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Abstract

We study a system of two nonlinear parabolic equations with cosymmetry and
find a continuous family of equilibria with nonconstant spectrum. Basing on the
finite-difference approach, we develop a numerical method for solving the partial
differential equations and calculating the continuous family of non-cosymmetrical
equilibria. An application of the proposed system to population kinetics is demon-
strated. Numerically computed families are presented. The dependence on model
parameters is discussed.
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1 Introduction

Recently V. Yudovich [1, 2] introduced the notion of a cosymmetry in order to explain
the onset of a continuous family of equilibria with variable spectra in certain problems
of mathematical physics. At present, the theory of cosymmetry and its applications are
intensively studied, cf. [1-10].

For a differential equation u̇ = F (u) in a Hilbert space H, a cosymmetry is an
non-trivial operator L which is orthogonal to F at each point of the phase space, i.e.
(F (u), L(u)) = 0, where (·, ·) denotes the inner product. Assume a state of equilibrium
u0 ∈ H, F (u0) = 0 to be non-cosymmetric, i.e. L(u0) 6= 0. Then, as a consequence
of the Implicit Function Theorem, cf. [1, 4], u0 belongs to a continuous one-parameter
family {u(τ) : F (u(τ)) = 0, τ ∈ Γ} with u(0) = u0, provided there are no additional
degeneracies. In degenerate cases there exists a k-dimensional sub-manifold of equilibria
that contains the equilibrium u0.

We construct below such a system of nonlinear parabolic equations which admits a
non-trivial cosymmetry and a family of non-cosymmetrical equilibria. Problems of that
type were first observed and studied in mathematical physics, in particular in diffusion-
convection problems in porous media. Numerical solutions for such systems with arbitrary
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schemes usually do not find a continuous family of equilibria but rather a number of
isolated equilibria.

We intend to model a situation in population kinetics where infinitely many stationary
states are possible. We assume two populations sharing a common space, e.g. a river
bank or a traffic route, and suppose a dominant role of the unique spatial coordinate x.
Looking for best opportunities for their respective trades, each population may move in
dependence on the current concentrations of their own kind and the other one. However,
the first population (concentration function u(x, t)) thrives on relocation of the second
(v(x, t)), while the second suffers from motion of the first.

Thus, we consider a system for a time dependent vector field w(x, t) = (u(x, t), v(x, t))>

defined on a domain Ω = [0, a] ⊂ R with Dirichlet conditions applied on ∂Ω

ẇ = εw′′ + κw′ + f(w, w′) , (1)

w(x, 0) = w0(x) on Ω , (2)

w(x, t) = 0 on ∂Ω× [0, T ] . (3)

Here the dot and prime mean differentiation with respect to time t and space coordinate
x. The solution is sought on the time span T , in particular T may be +∞. Square
matrixes κ and ε comprise the known constants εu, εv, κu, κv,

ε =

(
εu 0
0 εv

)
, κ =

(
0 κu

κv 0

)
. (4)

It is essential that the flux of the v-component results in a source of the u-component, and
vice versa. Both sources may be interpreted as some preferred direction of a structured
medium. It is of great interest to consider the case of opposite signs, i.e., when the prod-
uct κuκv is negative. Diffusion terms, given by second order derivatives (one-dimensional
Laplace operator), often play merely the role of a regularization. In particular, the pa-
rameters εu, εv may be important beyond their physical meaning. The nonlinear term
f = (fu(w,w′), fv(w,w′))> describes some sort of activity depending simultaneously on
transportation and availability of the components.

The system (1)–(3) with zero initial conditions has the trivial solution w = 0. More
interesting is that there also exist nontrivial stationary solutions for suitable values of
the parameters κu and κv and certain types of nonlinearities. Here, we concentrate on
the case when in fact a whole one-parameter family of stationary solutions exists, but
they cannot be obtained by action of an invariance as translation or rotation. This is
exactly the situation for which the theory of cosymmetry and the notion of families of
non-cosymmerical equilibria were introduced, [1, 2].

In the next section, we are going to examine the above system and derive the conditions
for a nontrivial cosymmetry. We identify parameters which give, indeed, a continuous
family of equilibria, the calculation of which is presented in Sec. 4. To this end, we
introduce a special numerical scheme which is shown to work well for the system (1)–(3).

