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Abstract

In database design, integrity constraints are used to express database seman-

tics. They specify the way by that the elements of a database are associated to

each other. The implication problem asks whether a given set of constraints

entails further constraints. In this paper, we study the finite implication

problem for cardinality constraints. Our main result is a complete character-

ization of closed sets of cardinality constraints. Similar results are obtained

for constraint sets containing cardinality constraints, but also key and func-

tional dependencies. Moreover, we construct Armstrong databases for these

constraint sets, which are of special interest for example-based deduction in

database design.
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1 Introduction

During the last few decades, the area of integrity constraints has attracted consid-

erable research interest in database theory. A large amount of different constraint

classes has been discussed in the literature and actually used in database design.

Integrity constraints are intended to describe the properties that a database must

respect to plausibly represent the underlying domain of interest. Specifying and en-

forcing integrity constraints helps to guarantee the correctness of the data collected

in the database.

Many papers in database theory exclusively deal with the implication problem, i.e.

the question ‘Given a set Σ of constraints and a further constraint σ, does every

database instance satisfying Σ also satisfy σ?’ We refer the reader to [3, 42, 47],

which are major comprehensive sources on database semantics and the emergence

of the implication problem in database theory.

In the sequel, we deal with cardinality constraints, which are among the most popular

constraint classes in conceptual database design. Cardinality constraints impose

restrictions on the number of relationships an object of a given type may be involved

in. Thus they limit the possible structure of a database. We refer the reader to the

surveys [39, 48] for details and to [13, 35, 38, 43, 49] for recent research papers.

The present paper is devoted to the implication problem for cardinality constraints.

Our goal is to provide efficient combinatorial methods for reasoning about sets of

cardinality constraints.

Cardinality constraints appear in various forms in most of the data models proposed

in the last three decades. In order to present our results in the exact context, we

shall use the language of the entity-relationship model. Since the appearance of

the seminal work of Chen [14], this data model has become the standard approach

towards conceptual database modeling. It is widely accepted now that database

systems are best designed first at a conceptual level. The result of this process is

a conceptual schema which describes the requirements that the desired database

must achieve, and serves as the basis for the following development phases. In

conceptual design great attention is devoted to the modeling of semantics, i.e. to the

specification of suitable integrity constraints. Cardinality constraints, in particular,

have already been present in the original paper of Chen [14]. Comprehensive text

books on entity-relationship modeling are [4, 15, 50].

Once declared, a conceptual schema can be mapped in an automatic way to a variety

of implementation targets such as a relational database. The relational data model,

which goes back to Codd [17], has a strong theoretical background which can be

reused in most other data models. Extended entity-relationship models support all

the major concepts of the relational model. For details and further discussion, we

refer to [50].

Codd [17] also introduced functional dependencies, which are to be considered as
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one of the major concepts of the relational model. In particular, normalization

theory up to BCNF is based on the idea of functional dependency. Among functional

dependencies, key dependencies are of utmost interest. They may be used to identify

the tuples in a relation.

Due to the their importance, functional dependencies are also available in extended

entity-relationship models. As pointed out in [50], results obtained from relational

database theory concerning functional dependencies can easily be reused. This is of

interest since the entity-relationship model is not only popular as an intuitive tool

for conceptual design, but may serve as a mathematical data model upon which real

database management systems are built.

In practice, the designer of a database will be confronted with the presence of con-

straints of either class. In order to ensure the correctness of a schema, the designer

has (among others) to check whether the specified constraint set is satisfiable. Un-

fortunately, efficient algorithms for consistency and implication checking are still

missing for this situation. But reasoning about a constraint set containing con-

straints from different classes happens to be significantly harder than handling the

classes separately. It is well-known that constraints from the classes under con-

sideration interact with each other. For example, key dependencies can be used to

express certain cardinality constraints, and vice versa. These interactions may cause

a database schema to exhibit undesirable properties.

A second objective of the present paper is to discuss the interplay between cardinality

constraints and key or functional dependencies. In particular, we provide methods

for reasoning about a set of cardinality constraints, key dependencies and certain

functional dependencies, namely non-unary functional dependencies. This enables

us to check whether a given constraint set implies further constraints of any of the

three classes.

This paper is organized as follows. Section 2 provides some preliminary notations.

In Section 3, we briefly describe the data model to be used. In Section 4, we give

a formal definition of the constraints mentioned above. Moreover, the consistency

and the implication problem for constraint classes are addressed. Sections 5 to 10

are devoted to the investigation of cardinality constraints. In Sections 11 and 12,

we study interactions of cardinality constraints and key or functional dependencies.

In Section 13, we discuss some problems concerning unary functional dependencies.

2 Preliminaries

2.1 Digraphs

In this section, we assemble basic terminology and known results to be used later on.

We shall start with some notions from graph theory. Let ~D = (V, A) be a digraph
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with vertex set V and arc set A. When a = (v, w) is an arc in A, then v is its initial

vertex and w is its terminal vertex.

