZ,, and the isolated vertex
0. The cycle (z, iz, — =z, — iz, x) contains two disjoint edges of length
{£(i — 1)z} whose distance is {£(¢ + 1)z} and two disjoint edges of length
{#(i+1)z} whose distance is {#-(i—1)z}. These lengths and distances do not
occur in any other of the four-cycles in G because of (i —1)(1+1) = =2 # 0.
Hence, by Lemma 3:

Lemma 6 G + Z,, is a cyclic ODC of K,,.

Let G* denote the graph obtained by omitting the isolated 0 in G, and
let H be a one-factor in G*. Furthermore, for an arbitrary graph F' on
the vertex set Z,, and some z € Z, let xF and F' — z be the graphs on
the vertex set Z,, defined by (zy,z2) € E(zF) < (y,z) € E(F) and
(y—=zx, z—2x) € E(F—x) < (y,2) € E(F), respectively. Clearly, {H,iH}
is a one-factorization of G* in which edges of the same length lie in the same
factor. Moreover, it is evident that in F' and F' — z exactly the same lengths
and distances occur. Using Lemmas 3 and 6, we therefore obtain:

Lemma 7 (HU (iH — 1)) + Zy, is a cyclic ODC of K.
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Figure 1: P (top) and P’ (bottom) for m = 13.

By the choice of H, it is immediately clear that the components of H U
(1H — 1) are a path joining the vertices 0 and —1 and a number of cycles of
even length. Moreover, also by the choice of H, if HU (iH — 1) has just one
component (i.e. if it is a Hamiltonian path on Z,,), then it is two-colorable.
Using Lemma 4, this implies:

Lemma 8 If HU (iH — 1) is a path, then (H U (iH — 1)) + Zy, is a two-
colorable cyclic ODC of K, by Py,.

Obviously, the components of the graph H U (H — 1) are also a path
connecting 0 to —1 and cycles of even length. Although in this graph half of
the lengths occur four times while the other half of the lengths do not occur,
it can be used to find ODCs if it has just one component:

Lemma 9 If HU(H —1) is a path, then there is a two-colorable cyclic ODC
Of K2m by P2m-

Proof. Let HU (H — 1) =: P be a path. We will use this path to generate
a Hamiltonian path P’ on the vertex set Zs,, such that P’ + Z,,, is a two-
colorable ODC. It will be convenient for us to represent Zs,, as Z,, X Zs.

To transform P into P’, we first replace every v € V(P) by (v, 1), the
resulting path is denoted by P*. Now P’ is obtained from P* by replacing
all edges ((u,1),(v,1)) € E(P*) that satisfy (u,v) € E(H) by the path
((u,1), (ui,0), (vi,0), (v,1)) (i.e. every second edge of P* is replaced), and
by finally introducing one new edge which joins (0,1) to (0,0). Figure 1
illustrates this construction for m = 13 and for F(H) containing all edges
from E(QG) of lengths {£1}, {£3}, and {£4}, respectively.



By the above construction, P’ is a Hamiltonian path on the vertex set Zo,,.
There is exactly one edge of length {(0,1)} in E(P'), namely ((0,0), (0,1)).
Furthermore, ((u, 0), (v,0)) € E(P') holds for all (u,v) € E(iH), and ((u, 1), (v,1)) €
E(P'") holds for all (u,v) € E(H —1). Since (iH U (H — 1)) + Z, is a cyclic
ODC by Lemma 7, Lemma 3 implies that {(z,0), (—z,0)} for every = € Z7,
is the length of two edges in P’ and the distance of two edges of the same
length in P'. Moreover, by construction, for every (u,v) € E(G) either
((u,0), (v,1)) € E(P') or ((u,1),(v,0)) € E(P'). Hence, by Lemmas 6 and
3, {(z,1), (—z,1)} for every x € Z7, is the length of two edges in P’ and the
distance of two edges of the same length in P'. Consequently, P’ + Z,,, is an
ODC.

Finally, P’ is two-colorable since its edges alternately are of length (x,0)
and (*,1). By Lemma 4, P' + Zy,, is two-colorable as well. [ |

In the sequel, for special values of m we will provide choices of H such
that HU (:H —1) is a path and choices of H such that HU(H —1) is a path.