2 Preliminary Analysis of the System

First, we briefly describe some essential properties of the underlying system. We define a
Hilbert space H = L2(Ω)× L2(Ω) with the usual scalar product.
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In order to enhance the dissipativity of the system we assume that the functions fu, fv

are such that the following integral equality holds

∫

Ω

(κvfuu + κufvv)dx = 0. (5)

Then, multiplying the first equation (1) by κvu and the second one by κuv, summing and
integrating over the domain Ω we obtain

d

dt

∫

Ω

(κvu
2 + κuv

2)dx = −
∫

Ω

(κvεuu
′2 + κuεvv

′2)dx. (6)

One can see that in the case κu = 0 and εu > 0 the dissipativity of the component u(x, t)
is guaranteed, and analogically, for κv = 0 and εv > 0 we deduce the decrease of

∫
Ω

v2dx.

2.1 Cosymmetry Condition

We are interested in conditions for which the system (1)–(3) has a cosymmetry. We
restrict ourselves to the case of a linear cosymmetry in the following form

L(w) =

(
0 εv

εu 0

)
w. (7)

In order to cover a reasonable class of nonlinearities, we assume fu and fv to be arbitrary
bilinear forms in w and w′

fu = εuw
>Muw′ , fv = εvw

>M vw′ . (8)

Here the factors εu and εv are used for convenience of subsequent presentation. The follow-
ing Lemma shows the existence of matrices that lead to a cosymmetry of the underlying
problem.

Lemma: 1 Let the matrices in (8) be of the form

Mu =

(
δ − 2γ β

α γ − 2δ

)
, M v =

(
α− 2β γ

δ β − 2α

)
, (9)

where the constants α, β, γ, δ are free parameters. Then the system (1)–(3) has a cosym-
metry (7) and the condition (5) is fulfilled.

The prove is done by direct verification. Let us multiply the equation (1) by L(w), sum
and integrate over the domain Ω. One can easily check that the right-hand side of this
equation vanishes, because the following equalities are valid

∫

Ω

εuεv(u
′′v − v′′u)dx = 0, (10)

∫

Ω

(εvκvv
′v − εuκvu

′u)dx = 0, (11)
∫

Ω

(εvfuv − εufvu)dx = 0. (12)
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This in turn is obtained using integration by parts, Green’s formula and the boundary
conditions. As result we have

∫

Ω

(εvu̇v − εuv̇u)dx = 0, (13)

which by definition means that (7) is a cosymmetry of the system (1)–(3).
The validity of (5) follows from similar transformations.
So, the system (1)–(3) is a cosymmetric one for any values κu, κv and the expressions

for the nonlinearities based on the four-parametric family of matrices (9). We present
below examples of parameter values such that the assumptions of Lemma 1 are satisfied,
and compute a number of continuous families consisting of steady states.

Another case of nonlinearities which allows a cosymmetry is given by

fu = εu

K∑

k=1

µku
αk+1vβk , fv = εv

K∑

k=1

µku
αkvβk+1 , (14)

where for simplicity we will suppose αk ≥ 0, βk ≥ 0, and µk ∈ R.
As a particular case the nonlinearities (14) may model logistic growth, if we specify

fu = εuµu

(
1− u

u∞

)
, fv = εvµv

(
1− u

u∞

)
. (15)

Here u∞ plays the role of a limiting value on the concentration u(x, t). It should be
mentioned that the logistic law is applied only to the growth of the first population,
whereas the other is regulated by closeness to u∞.

2.2 Stability of zero equilibrium

It is easy to analyze the stability of the cosymmetrical equilibrium w = 0. Without loss
of generality we take κu > 0 and κv < 0. Then, we change variables

u = ũ
√

κuεv, v = ṽ
√−κvεu, (16)

and set

λ =
1

2

√−κuκv

εuεv

. (17)

For simplicity we take κu = −κv = λ. After that the corresponding spectral problem is
given

0 = ũ′′ + 2λṽ′, 0 = ṽ′′ − 2λũ′, ṽ, ṽ |δΩ = 0. (18)

We introduce the complex function W = ũ + iṽ and rewrite (18) as

0 = W ′′ − 2λiW ′, W |δΩ = 0, (19)

Finally, we substitute W = U exp(iλx) and deduce

0 = U ′′ + λ2U, U |δΩ = 0, (20)

So, we find that λj = jπ/a, j ∈ Z and all eigenvalues are simple [11].
Because the original problem is equivalent to the eigenvalue problem for the 1d Laplace
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operator corresponding to pairs of functions, the multiplicity of each eigenvalue doubles.
Thus the critical value is λcrit = π/a, and at λ > λcrit the zero equilibrium becomes
unstable.

In the case of nonlinearities given by (15) similar manipulations give the following
result

λj =

√
j2π2

a
− µ .