A diwalk ~P from a vertex v = v0 to a vertex w = vk is a sequence of arcs (v0, v1),

(v1, v2), . . . , (vk−1, vk) in A. Here, k denotes the length of the diwalk. Again, v is

the initial vertex and w the terminal vertex of ~P . A diwalk is said to be empty if v

equals w and k = 0, while it is said to be closed if v equals w and k > 0. A diwalk

is a dipath if the vertices v0, v1, . . . , vk are mutually distinct. In particular, every

empty diwalk is a dipath. Analogously, a closed diwalk is a dicycle if the vertices

v1, . . . , vk are mutually distinct.

2.2 Dioids and Farkas’ lemma

To continue with, we collect some results from discrete optimization. Within this

paper, most calculations are performed using integers or rationals. By Nn and Qn

we denote the set of all integers and the set of all rationals, respectively, larger or

equal to n. Sometimes, it will be necessary to adjoin a new element ∞. We declare

z +∞ =∞+ z =∞, z∞ =∞z =∞ and z <∞ for every z ∈ Q.

Given two binary operations ⊕ and � on a set M , the triple (M,⊕,�) is a commu-

tative dioid (or path algebra) if M forms a commutative monoid with either of these

operations, and ⊕ is distributive with regard to �. Clearly, (Q0 ∪ {∞}, min, ·) is an

example of a commutative dioid. For further details on dioids, we refer to [30, 37].

A fundamental result on linear equations and inequations in Q0 is given by the

well-known lemma of Farkas, which we record here for further reference.

Theorem 1 (Farkas). Given a rational m-by-n-matrix A and a rational m-vector

b, there is a rational n-vector x ≥ o satisfying Ax = b if and only if we have bT y ≥ 0

for every rational m-vector y with AT y ≥ o.

Farkas’ lemma also yields a characterization for strict inequalities, which is usually

attributed to Motzkin, cf. [45].

Theorem 2 (Motzkin). Given a rational m-by-n-matrix A and a rational m-vector

b, there is a rational n-vector x ≥ o with positive component xd, and satisfying

Ax = b, if and only if we have bT y ≥ 0 for every rational m-vector y with AT y ≥ o,

such that bT y > 0 holds whenever the component (AT y)d is positive.

2.3 Transversal designs

We conclude with some notions from combinatorial design theory. For a mapping

π : X → Z and a subset Y of X, let π[Y ] denote the restriction of π to the domain

Y . Two mappings π and π′ with domain X agree in a component x ∈ X, when we

have π(x) = π′(x). Two mappings with domain X are disjoint, if they do not agree
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in any element of X. They are said to be different, if they disagree in at least one

element of X.

Given positive integers n and q, let T be a collection of q2 mappings from {1, . . . , n}
to {1, . . . , q}. We call T a transversal design TD(n, q) if any two of the mappings

agree in at most one component. The members of T are also known as the blocks of

the transversal design. Transversal designs have been widely studied in literature.

We refer the interested reader to [8, 18, 26], which are major comprehensive sources

for combinatorial design theory. Standard results are due to MacNeish [40], and

Chowla, Erdős and Straus [16].

Theorem 3 (MacNeish). Given a positive integer n, there exists a transversal

design TD(n, q) for every prime power q with q ≥ n− 1.

Theorem 4 (Chowla, Erdős, Straus). Given a positive integer n, there exists a

transversal design TD(n, q) for almost every positive integer q.

A set of q mutually disjoint blocks in a transversal design T is said to be a resolution

class. T is resolvable if it is decomposable into q resolution classes. It is noteworthy,

that every transversal design TD(n + 1, q) yields a resolvable transversal design

TD(n, q), cf. [8].

3 The data model to be used

The entity-relationship approach to conceptual design, first introduced by Chen [14],

considers the target of a database as consisting of entities and relationships. In this

section, we shall briefly review basic concepts of this approach. We restrict ourselves

to a characteristic subset of design primitives that happen to be essential for our

further investigation. For excellent surveys on entity-relationship modeling, we refer

to [42, 50].

Entities and relationships are objects that are stored in a database. Intuitively, enti-

ties may be seen as basic objects in the domain of interest, whereas relationships are

derived objects representing connections between other objects. Usually, a database

contains lots of objects with common properties. By classifying them and pointing

out their significant properties, we obtain object types that are used to model the

objects under discussion. All objects modeled by an object type v form an object set

vt. Its members are said to be instances of type v. Entities are instances of entity

types, while relationships are instances of relationship types.

3.1 Database schemas

All object types declared for some application, collectively, form a database schema.

Throughout this paper, a database schema is a finite digraph ~S = (V, L) without
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dicycles. Its vertices are the object types of the schema. Its arcs are said to be links.

Let (r, c) be a link in the schema. Then c is said to be a component of r. For every

object type r, let Co(r) denote the set of all its components.

A vertex e is an entity type if it does not admit any component, i.e. if Co(e) is

empty. Designing a database usually starts with specifying entity types to model

the basic real-world objects in the target of the database. All remaining vertices

are relationship types. Roughly speaking, each relationship type r reflects real-world

connections between objects of the types in Co(r).

The arity of an object type v is the number of its components. The order of v is the

maximum length of a dipath with initial vertex v. Obviously, entity types have arity

0 and order 0. Due to its definition, a database schema does not contain dicycles.

Thus for every relationship type r of order k, its components are of order k − 1 or

smaller. This property is known as the hierarchical structure of database schemas:

Every relationship type r is declared on the basis of types already specified, i.e. types

of smaller order.

