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Abstract

Water droplets on insulating material influence strongly the aging process of the
material. The shape of the droplets signifies the state of the aging material. The
present paper discusses a procedure to calculate the droplet shape in an electric
field generated by a constant voltage. A combined stationary solution of the droplet
shape and the electric field is searched for. The typical shapes of the droplets are
shown for several voltages. Special care is taken to the singularities of the electric
field in the triple points.
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1 Introduction

This investigation is initiated by the observation that water droplets on the
surface of insulating material influence strongly the process of its aging. While
aging the material looses its hydrophobic and insulating characteristics and
hence its proper purpose, [3].

The present paper considers a simple droplet in a stationary electric field. The
droplet lays on a solid support made of resin, and the electric field is generated
by a voltage between two electrodes inside the resin. The acting forces and
the droplet shape are determined. Note that the droplet shape feeds back to
the electric field again.

Although in reality alternating current will be the standard application, it
seems to be reasonable to investigate a stationary situation. On the one hand,
the inertial effects inside the droplet and the inductional effects caused by the
low frequency field are assumed to be rather small, [6]. On the other hand,

Email address: 1gm@alf .math.uni-rostock.de (Dirk Langemann).

Preprint submitted to Elsevier Science 10 July 2002



the stationary problem is already complexe enough to be worth studied. An
essential point is the feed-back of the droplet whose shape depends on the
electric field, and influences the electric field again.

In Sec. 2, we will give an overview on the type of the problem and we will
present a general iteration method. Sec. 3 deals with finding the shape of the
droplet for a given outer force density caused by the electric field, and Sec. 4
works out the inverse problem to the preceding one. Both take special care to
the situation in the edges of the droplet, the so-called triple points between
the solid support, the droplet fluid and the air.

Finally, Sec. 5 presents the results for the two-dimensional problem. In par-
ticular the droplet shapes are given for different strengths of the electric field.

2 Problem set-up

We investigate a two-dimensional problem to study typical effects. In the re-
spective three-dimensional problem, all quantities are constant in the direction
vertical to the chosen intersection plane. Although this equivalence, we refer
all quantities in a two-dimensional sense only.

The droplet is described by its upper boundary I' which is given in polar co-
ordinates with the origin O, i.e.I' = {z = (r(¢) cos ¢, () sinp) ; ¢ € [0, 7]}
The angle ¢ serves as parameter of the points zr(¢) at the boundary. The
droplet fluid is in fact water with the mass density 6 = 1000 kgm ° and the
surface traction o = 0.072 Nm ™.

The electric field is generated by two electrodes in the support. The voltage
between them is 2U. The boundary of the electrodes is called I';.

The domain outside the droplet and outside the electrodes is called €2. This
domain is the support of the electric field, and the electric field depends on
the droplet shape via the droplet boundary I', cf. Fig. 1. The points A and B
are needed in Sec. 3.2 and 4.3.

The droplet itself and the electrodes are assumed to be free of electric field.
Comparing the dielectricity eg,0 = 81 with €; = 1 of the air and ¢5 = 4 of
the solid support, the assumption seems to be reasonable.

Now, the electric field causes a concentration pr of electric charge at the
boundary I' of the droplet. This results in a force density pe(¢) = pe(xr(¢))
at I'. Obviously, a similar force density acts at the boundaries of the electrodes
but is not considered here.
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Fig. 1. Model set-up of the problem. The droplet lays in the centre on the surface
of the solid support containing two electrodes.

Looking at the problem form a more abstract view-point, we remark two sub-
problems. Finding r for a given p, will be referred to as R-problem, and finding
pe for a given 7 is called P-problem. There are two operators R and P mapping
a fixed force density p. to a resulting r and vice versa, a given r to a force
density p, :

R:pe—r and P :7r—p..

while solving the problem of finding the stationary shape of the droplet in the
electric field, we are searching a fixed point of the combined operator RP, i. e.
Tfiw = RPTfm

To separate both problems we state the iteration
r ) = GRPr® 4 (1 — w)r® (1)

with the relaxation parameter w. Basing on the physical background and thus
the natural existence of a stable stationary solution, we hope that

Z11)11010 r® =1, (point-wise) (2)

at least for suitable w. Knowing that an analytical prove will be hard work,
we will see by testing that the convergence (2) holds.