3 Solution method

We apply the method of lines to the solution of the system (1)–(3). To discretize the
right-hand side we use second order finite difference operators, paying special attention to
the approximation of nonlinear terms. It is a crucial point for systems with cosymmetry:
an inappropriate approximation may lead to the loss of the cosymmetry [6]. As result,
one may obtain a number of isolated equilibria instead of a continuous family of steady
states.

3.1 Semi-discretization

We consider the case of a uniform grid on Ω = [0, a]

xj = jh, j = 0, . . . , N + 1, h = a/(N + 1) . (21)

All unknowns are defined at the nodes xj, and the notations uj and vj are used for discrete
values. The discretized boundary conditions take the following form

u0 = v0 = uN+1 = vN+1 = 0. (22)

For first order derivatives and the Laplacian we use centered difference operators

D1
j (u) ==

uj+1 − uj−1

2h
, D2

j (u) =
uj+1 − 2uj + uj−1

h2
. (23)

Then, the discrete analog of the system (1) is given as

u̇j = εuD
2
j (u) + κuD

1
j (v) + fu,j , j = 0, . . . , N, (24)

v̇j = εvD
2
j (v) + κvD

1
j (u) + fv,j . (25)

The nonlinear terms fu,j and fv,j are defined below. Using the discrete version of Green’s
formulae and reordering the sum (discrete analog of integration by parts) we conclude
that the following equalities are valid

hεvεu

N∑
j=1

(
D2

j (u)vj −D2
j (v)uj

)
= 0 (26)

N∑
j=1

(
εvκvD

1
j (v)vj − εuκvD

1
j (u)uj

)
= 0. (27)
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The given relations are the analogs of equalities (10) and (11), respectively. Thus, the
discrete analog of (7) is a cosymmetry for (24)–(25) iff the following equality is fulfilled

h

N∑
j=1

(εvfu,jvj − εufv,juj) = 0 . (28)

The approximation of the nonlinear terms (14) can be done in a straightforward way.
A special approximation has been developed to deal with the nonlinear terms (8) which
depend both on the function values and their slopes. We apply for this purpose the direct
method of free parameters, doing the calculations by the computer algebra system Maple.

The general second order accurate finite-difference operator on a three nodes stencil
may be written as

u′v|xj
≈ Dj(u, v) ≡

1∑

k,l=−1

pkluj+kvj+l. (29)

Here pkl, k, l = 1, 2, 3 are unknown or free parameters.
We compute a Taylor series for the expression u′v|xj

−Dj(u, v) and demand terms up
to third order on h to vanish. Thus, we derive a system of six linear equations for the
pkl and then solve it. As result we obtain a three-parameter family of operators giving
second order accuracy for the term u′v.

To establish an additional relation on the unknown parameters we impose the integral
equality ∫ a

0

u′uφ(u)dx = 0. (30)

This is valid, in particular, for homogeneous boundary conditions.
The discrete analog of (30) must be satisfied at least for some functions φ(u)

h

N∑
j=1

Dj(u, u)φ(uj) = 0. (31)

We get two additional equations on the parameters pkl from this requirement for φ(u) = u.
Eventually, we find a one-parameter formula approximating u′v

Dj(u, v) =
1

6h
[(1 + ζ)(uj+1 − uj−1)vj − ζuj(vj+1 − vj−1) (32)

+uj+1vj+1 − uj−1vj−1 + (1− ζ)(uj+1vj−1 − uj−1vj+1)].

Finally, from the cosymmetry relation (28) we deduce that only for ζ = 1 all requirements
are met.

We remark that more examples of the application of computer algebra systems to the
derivation of numerical schemes are given, for instance, in [12].

Let us rewrite the system of ordinary differential equations (24)–(25) as follows

Ẏ = (A + λB)Y + F (Y ). (33)

Here A is a positive-definite matrix, B is a skew-symmetric matrix, and F (Y ) denotes a
nonlinear term. The vector Y is given by

Y = (u1, . . . , uN , v1, . . . , vN). (34)
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Note that (33) is a vector equation in R2N , where N is the number of inner grid points
in Ω.

Without loss of generality we consider further κu = −κv = λ. The semi-discretization
described above may be easily adapted for arbitrary initial-boundary conditions. For
brevity, we present here only the case of homogeneous boundary conditions. For this case
we establish numerically the stability of the trivial solution Y = 0. Parameter values for
which instability occurs are found via an eigenproblem for the Jacobian matrix J of the
system of ordinary differential equations (33).