Building Time Slot Course

Hall Professor

StudentLecture

Enroll

� ? j

Y 6 � j

Figure 1: The database schema for our example.

Example. Consider a small university database schema involving the en-

tity types Professor, Course, Hall, Building, Time Slot and Stu-

dent. On these object types we define a relationship type Lecture reflect-

ing assignments of professors to courses in combination with the dates and loca-

tions they take place at. The component set of Lecture is Co(Lecture) =

{Professor, Course, Hall, Building, Time Slot}. A second relationship

type Enroll with component set Co(Enroll) = {Student, Lecture} repre-

sents enrollments of students to offered lectures.

Figure 1 shows the corresponding database schema. As usual, entity types are drawn

as rectangles, and relationship types as diamonds. This representation is known as

the entity-relationship diagram of a database schema.

3.2 Populations and database instances

A population vt over an object type v is a finite set of objects represented by that

type. Since real-world databases are finite, we restrict ourselves to finite object sets
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throughout this paper.

Let r be a relationship type and Co(r) = {c1, . . . , cn} its component set. In the

entity-relationship model, relationship types are regarded as aggregations of their

components. In this vein, every relationship r of type r yields a mapping which

assigns an object ci of type ci to the component ci. We also write r(ci) = ci. The

objects r(ci) are said to be involved in r or to participate in r. For the sake of

convenience, we use the notation r = r(c1, . . . , cn) to refer to a relationship r with

r(c1) = c1, . . . , r(cn) = cn.

Example. By this convention, Ma007(Mullin, Cryptography, Big Hall,

Main Building, Tue7-9) is a relationship of type Lecture, and En1704(Ron,

Ma007) is a relationship of type Enroll.

A population rt over r is a finite set of relationships of type r. Usually, we suppose

the objects r(ci) for every relationship r ∈ rt to be chosen from a prespecified object

set ct
i over ci. Thus a population rt gives rise to a set of named mappings from Co(r)

to the cartesian product ct
1 × . . . × ct

n. In addition, we call ct
i a codomain of the

population rt.

A database instance or database, for short, ~St contains a population vt for each object

type v in the database schema ~S. It suggests itself that in a database instance ~St, the

codomains of a relationship type r are just the populations ct
i over its components

ci ∈ Co(r).

3.3 Further constituents of the data model

Above we gave an informal introduction to database schemas in the entity-

relationship model. Usually, an entity type is characterized by attributes repre-

senting the properties of the instances of this type. The same applies to relationship

types: In addition to their components they may possess attributes to describe rela-

tionship instances in greater detail. In this paper, however, the explicit specification

or absence of attributes has no impact on the results. If desired, attributes may be

considered like components. We may even specify cardinality constraints for links

between object types and their attributes.

For some applications it is useful to allow parallel links in the database schema.

Then an object type occurs several times as a component of the same relationship

type. To avoid confusion, roles are associated with the different occurrences. As an

example consider a relationship type Descendent whose components are both of

type Person. The roles of the two components could be Parent and Child. Then the

database schema is a digraph with multiple arcs. Though not always explicitly set

out, all our considerations do also apply to this case. In particular, the complexity

of the algorithms determined below takes into account the possibility of multiple

arcs.
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4 Integrity constraints

In this section, we give formal definitions of the constraints to be studied. Through-

out, let r be a relationship type, and rt be a population with codomains ct for the

components c ∈ Co(r).

4.1 Cardinality constraints

For every object c in the codomain ct, let deg(rt, c) denote the number of relation-

ships r in rt with r(c) = c. We call deg(rt, c) the degree of c with respect to the

population rt.

A cardinality constraint on r is a statement card(r, c) = M , where M is a set of

non-negative integers. The population rt satisfies this constraint if, for every object

c in the codomain ct, the degree deg(rt, c) lies in M .

Cardinality constraints are often reflected graphically in the entity-relationship di-

agram: Given a cardinality constraint card(r, c) = M , the corresponding link (r, c)

is labeled with the set M . If no cardinality constraint is specified for a link (r, c),

we may assume the trivial cardinality constraint card(r, c) = N0. It is easy to see

that this does not represent a real constraint, but is just a technical agreement.

A cardinality constraint is said to be finite if the set M is finite, and infinite other-

wise. In practice, the sets M are often intervals, i.e. of the form {α, α+ 1, . . . , β} or

{α, α + 1, . . .}.

Example. A travel agency is going to organize sight-seeing tours through Europe.

Each of the offered tours visits a number of Europe’s most popular cities. The

itinerary of the tours for every week is planned according to the database schema

in Figure 2. It contains three entity types Tour, City and Guide and two rela-

tionship types Start and Visit. Relationships of type Start determine in which

city a certain tour starts, relationships of type Visit specify that a certain city is

visited during a given tour.

Tour

City

Visit

StartGuide

�{3, 4, 7}

-
{4, .., 10}

6{1}
?

�
0

�
{0, ..,5}

Figure 2: A database schema with labels for the cardinality constraints.