3 The R-problem

This section deals with the determination of the shape of the droplet under

the influence of a given normal force density p. acting on its upper boundary
I.



3.1 The acting force densities

The following pressures are acting in a point zr = (7(¢) cos ¢, r(¢) sin ) with
¢ € (0,7) at the upper boundary of the droplet in the direction of the outer
normal n on I':

(1) The curved boundary produces a curvature pressure py resulting from the
surface traction, s. [1], which is

r(p)® +2r'(p)* — T(cps)r”(w) G
(r(p)? +1'(p)?)°

(2) The pressure inside the droplet depending on the depth of the water is

pr(p) = —a - k(p) with x(p) =

pr(p) = dg(h —r(p)singp) with h = max r(p)sing. (4)
e |0,
Here § denotes the mass density of the droplet fluid and g is the gravity
acceleration.
(3) Under the acting pressures the droplet changes slightly its volume. There-
fore, we have a pressure resulting in the volume dilatation

\%4 1
=|{--1 air ith r = _/ 2
Po <W )p with Vo= | r(p)"dy ()

and an assumed volume V' of the undeformed droplet fluid unter the air
pressure pg;-. Eq. (5) replaces a possible condition of incompressibility in
the present formalism of equilibrated forces.

Summarizing Eqgs. (3-5) and the outer force density pe, it holds

0 = pr(p) + Prl(®) + po(®) + pe() (6)

in every point zr(yp) with ¢ € (0,7) except in the corners P = zr(0) and
P’ = zp(m).

3.2 The behaviour in the corner points

In the corner P the surface traction « acts between the fluid and the air in the
direction PB and the boundary traction a;, acts between the solid support
and the fluid in the direction PA. The boundary traction between the solid
and the air is assumed to be negligible.

The adhesion force may behave like a Lagrangian multiplier normal to the



surface of the solid support and the angle ¥ = ZBPO is given by
cosV-|a| =0T (7)

where 7||PA is of length 1, [1]. Note, that o and «; o are forces instead of
being force densities. The angle ¥ can only be changed by additional forces
entering Eq. (7). But they do not in the actual problem, as will be shown in
Sec. 4.3.

Thus, we get the boundary conditions in the corners P and P’
tand -7'(0) +r(0) =0 and tand-r'(7) —r(7) =0. (8)

In the examples of Sec. 5, ¥ = 1.1 is used.
3.8  Numerical treatment

Eq. (6) with the boundary conditions (8) is a non-linear boundary value prob-
lem for 7(p) on ¢ € [0, 7]. It can be handled by introducing an auxiliary time
t and solving instead the time-dependent problem

%T(%t) = pr(®) + (@) + o) +pe(¥) , (9)

0 0
ar((),t) = k[tan9-r'(0,¢)+r(0,¢)] and ar(w,t) = —k[tan9-r'(m, t)—r(m,1)]
(10)
where 7/(-,t) denotes the derivative with respect to the first parameter and &
is a suitable amplification factor, e. g. k = 753;.
The solution r(p,t) converges with ¢ — 0o to a time-constant radius which
fulfils Egs. (6) and (8). The convergences follows from the fact that the acting
force densities would drive a droplet of a very viscose fluid to its stationary
shape. Here a time-constant radius is reached is less than 1-107*s, cf. Fig. 2.

Egs. (9-10) can be discretized over ¢ and solved by standard methods for
stiff ordinary differential equations, [2], like e. g. ode15s in Matlab. In the
examples of Sec. 5 the interval [0, 7] was discretized into 200 equidistant grid
points.

4 The P-problem

This section deals with the determination of the electric potential ®(x) in the
domain Q and thus in whole the plane. Having once ®(z), we will find the
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Fig. 2. Evolution of the radius in the time-dependent problem starting with
r(p) = const. and setting p. = 0. The solid lines mark the initial and final
state of the droplet. The dashed lines give the radius at the auxiliary time-instants
t=2-10"%s,t=6-10"5s and t = 10 - 10~°s (from above).

resulting force density p,.
4.1 The electric potential

The electric potential ®(z) coincides at the electrodes and their boundaries I'y
with the voltage U resp. —U. The boundary of the droplet I' is an iso-potential
line and cause of symmetry, it holds ®(zr) = 0 there. The domain 2 outside
the electrodes and the droplet is free of electric charge.