It should be noted that preservation of cosymmetry in a finite-difference approximation
of a two-dimensional filtration-convection problem on a rectangular domain is considered
in [6, 9].

3.2 Computation of the family of equilibria

If λ is slightly greater than λcrit, then all points on the family are stable. So, we can start
to integrate (33) in an arbitrary non-zero state, and compute the solution. It approaches
a limit state which, in general, depends on the initial state. This limit state is not an
isolated asymptotically stable one, but one point on a continuous curve of stationary
states.

To compute the family of equilibria we apply a technique similar to the approach
developed in [5, 7]. This technique is based on the cosymmetric version of the Implicit
Function Theorem, cf. [4], which asserts the existence of a continuous family of equilibria,
and states that the kernel of the Jacobian is tangential to the family (curve) in phase
space.

We trace this curve consisting of equilibria, defined by

(A + λB)Y + F (Y ) = 0 . (35)

The Jacobian matrix J = A + λB + ∂Y F (Y ) has a constant rank deficiency of one. We
find the family of equilibria (stationary solutions) by following the 1d solution manifold
of this algebraic system of equations by a predictor–corrector method. This means, we
cancel one equation of the system (35), adding instead one equation of the form

(Y − Ye) · Yt = τ , (36)

where Ye is our actual equilibrium solution and Yt is a unit basis vector of kerJ , τ is the
step-size. The thus modified equilibrium condition defines for small enough τ a unique
new equilibrium point. A reasonable starting point for Newton’s method is Ye + τYt.

Without going into the details we remark that for higher ratios of λ stability of some
stationary solutions may be lost. However, we can still trace the family by the above
method, finding an initial guess by increasing λ gradually.

It should be mentioned that if we take either parameters not satisfying the conditions
(9) or we use an approximation which destroys the cosymmetry during discretization, we
end up with a set of isolated equilibrium states.

4 Numerical Results

Our aim is to verify numerically the existence of a continuous family of equilibria for
the system (1)–(3), and at the same time to demonstrate the robustness of the described
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numerical approach.
We take the particular set of parameters

εu = εv = 0.1, κu = −κv = λ, α = 2, β = 4, γ = 0, δ = 0, (37)

and vary the parameter λ to observe the transformation of the family. The computations
were done on a grid with N = 40 nodes. The results on the grid N = 20 are practically
the same. To display the computed families we will use a projection to the plane with
coordinates

U =
N∑

j=1

uj , V =
N∑

j=1

vj . (38)

In Fig. 1 we present the families for a number of parameter values λ. It is clearly visible
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8

1

2

3

U

V

Fig. 1: Families of equilibria for different values λ.

that the family of equilibria expands and shifts with increasing parameter λ, and its
form changes. We observe symmetry of all curves with respect to the horizontal line
V = 0. This is a consequence of a discrete symmetry which exists for the given choice of
parameters. In fact, equation (1) is invariant under the reflection

{x, u, v} 7→ {a

2
− x, u,−v}. (39)

In Fig. 2 we present the real parts of a number of greatest eigenvalues from the spectra
of equilibria. We parameterized the curve by arc coordinate along the family on ([0, 1]).
One can see that the spectrum varies when the point moves along the family. Hence, the
computed families are not the result of the action of a symmetry group. We also note the
complication of the spectrum with increasing λ. All states from the families presented
in Fig. 1 are transversally stable with respect to the family. There always exists a zero
eigenvalue corresponding to the direction tangential to the family. Thus, the direction
along the family of equilibria is a neutral one. The first instability on the family occurs
at λ = 7.

In Fig. 3 and Fig. 4 we present the distributions of u(x) and v(x) for a number of
stationary points on the family. One can see how the steady state varies. The solution for
u(x, t) may be symmetric with respect to the center of the interval [0, a] (even function
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Fig. 2: Real part of spectrum for equilibria on the family; λ = 1 (left) and λ = 2 (right).

w.r.t. a/2), and the corresponding distribution of v(x, t) is given by a skew-symmetric
curve (odd function w.r.t. a/2).
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Fig. 3: Selected solutions from the
family; λ = 1.
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Fig. 4: Selected solutions from the
family; λ = 2.

Fig. 5 demonstrates that the equilibria are really accessible through the solution of initial
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value problems. We assume the initial conditions

uj = A sin(
πxj

a
), vj = B sin(

πxj

a
), j = 1 · · ·N,

and solve the system of ordinary differential equations (35) by a Runge-Kutta method on
the time span [0, 4].
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Fig. 5: Attraction to the family of equilibria.