Obviously, every tour has exactly one starting point. This motivates the cardinality

constraint card(Start, Tour) = {1}. Further the management decided that every

tour visits 3 or 4 cities. But, from time to time they offer special tours visiting 7

cities to attract new clients. Together, this is expressed by the cardinality constraint
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card(Visit, Tour) = {3, 4, 7}. Figure 2 shows all cardinality constraints specified

by the travel agency.

4.2 Key dependencies

A key dependency on r is a statement r : X → r where X is a non-empty subset of

Co(r). The population rt satisfies this key dependency if the restrictions r[X] are

mutually distinct for all relationships r in rt. In this case, the subset X is called a

key for the population rt. A key dependency is said to be unary if X consists of a

single component only, and non-unary otherwise.

4.3 Functional dependencies

Finally, a functional dependency on r is a statement r : X → Y where both, X

and Y are non-empty subsets of Co(r). The population rt satisfies this functional

dependency if we have r1[Y ] = r2[Y ] whenever r1[X] = r2[X] holds for any two

relationships r1 and r2 in rt. Again, a functional dependency is said to be unary if

X consists of a single component only, and non-unary else. Furthermore, we call a

functional dependency trivial if Y is a subset of X.

A population rt satisfying the key dependency r : X → r also satisfies the functional

dependency r : X → Co(r). In fact, most functional dependencies occurring in

practice arise from the specification of key dependencies.

Example. Below we give a small example to provide some motivation for the

issues we are going to tackle. In the university schema, constraints have to be

declared in order to represent the politics of the university and to meet the re-

quirements of the schedule. Let us give some examples. The cardinality constraint

card(Lecture, Professor) = {3, . . . , 6} states that every professor gives 3 to 6

lectures per term. If every professor always uses the same hall per course, then the

non-unary functional dependency Lecture:{Professor, Course} → {Hall}
holds. Since every lecture hall is situated in a single building, we also have the

unary functional dependency Lecture:{Hall} → {Building}. Moreover, know-

ing the hall and the time slot uniquely determines the given lecture. This may be

expressed by the key dependency Lecture:{Hall, Time Slot} → Lecture.

Other constraints may be declared due to the schedule of the university or deduced

from the ones explicitly stated. The questions we deal with are whether such a

set of constraints is conflict-free, and which additional constraints may be deduced

without being explicitly stated.

Let C,K and F denote the classes of all cardinality constraints, key dependencies

or functional dependencies definable on the relationship types in a given database

schema ~S. Below, if we refer to a constraint, we always mean one from these classes.

A database ~St satisfies a certain constraint σ, if σ is satisfied by the corresponding
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population rt in ~St.

4.4 Satisfiability, consistency and implication

The typical situation in database design is that we are given a database schema ~S

together with an application-dependent constraint set Σ declared on it. A database

instance ~St is only meaningful for the application under discussion, if it satisfies all

constraints in Σ. We call such a database instance legal for Σ. Consequently, Σ is

satisfiable if it admits at least one legal database instance.

At this point, a brief remark is called for. As mentioned earlier, we only pay attention

to finite databases. When we speak of satisfiability, consistency or implication, we

always mean finite satisfiability, finite consistency and finite implication.

The satisfiability problem for a constraint class Z is to decide whether a given set

Σ ⊆ Z is satisfiable or not. For the constraint classes studied in the present paper,

this problem is fairly easy. Obviously, the empty database is legal for every set of

cardinality constraints, key and functional dependencies. But, as pointed out in

[38], it is usually not enough to consider satisfiability: It may happen that there is

an object type in ~S with empty population in every legal database instance. Such

an object type is said to be redundant for Σ. Examples for cardinality constraints

are given in [35, 38].

For practical reasons, we are interested in efficient methods to detect redundant

object types. With this, we may assist the designer of a database in order to delete

redundant parts of the schema or to repair the specified constraint set. For some

applications, one explicitly asks for fully-populated legal database instances, i.e.

legal databases where every object type has non-empty population. A constraint set

Σ admitting such a database instance is said to be consistent.

The consistency problem for a constraint class Z is to decide whether a given set

Σ ⊆ Z is consistent or not. For special subclasses of cardinality constraints, the

consistency problem has been considered e.g. in [34, 38, 49]. A general result was

presented in [35]. It is well-known, that there exist inconsistent sets of cardinality

constraints. On the other hand, sets of key or functional dependencies are always

consistent. However, the situation may change dramatically if they come together

with cardinality constraints.

Example. Consider the schema given in Figure 2. The specified set of cardinality

constraints is consistent. Now add the key dependency Visit:{City} → Visit.

The resulting constraint set turns out to be inconsistent, and Guide becomes the

only non-redundant object type. We discuss this observation in Section 11.

If Σ is a constraint set and σ a single constraint, then Σ semantically implies σ

(denoted by Σ |= σ) if every legal database instance for Σ satisfies σ, too. Conversely,

Σ 6|= σ denotes that there is a legal database instance (a certificate) for Σ violating σ.
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The implication problem for a constraint class Z is to decide whether a given set

Σ ⊆ Z implies σ ∈ Z or not. A constraint set Σ is Z-closed if σ ∈ Σ holds whenever

Σ |= σ holds for every constraint σ ∈ Z.