We regard ®(z) in the right half-plane. Inside the electrode and inside the
droplet, it is constant. Inside 2 we get the boundary value problem, [4]

-V - (e(x)VP®(z)) =0 in z € Q,
®(z) =0 onz e d\I'y, (11)
®(z) =Uonzely.

Using Cartesian co-ordinates with origin O and x = (x1,z2) the dielectricity

1S

e1r €N, x9>0,
e(w) =4 " (12)
g €Q, 19 <0.

In Eq. (12), the values of the dielectricity at the surface of the solid support
are arbritrary.

Now, the electric field and the displacement are given by
E(z) = =V®(z) and D(z) = goe(z)E(x) .

The density p of electric charge is concentrated on the boundary of €2, in



particular on the boundary I' of the droplet. In vanishes in the environment
of I' outside I'. Thus

2

plar) = V- Dlar) = —eue1 5z 0(ar) + n(e) jedlen)) . (19

where n is still the outer normal of the droplet and thus the inner normal of
the domain 2 at I'.

Eq. (13) is obtained by expressing —V-(e(x)V®(z)) in curvilinear co-ordinates
and using the fact that the displacement D is constant inside the droplet.

Integration of Eq. (13) in normal direction over [zr — vn,zr + vn| with a
small v > 0 provides the density pr of electric charge on the boundary of the
droplet. That is

v

0
pr(zr) = /,,, plzr +on)do = —Eosla—nq)(xp) .

Thus, the force density p, acting on the boundary of the droplet is

()= pler (@) Eer(e) =00 (e0ler(e)) - (19

4.2  Numerical handling

Using the symmetry, we consider Eq. (11) only in the right half-plane. The half-
plane is restricted by a rectangle. The error due to the restriction is regarded
to be small because of the local character of any disturbances of the electric
field.

The boundary value problem (11) with its Dirichlet boundary conditions is
solved by standard finite elements on a triangulation, cf. Fig. 3. The triag-
ulation is refined near the boundary of the droplet. It is created once in a
pre-processing and adapted to each present shape of the droplet.

In the present examples a triangulation with 6011 points and 11621 trian-
gles was used. This leads to 48 triangles sharing a side with the disctretized
boundary of the droplet. Solving the resulting system of linear equations is
done by standard procedure for sparse matrices without any additional effort.
The solution was checked and regarded to be just fine.
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Fig. 3. Details of the triangulation. An electrode is remarkable at the rigth bottom
of the left figure. Both contain a droplet under the absence of an electric field.

4.8 The electric field close to the corners

We regard the electric potential ® near the corner P of the droplet and use
polar co-ordinates (s,) with origin P and the ¢ = 0 at PA.

Inside the angle ZBP A the electric potential has the expansion

)= 3 6054 sin(a® (r — 9 — ). (15)

=1

In Eq. (15) bgl) and az(- are suitable coeflicients with aHl > a ) for all 4, [5].
Respectively, inside ZOP A the expansion may be

@ (s, p) = Zb@) P sin(a (y + 7). (16)
i=1
Now, on the line PA holds
®W(s,0) = @ (s,0) and 513@1)(3 0) = 523¢ @ (s,0). (17)
Y aw 8¢ Y

The leading terms in the expansions (15-16) determine the behaviour of ®
close to the corner P and hence the singularity of F there.

Thus, the comparison of the first terms in Eq. (17) yield with b = ng) / bgl)

s sm(agl)(ﬂ —9)) = bsti sin(a?)ﬂ) and (18)

—51a§1)5“5” cos(agl)(w —v)) = sgba?)sa?) cos(ag2)7r) : (19)
Eq. (18-19) hold for s — 0 and all other terms of Egs. (15-16) are vanishing
faster than the first one. Thus, it is set a = a\" = a$". Eq. (18) simplifies to

sin(a(m — 9)) = bsin(arw) and — & cos(a(m — 1)) = beq cos(ar) .
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Fig. 4. Force density p.(¢) resulting from an electric field generated by U = 8kV.

For comparison, the dashed line shows c<p2(a_1).

A simple calculation shows that the minimal o fulfils % < a < 1. In fact, for
¥ = 1.1 the minimal a we get, is a = 0.54.