In Figures 5-7 an initial point is marked by a big dot, a trajectory is displayed by a dotted
line and a final position is marked by a circle. Because of the symmetry of the initial
distribution, the resulting phase portrait keeps the symmetry w.r.t. the line V = 0.

Note that deviation of parameters away from the requirements of Lemma 1 immedi-
ately leads to the destruction of the family – trajectories are attracted to a limited number
of isolated equilibrium points. This is illustrated in Fig. 6 and Fig. 7 where we use a value
of M v

22 not equal to −6 as Lemma 1 would imply for the given set of parameters.
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Fig. 6: Destruction of continuity due to loss of cosymmetry; M v
22 = −2.

All trajectories in Fig. 6 (M v
22 = −2) are attracted to two stable isolated equilibria. It is

interesting that the transient dynamics reproduces partially the continuous family curve.
There is no more a continuous family – but it looks as if the system ’remembered’ it. We
take time span T = 6 to get reasonably close to a steady situation in Fig. 6.
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Fig. 7: Destruction of continuouity due to loss of cosymmetry; M v
22 = −4.

In the case M v
22 = −4 the evolution is very slow, see Fig. 7, and one can observe a number

of the points are situated practically on the (lost) ’family’ curve. Here we see that the
time span T = 9 was insufficient to complete the transient process.

Figures 6 and 7 demonstrate that study of cosymmetry may be very useful for nearly
cosymmetrical cases for which the system has only a finite number of isolated equilibria.
It provides a better understanding of the dynamics and explains its essential features.

Another reason for the loss of continuity of the family of equilibria may be an inap-
propriate finite-difference approximation. To demonstrate that we put ζ = 6 instead of
correct value ζ = 1 which preserves the cosymmetry. We take a number points from the
family as initial conditions and integrate the system on the time interval [0, 120] up to
relaxation.
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V

0 40 80 120
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1
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V

Fig. 8: Destruction of continuity by bad choice of FDM parameter ζ = 6.

In the left part of Fig. 8 the initial and final states are marked by circles and stars,
respectively. The right part of Fig. 8 gives the dependence of the variable V on t. Note
that the transient process takes a long time, and moreover, that the trajectories are
located close to the family.

Our computations display three stable equilibria in the case of non-adequate approx-
imation of nonlinear terms. It is simple to check that the linear function (7) is not a
cosymmetry now, although it vanishes on isolated equilibria. We also detect that there
exist three unstable equilibria.
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The equilibrium with V = 0 has a symmetric distribution on u(x, t) and an antisym-
metric one on v(x, t) as shown in the last row in Fig. 3. Two other equilibria form a pair
without symmetry, but one of them transforms to the other under reflection w.r.t. a/2
(mirror symmetric pair).

This way, the continuous family of equilibria is transformed to a finite number of
isolated equilibria. The number and location of the isolated states depend on the deviation
from the parameter ζ = 1. We take the same initial points and ζ = −4 and repeat the
direct integration. One can see that the location of the equilibria is transformed in
comparison with Fig. 8. In this case the destruction of the continuous family also leads
to the appearance of three stable and three unstable equilibria lying in the vicinity of the
curve corresponding to the lost family.
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0 40 80 120
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0

1

t
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Fig. 9: Destruction of family due to bad FDM parameter ζ = −4

It should be mentioned that for ζ close to 1 we need a long-time integration to reach a
stable equilibrium.

For the application in population kinetics, we note that a trivial equilibrium would
assume constant population densities along the whole space. The results presented in
this section show that for the special choice of parameters, stable distributions may occur
while members of both groups move all the time due to diffusion – in order to level out the
distributions. These diffusive fluxes, however, are balanced by the growth/decay caused
by the flux of the respective other group, cf. Fig. 3 and Fig. 4.

Conclusion

Known examples of cosymmetric systems [1-10] include the planar problem of filtration
of an incompressible fluid in a saturated porous medium, the abstract Darcy model, and
some applications to analytical mechanics.

Here we considered a population model with two species of quite different behav-
ior. A system of two parabolic differential equations was formulated and continuous
non-symmetric families of equilibrium states were computed. We intend to extend the
proposed model to the case of two and three space dimensions.

Loss of cosymmetry either from inappropriate parameter choice or bad discretization
may lead to dynamics without a continuous family of equilibria. However, in a certain
sense, the behavior of the systems stays close to one with cosymmetry. Thus, the inves-
tigation of the family of equilibria brings insight to the dynamics of the system.
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