The determination of semantically closed sets is of particular interest. Clearly, Σ |= σ

holds if and only if σ is in the closure of Σ. Hence the detection of the closed sets in

a constraint class Z completely solves the implication problem for Z. Moreover, it

enables us to decide whether constraint sets are semantically equivalent, i.e. whether

we have Σ1 |= Σ2 as well as Σ2 |= Σ1. Database designers usually look for some

equivalent constraint set which is better for control and maintenance in real-life

databases.

It is sometimes argued, that the consistency problem and the implication problem are

two sides of the same coin, cf. [51]. Checking implication can be done by adding the

negation of σ to Σ and testing the resulting set. Conversely, checking inconsistency

can be done by testing implication of an unsatisfiable constraint. However, this is

only half of the truth. In general, the negation of a constraint from a class Z is not

in Z again. For example, the negation of a cardinality constraint is an existence

constraint, the negation of a functional dependency is a functional independency.

For a discussion of this issue, we refer to [9, 50].

4.5 Armstrong databases

Informally, Armstrong databases are legal databases capturing all implications of

a constraint set Σ in Z. Recall that, if Σ 6|= σ holds, there is a legal database (a

certificate) for Σ violating σ. However, there is no a priori guarantee that there

exists a single database serving as a certificate for all constraints σ ∈ Z not implied

by Σ.

Let Z be a constraint class and Σ be some constraint set. A database ~St is Z-

Armstrong for Σ if it is legal for Σ and satisfies a constraint σ ∈ Z if and only if

Σ |= σ.

Assume, we have found an Armstrong database for an initial constraint set Σ. In

order to test whether a constraint follows from Σ we may test whether it holds in this

Armstrong database and decide accordingly. Thus the implication problem reduces

to verification in a single example. The concept of Armstrong databases is closely

connected to database mining, i.e. the use of given databases for the extraction

of constraints. This is important for design-by-example as suggested by Mannila

and Räihä [41]. In Section 10, we shall consider Armstrong databases for sets of

cardinality constraints.

A useful tool to establish Armstrong databases are disjoint unions, that is, unions of

mutually disjoint database instances over the same schema. It is not difficult to see

that the union satisfies a given cardinality constraint (key dependency, functional

dependency) if and only each of the participating database instances does so. This
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is a valuable property of the constraint classes under discussion.

5 Reasoning about cardinality constraints

5.1 The main result

In this section, we start investigating the implication problem for cardinality con-

straints. Suppose we are given a set ΣC of cardinality constraints specified on a

database schema ~S. In the subsequent sections we are going to prove the correct-

ness of the following implications for every link (r, c) in ~S:

(C1) ΣC |=
(

card(r, c) = N0

)

.

(C2) If ΣC contains card(r, c) = M , then ΣC |=
(

card(r, c) = M ′
)

for every superset

M ′ ⊇M .

(C3) If ΣC contains card(r, c) = M for all M ∈ M, then ΣC |=
(

card(r, c) =
⋂

M∈M M
)

.

(C4) If c is redundant for ΣC , then ΣC |=
(

card(r, c) = ∅
)

.

(C5) If r is redundant for ΣC , then ΣC |=
(

card(r, c) = {0}
)

.

(C6) If the link (r, c) lies on a subcritical dicycle for ΣC , then ΣC |=
(

card(r, c) =

{α(r, c)}
)

.

(C7) If the reverse arc of the link (r, c) lies on a subcritical dicycle for ΣC , then

ΣC |=
(

card(r, c) = {β(r, c)}
)

.

Details on these rules as well as missing notions will be given later on. The correct-

ness of (C1) to (C3) is evident. As an example consider a population rt satisfying

both card(r, c) = {3, . . . , 7} and card(r, c) = {d ∈ N0 : d even}. Every object c in

the codomain ct has degree deg(rt, c) which is even and between 3 and 7, i.e. is either

4 or 6. Hence, we may conclude that rt satisfies card(r, c) = {4, 6}. This simple

implication is formalized in (C3). We record this observation for further reference.

Lemma 5. (C1), (C2) and (C3) are correct.

The major objective of the present paper is to prove the following characterization

for closed sets of cardinality constraints.

Theorem 6. A set ΣC of cardinality constraints specified on a database schema ~S

is C-closed if and only if it contains all constraints implied by ΣC due to the rules

(C1) to (C7).
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5.2 Candidate degrees

Throughout, let ~S = (V, L) be a database schema, and ΣC be a set of cardinality

constraints declared on ~S. CanDeg(r, c) denotes the intersection of all sets M such

that card(r, c) = M belongs to ΣC . If no cardinality constraint is specified for the

link (r, c), we put CanDeg(r, c) = N0. By virtue of (C3) or (C1), we have ΣC |=
(

card(r, c) = CanDeg(r, c)
)

. This constraint is the ‘sharpest’ possible obtained from

ΣC via the rules (C1) to (C3) only. Every original constraint may be reconstructed

from this one by applying (C2). The values in CanDeg(r, c) will be called the

candidate degrees for the objects in the codomain ct, with respect to ΣC .

Lemma 7. ΣC and the set ΣCan
C = {card(r, c) = CanDeg(r, c) : (r, c) ∈ L} of

cardinality constraints are semantically equivalent.