Assume that m = 2 + 1 for some even 4 > 1 (this equation, of course, is
supposed to hold not only in Z,, but also in Z). In this case, it is easy to
check that G* is the collection of the (m — 1)/4 disjoint four-cycles

(ai+b, bi —a, —ai—b, —bi+a, ai+Db), 0<a<b<i-—a.
Now we fix the one-factor H; of G* by

(ai +0b, bi—a),(—ai—0b, —bi+a)€ E(H) <= b isodd,
(bi —a, —ai—"0b),(=bi+a, ai+b) € E(H,) <= b iseven

for 0 < a < b <i—a, and the one-factor Hy of G* is given by
(ai +b, bi —a),(—ai —b, —bi+a)€ F(H,)

for0<a<b<i—a.

Lemma 10 Let i > 1 be even, and let m =12 + 1.
(a) Hy U (iHy; — 1) is a path.
(b) HyU (Hy — 1) is a path.

Proof. (a) Let d =1,2,...,i/2 and —d < ¢ < d such that d — ¢ is even. By
the choice of Hy, if d is odd, then the following path of length 4 is contained
in H1 U (’LHl - ].)

(ci—d, —(d—1)i—(c+1), —(c+1)i+(d—1), —di—(c+2), (c+2)i—d),
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and if d is even, then H; U (iH; — 1) contains:
(ci—d, di+c, —(c+1)i+(d—-1), (d=—1)i+ (c+1), (c+2)i—d).

Hence, H; U (iH; — 1) contains a path of length 4(d — 1) with the end-vertices
—(d —2)i — d and di — d.

If d is odd and # i/2, then iH — 1 contains an edge joining di — d to
—(d—1)i— (d+1). If d is even and # /2, then the following path of length
3 isin H1 U (lHl - 1)

(di—d, di+d, —(d+1)i+(d—1), —(d—1)i— (d+1)).

Consequently, there is a path P, with the end-vertices ¢ — 1 and (i — 1)
contained in H; U (¢H; — 1) whose length is (m — 5)/2 if i/2 is odd and
(m—>5)/2—11if i/2 is even.

Analogously, one observes that H; U (iH; — 1) contains another path P,
with the end-vertices —i and —£(i — 1) — 1 such that P and P, are disjoint,
where the length of P, is (m — 5)/2 if i/2 is odd and (m — 5)/2+ 1 if i/2 is
even. (To find P,, proceed like we did in finding P;, where at the beginning
consider the elements —ci +d — 1 instead of ¢i — d.)

Now th claim follows from the fact that the following edges are in E (H1 U

O.-i= D, (=i 1= 1), (§6-1-56-D-1), (-1
(b) We define a subset S of Z,, by

S::{(i—l)a+(i+1)b

(1<a<i/2 and —i/2<b<i/2)
or (a=0 and 1<b<1i/2) '

Partition S into the subsets S.1, Sc2 (¢ =1,2,...,i/2 —1) and S/, where
Sei1 = {(E—1ec+(GE+1)b| —i/2<b<0},
See = {(i—1)a+(i+1)c|0<a<if2},
Sip = {iGi—-1)+(GE+1)b|—i/2<b<0}.

Furthermore, put S, := S.1 US.2 forc=1,2,...,i/2 - 1.

Next, we introduce a linear order on S. For z = (i — 1)a; + (¢ + 1)b; and
y = (i — 1)ag + (¢ + 1)by with a1,b; and ag, by like in the definition of S, we
put x < y whenever:



l.zeS.andy € Sy with 1 <ec<d<1i/2 or
2.z€8.andy € S5 for some 1 <¢<i/2—1,or
3. z,y € S,y forsome 1 <¢<i/2—1and b > by, or
4. z,y € Si/2 and by > by, or

5. z,y € S for some 1 < ¢ <i/2—1 and a; > as.

We use the notation z <- y to indicate that x < y such that x and y are
consecutive in the linear order.

Now the assertion is implied by the following observations which are easy
to verify: If we walk along the path connecting 0 and —1 in Hy U (Hy — 1),
then we hit the elements of S in the order defined above. Moreover, there
is an edge connecting 0 and the first element of S, there is another edge
connecting the last element of S and —1. Let z,y € S with z <- y. There
is a path of length two in Hy U (Hy — 1) whose end-vertices are z and y if
z,y € S, for some c or if z,y € S, for some c or if z,y € S;/5. Finally,
there is an edge connecting z and y if x € S.1, y € S¢2 for some corifz € S,
and y € S,y for some c. [ |

Assume now that 2m = 2 + 1 for some odd 7 > 1. In this case, G* is the
collection of the (m — 1)/4 four-cycles

(2tb, bisa  —aizh —bite = aith) 0<a<b<i—a; b—a iseven.