The electric potential behaves like ®™) (s, ) ~ ssin(a(m — 9 —v)) for s — 0.
It follows that

2
pe() ~ (——@”(r(wm - ﬁ)) O for s 0

what can be used for checking the numerical solution, cf. Fig. 4.

On the other hand, the density of electric charge in the corner P with zp =
zr(0) is

p(xp) = —Ad®(zp) = —go lim e(x)V®(x) - ne(x)dx =0 (20)

O0—=P Joe

where © is a circle around P contracting to P. Its outer normal is ng(z).
Eq. (20) follows from V®(s,9) ~ 51 and dzx = sd. Tt shows that there is
no essential concentration of electric charge in the corner and thus there is no
additional force to disturb Eq. (7).

5 Results

The iteration (1) works rather fast. For low voltages U < 5kV, it needs about
five steps with w = 1 to find a fixed-point of the operator RP in the range of
machine accuracy.

Larger voltages require a smaller relaxation parameter and thus more steps.
We have done calculations up to U = 18 kV where we have used w = 0.15 and
needed about 20 steps.
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Fig. 5. The electric potential ® in the case U = 8kV. It vansishes inside the droplet
in front, and it is constant inside the electrode. The refraction at the interface of
the solid support and the air is remarkable.
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Fig. 6. Left : Levels from ® = 0.5kV up to ® = 7kV in the case U = 8kV. Refraction
of the level lines is visible at x5 = 0. Right : The electric field E near the corner P.

On a 400 MHz-workstation, one iteration step takes about 3 min. It contains
solving the discretized partial boundary value problem (11) on the prepro-
cessed triangulation, described in Sec. 4.2, calculating p,, solving a stiff ordi-
nary boundary value problem (6) with the boundary conditions (8) to find the
new r*+1(y) and the adaptation of the triangulation to the new intermediate
droplet shape 71 (¢).

A typical electric potential ® is presented in Fig. 5. The belonging electric field
E is shown by its level lines in Fig. 6. Further, it is given near the droplet,
in particular near the corner point P. The resulting force density p, on I' was
already referred to in Fig. 4.

Let us remark, that the P-problem is linear in U. But this linearity does
not continue to the whole problem due to the different shapes of the droplet.
Nevertheless, the example given here represents the qualitative behaviour of
electric potentials for other voltages, too.

Finally, Fig. 7 shows droplet shapes for different voltages. The droplets are be-
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Fig. 7. Left: Droplet shapes for U = 0kV, U = 5kV, U = 10kV, U = 15kV and
U = 18kV (from above). Right : Droplet heights depending on the voltage U.

coming wider and flater with increasing voltage. For low voltages, the change
of width and height of the droplets is relatively small. It becomes more re-
markable for U > 5kV, and the the shape of the droplet resembles a plateau
for U ~ 18kV. If the voltage is increased further, the droplet will loose con-
nectivity after a short interval where it has a local minimum of height at
z; = 0.

The right plot of Fig. 7 presents the heights of the droplets depending on
the applied voltages U. The height does not depend on the sign of the volt-
age, comp. Eq. (14). Thus, assuming all inertial and inductional effects to be
small enough, the droplets oscillate with twice the frequency of the applied
alternating current.

6 Conclusion

The stated problem of determining the shape of a water droplet in a stationary
electric field was described as a fixed-point problem and solved by a Banach-
like iteration. It contains two sub-problems.

The first of them consists in finding the droplet shape for a given outer force
density acting at the boundary of the droplet. It was solved by calculating an
evolution problem for the radius tending to a stationary solution.

The second sub-problem to compute the electric field and hence to outer acting
force density, was handled by finite elements on an adapted triangulation. It
works by standard procedures without any numerical sophistication.

Special care has to be devoted the behaviour in the triple points. The be-

haviour of the electric potential close to these corner points were investigated
analytically. The result was checked with numerical calculations.
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We resume to have a suitable procedure to handle the two-dimensional prob-
lem of a droplet in a stationary electric field. It can be extended to the essen-
tially three-dimensional problem of a droplet on a solid support in a straight-
forward manner.

The extension to a time-dependent solution with an alternating voltage in-
volves new difficulties of a completely different kind like flux inside the droplet
fluid, inertial effects, induced currents in the fluid and so on.
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