Proof. ΣC |= ΣCan
C follows immediately from Lemma 5. Moreover, in each database

instance ~St satisfying ΣCan
C , we have deg(rt, c) ∈ CanDeg(r, c) ⊆M for every set M

with card(r, c) = M given in ΣC . This verifies ΣCan
C |= ΣC .

Note that ΣCan
C contains exactly one constraint per link. In practice, it usually

suffices to specify only one cardinality constraint per link. Then the generation of

ΣCan
C turns out to be completely trivial.

Finally, we introduce some additional notations. For every link (r, c), let α(r, c)

and β(r, c) denote the infimum and the supremum of CanDeg(r, c), respectively. If

CanDeg(r, c) is infinite, we have β(r, c) = ∞. If CanDeg(r, c) is empty, we have

α(r, c) =∞ and β(r, c) = 0.

The subsequent sections devoted to the proof of our main result are organized as

follows. In Section 6, we introduce representation graphs and admissible functions,

which turn out to be major tools to construct legal database instances. In Section 7,

we present a procedure to detect object types with empty population in all legal

database instances. These object types are redundant and give rise to the rules

(C4) and (C5).

In Section 8, we continue the study of admissible functions. In Section 9, we point

out the importance of subcritical dicycles. Their investigation results in the rather

involved rules (C6) and (C7). Finally, in Section 10, we show the implication rules

collected so far to be sufficient for the characterization of closed sets of cardinality

constraints. This characterization yields the desired solution to the finite implication

problem.

6 Representation graphs and admissible functions

The empty database is legal for every set of cardinality constraints. However, empty

databases are of minor practical interest. In this section, we study the existence of



14 Sven Hartmann

legal database instances with prespecified population sizes. Most of the results here

happen to be rather technical, but form the basis of what follows. In particular,

Theorem 11 is of major interest for future investigation.

6.1 Representation graphs

We start with some graph-theoretical notions which turn out to be useful in the

future. A clique graph is a graph where every connected component is a complete

graph. Component means here a maximal connected subgraph, which should not

be confused with the components of relationship types. To avoid irritation, we shall

use the notion clique to refer to the connected components of a clique graph.

Suppose now, we are given a population rt. For every component c ∈ Co(r) we con-

sider a graph Gt(r, c) whose vertices are the relationships in rt. Two relationships r1

and r2 are connected by an edge in Gt(r, c) if and only if r1(c) = r2(c) holds. Obvi-

ously, Gt(r, c) is a clique graph, where each clique corresponds to exactly one object

c in the codomain ct. We call Gt(r, c) the representation graph of the population rt

for the link (r, c). Given some clique graph G, it is easy to construct a population

rt whose representation graph Gt(r, c) is isomorphic to G.

Representation graphs may be used to reflect cardinality constraints:

Lemma 8. Let rt be a population with codomain ct for the component c ∈ Co(r).

(i) If rt satisfies the cardinality constraint card(r, c) = M , then the size of every

clique in Gt(r, c) lies in M .

(ii) Conversely, if the size of every clique in Gt(r, c) belongs to M , then rt satisfies

the cardinality constraint card(r, c) = M ∪ {0}. If, in addition, the number

of cliques in Gt(r, c) equals the size of the codomain ct, then rt even satisfies

card(r, c) = M .

Proof. In Gt(r, c), every clique corresponds to exactly one object c in the codomain

ct. The vertices of this clique are just the relationships in which c participates in.

The clique is of size deg(rt, c). If card(r, c) = M is satisfied, we have deg(rt, c) ∈M .

Thus the clique size lies in M . On the other hand, Gt(r, c) contains a clique for every

object in the codomain ct, but those which do not participate in any relationship in

rt. This proves the second observation. If the number of cliques in Gt(r, c) equals

the size of ct, then every object c in ct participates in at least one relationship in

r.

Among others, Lemma 8 points out a peculiarity of the candidate degree 0. Given a

population rt it is easy to decide a cardinality constraint card(r, c) = M , supposed

that M contains 0. But if 0 is not in M we need to know the codomain ct, or to be

more precise, the size g(c) of this codomain.
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6.2 Databases with prespecified population sizes

Henceforth, let ΣC be a set of cardinality constraints declared on a database schema
~S = (V, L).

Lemma 9. Suppose we are given an object set ct of size g(c) for every component

c ∈ Co(r) of a relationship type r. Then there is a population rt with codomains ct,

such that rt is of size g(r) and satisfies ΣC , if and only if for every link (r, c) there

are non-negative integers xd, with d running over the set CanDeg(r, c) of candidate

degrees, such that

∑

d∈CanDeg(r,c)

xd = g(c), (1)

∑

d∈CanDeg(r,c)

dxd = g(r) (2)

hold.

Proof. (Necessity.) Suppose we are given a population rt of size g(r) which satisfies

ΣC . Consider a link (r, c). Let xd count the number of all objects c in the codomain

ct with degree deg(rt, c) = d. Of course, the degree of every object c belongs to

CanDeg(r, c). This implies (1). Clearly, dxd gives us the number of those relation-

ships r in rt, whose component c = r(c) is of degree deg(rt, c) = d. Thus we obtain

(2).