20 2 2 T2
The one-factors Hs and H, of G* are defined by

b=2( mod4)

at+b bi—a —ai—b —bita
(850, 150 (o ) epm) = 250 )

i—a  —ai— —bita ai b#2 mod 4
("3, =57), (5™, *3*) € B(H;) = i—bjéi—Q(( mod 4§,

for 0 <a < b<i—a with even b — a and

H - H; if i=1( mod4),
* T iH; if i=3( mod4),

respectively. The choice of these one-factors for i = 7, i.e. for m = 25, is
displayed in Figure 2.
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Figure 2: m = 25; top: Hj (bold) and H; = iHj (dashed); bottom: Hz — 1
(dashed) and Hy — 1 =iH3 — 1 (bold).

Lemma 11 Let i > 1 be odd, and let 2m =i + 1.

(a) HsU (iHs — 1) is a path.

(b) Hy U (Hy — 1) is a path.

Proof. The lemma can be proved similar to Lemma 10. |

Finally, observe that Theorem 5 (a) is implied by Lemmas 8 and 10 (a)
with m = n, i = k and Lemmas 9 and 11 (b) with m = n/2, 1 = k. Theorem
5 (b) follows by Lemmas 8 and 11 (a) with m = n/2, i = k, and Theorem 5
(c) by Lemmas 9 and 10 (b) with m =n, i = k.

4 A more general conjecture

Let us now formulate an observation we made starting with the ODCs con-
structed in the preceding section. We will avoid introducing more formalism
than necessary, we will rather try to formulate our observation as it appeared
to us.

Look at the graph G on the vertex set Z,, which was introduced in the
preceding section for any odd m > 5 with the property that —1 is quadratic
in Z,. Use the integers 0, +1,+2,...,+(m — 1)/2 to represent Z,,. Draw
the four-cycles in G in such a way that for each of them the vertex in the
lower left corner is a positive integer, and this integer is the smaller one of
the two positive integer occurring on the four-cycle. Order the four-cycles
(from left to right) according to the rule that their lower left corners come
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Figure 3: m = 29; top: H (bold) and iH (dashed); bottom: :H — 1 (bold)
and H — 1 (dashed).

in increasing order. (One naturally comes up with this kind of picture when
drawing an example by hand.) As an example, this order is given for m = 29
in Figure 3.

Now it can easily be verified that the one-factors H; and H3 of G* defined
in the preceding section for m = 4* + 1 with even i and m = (:*> + 1)/2
with odd i, respectively, are built up as follows: From the four-cycles (in
the order described above) take alternately the two vertical edges and the
two horizontal edges into the one-factor, starting with the two vertical edges
(1,4), (=1, —1) from the first four-cycle (1,7, -1, —i,1).

In general, let us denote the one-factor obtained this way by H (also
for those m which are not of the form % + 1 or (i* + 1)/2). By Lemmas
10 (a) and 11 (a), we know that for the particular cases m = > + 1 and
m = (i*+1)/2 the graph HU (:H — 1) is a path (to be precise, a Hamiltonian
path on the vertex set Z,,). We investigated whether this statement remains
true if m is not of this particular form. (Actually, without much hope for an
affirmative answer because we work in Z,, and the order of the four-cycles
looks somewhat artificial there.) To our surprise, although checking many
instances m, we did not find a single counterexample. Therefore, we here
formulate the following conjecture:

Conjecture 12 Let m > 5 be an odd integer such that —1 is quadratic
modulo m. Then H U (iH — 1) is a path.

Note that, by Lemma 8, this would imply the existence of a two-colorable
cyclic ODC of K,, by P,. In the light of Theorem 2, such solutions are

10



especially valuable if m is a prime. For this reason, we checked the structure
of HU (iH — 1) for primes systematically by computer. For primes up to
100, 000 the result always was a path which gives as a corollary:

Theorem 13 For every prime number p withp =1 ( mod 4) and p < 10°
there is a two-colorable cyclic ODC of K, by P,.
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