(Sufficiency.) Suppose, for every link (r, c), we are given non-negative integers xd

satisfying (1) and (2). We aim at constructing a population rt with codomains ct

containing relationships r1, r2, . . . , rg(r).

For every link (r, c), consider a clique graph G with g(r) vertices and with exactly

xd cliques of size d, for every d > 0 in CanDeg(r, c). Now we assign the vertices of G

to the relationships r1, . . . , rg(r), and the cliques of G to the objects in the codomain

ct. Thus G becomes the representation graph Gt(r, c) for the link (r, c). Due to (1),

the number of cliques in G is at most g(c). It equals g(c) exactly when 0 is not a

candidate degree.

By Lemma 8, rt satisfies the cardinality constraint card(r, c) = CanDeg(r, c). Con-

sequently the same holds for every cardinality constraint in ΣC specified for the link

(r, c).

As seen in the proof of Lemma 9, the question whether there is a suitable population

rt with given codomains ct merely depends on the sizes g(c) of the codomains. This

motivates a two-step approach towards the construction of legal database instances.

In a first step, we specify the population size g(v) for every object type v. In a

second step, we associate the relationships in each population rt to the objects in

the codomains ct as described above. The following result summarizes the demands
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on the population sizes in order to facilitate the construction of a legal database

instance.

Theorem 10. Given a function g : V → N0, there is a legal database instance ~St

for ΣC with populations vt of size g(v), v ∈ V , if and only if for every link (r, c) in
~S there are non-negative integers xd satisfying the equations (1) and (2).

Proof. In a database instance ~St, the codomains ct of a population rt over a rela-

tionship type r are just the populations over the object types c ∈ Co(r). Thus the

claim is an easy consequence of Lemma 9.

Unfortunately, it seems to be rather difficult to check whether a function g meets

the conditions of Theorem 10. However, these conditions may be relaxed when we

are satisfied with legal database instances whose population sizes are prespecified up

to a common multiple. Though some information is thereby sacrificed, the result is

sufficiently rich for our purposes. We obtain the following consequence of Theorem

10 by applying the lemma of Farkas.

Theorem 11. Given a function g : V → Q0, there is a positive integer λ and a legal

database instance ~St for ΣC with populations vt of size λg(v), v ∈ V , if and only if

for every link (r, c) in ~S we have

g(r) = 0 if g(c) = 0, (3)

α(r, c) ≤
g(r)

g(c)
≤ β(r, c) if g(c) > 0. (4)

Proof. (Necessity.) Suppose there is a legal database instance ~St and some positive

integer λ such that the populations in ~St are of size λg(v), respectively. Both (3)

and (4) are consequences of (1) and (2). Note that for empty sets CanDeg(r, c) of

candidate degrees, (1) and (2) immediately imply g(c) = g(r) = 0.

(Sufficiency.) Suppose g satisfies the conditions (3) and (4) for every link. The idea

is to apply Theorem 10.

For our purposes here, it happens to be inconvenient that some of the sets

CanDeg(r, c) might be infinite. Within this proof we restrict ourselves to finite

subsets: If CanDeg(r, c) is infinite, we pick some integer β ′(r, c) ∈ CanDeg(r, c)

such that

g(r)/g(c) < β ′(r, c)

holds whenever g(c) > 0. Define

CanDeg′(r, c) = {d ∈ CanDeg(r, c) : d ≤ β ′(r, c)}.

For the sake of simplicity, we also put CanDeg′(r, c) = CanDeg(r, c) and β ′(r, c) =

β(r, c) for all finite sets CanDeg(r, c) of candidate degrees.
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Consider a link (r, c). By the lemma of Farkas there exist non-negative rationals xd

satisfying the equations
∑

d∈CanDeg′(r,c)

xd = g(c),

∑

d∈CanDeg′(r,c)

dxd = g(r),

if and only if the inequality

pg(c) + qg(r) ≥ 0 (5)

holds for all rationals p, q satisfying p + dq ≥ 0 for every candidate degree d ∈
CanDeg′(r, c).

It remains to show that (3), (4) and p + dq ≥ 0 for each d ∈ CanDeg′(r, c) give us

(5). If g(c) = 0 then (3) yields g(r) = 0, and condition (5) trivially holds. Otherwise

suppose g(c) > 0. We distinguish two cases. If q ≥ 0, we obtain

p +
g(r)

g(c)
q ≥ p + α(r, c)q ≥ 0,

since α(r, c) is in CanDeg′(r, c). If q ≤ 0, we obtain

p +
g(r)

g(c)
q ≥ p + β ′(r, c)q ≥ 0,

since β ′(r, c) lies in CanDeg′(r, c). In both cases we derive (5). Hence we may apply

the lemma of Farkas. For the remaining candidate degrees d not in CanDeg′(r, c),

we simply put xd = 0. This gives us (1) and (2).

However, the function g is only a rational one. Moreover, the values xd ensured by

the lemma of Farkas are rationals. We need integers to use Theorem 10. Therefore

we have to find is a suitable integer λ > 0 such that all the values λxd as well as

all the values λg(v) are integers. The idea is to choose λ as a common multiple of

all these rationals. Applying Theorem 10 to the integral function λg concludes the

proof.

We call a function g : V → Q0 admissible for ΣC if it meets (3) and (4) for every link

(r, c). By Theorem 11, g is admissible for ΣC if and only if we can find a positive

integer λ and a database instance ~St with population sizes λg(v) such that ~St is

legal for ΣC .

Finally, we record two simple observations, which are consequences of Theorem 11.

Lemma 12. Let g be an admissible function for ΣC . Then g satisfies α(r, c)g(c) ≤
g(r) ≤ β(r, c)g(c) for a link (r, c) whenever CanDeg(r, c) is non-empty.

Proof. The claim follows by (4) when g(c) > 0, and by (3) when g(c) = 0 and

α(r, c) < ∞. But, α(r, c) is finite exactly when CanDeg(r, c) 6= ∅. This concludes

the proof.
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Lemma 13. Let g1 and g2 be admissible functions for ΣC , and µ1 and µ2 be non-

negative rationals. Then g = µ1g1 + µ2g2 is admissible for ΣC , too.

Proof. The claim can be verified by the help of Theorem 11. However, it is easier

to argue as follows. Since gi (i = 1, 2) is admissible, we find an integer λi and a

legal database instance ~Sti for ΣC with population sizes λigi(v). The disjoint union

of µi copies of ~Sti is again legal for ΣC . Hence µigi is again admissible. Similarly,

the disjoint union of λ2µ1 copies of ~St1 and λ1µ2 copies of ~St2 is again legal for

ΣC and has population sizes λ1λ2(µ1g1(v) + µ2g2(v)). Consequently, µ1g1 + µ2g2 is

admissible.

7 Redundant object types

Throughout this section, let ΣC be a set of cardinality constraints specified on a

database schema ~S = (V, L). An object type v is said to be redundant for ΣC

if its population vt is empty in every database instance ~St which is legal for ΣC .

This corresponds to the identity g(v) = 0 which has to be met by every admissible

function g for ΣC . Lemma 13 immediately provides the following observation.

Lemma 14. There is an admissible function g for ΣC satisfying g(v) > 0 for every

non-redundant object type v.

In Section 5 we claimed the following implications for every link (r, c), which make

use of redundant object types:

(C4) If c is redundant for ΣC , then ΣC |=
(

card(r, c) = ∅
)

.

(C5) If r is redundant for ΣC , then ΣC |=
(

card(r, c) = {0}
)

.

Lemma 15. (C4) and (C5) are correct.

Proof. Let ~St be a database instance which is legal for ΣC . If the population ct is

empty, then the set of degrees deg(rt, c) happens to be empty when c runs over the

(empty) set ct. This provides (C4). If the population rt is empty, then no object in

ct can participate in a relationship in rt. This gives us (C5).

7.1 Ingredients from combinatorial optimization

In the sequel, we shall use methods from combinatorial optimization to determine

all redundant object types for the given constraint set ΣC . Consider the database

schema ~S = (V, L). For every link ` = (r, c), we define its reverse arc `−1 = (c, r).

Let L−1 denote the set of all reverse arcs, and put A = L ∪ L−1. We now turn our
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attention to the resultant digraph ~D = (V, A), the symmetric digraph of ~S. On its

arc set A we define a weight function ω : A→ Q0 ∪ {∞} by

ω(`) =







∞ if α(r, c) = 0,

0 if α(r, c) =∞,
1

α(r,c)
otherwise,

ω(`−1) = β(r, c),

(6)

for the link ` = (r, c). This weight function may easily be extended to diwalks by

setting

ω(~P ) =
k

∏

i=1

ω((vi−1, vi))

for the diwalk ~P with arcs (vi−1, vi). If ~P is an empty diwalk, we put ω( ~P ) = 1.

Example. Figure 3 shows a database schema ~S together with its symmetric digraph
~D. We labeled every arc a in ~D by its weight ω(a).
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Figure 3: A database schema ~S with cardinality constraints and its symmetric di-

graph ~D.

For any two object types v and w, we now define the distance from v to w by

dist(v, w) = inf{ω( ~P ) : ~P is a diwalk from v to w in ~D}.

Lemma 16. A function g : V → Q0 is admissible for ΣC if and only if it satisfies

(3) and

g(w) ≤ g(v)dist(v, w) (7)

for any two object types v and w.

Proof. (Necessity.) Let g be admissible. We have (3) and (4) for every link ` = (r, c),

and want to conclude the inequalities

g(c) ≤ g(r)ω(`), (8)

g(c) ≤ g(r)ω(`−1). (9)

If g(c) = 0, both inequalities trivially hold. If g(c) > 0, the right hand side of (4)

yields (9). Similarly, the left hand side of (4) gives us (8) when 0 < α(r, c) < ∞.
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Moreover, α(r, c) =∞ may be excluded due to g(c) > 0, whereas (8) is trivial when

α(r, c) = 0. By induction, we obtain g(w) ≤ g(v)ω( ~P ) for every diwalk ~P from a

vertex v to a vertex w. This gives us (7).

(Sufficiency.) Suppose (3) and (7) are true. Applying inequality (7) to a link

` = (r, c) immediately yields (8) and (9). It remains to show (4). Therefore, we

suppose g(c) > 0. The right hand side of (4) is a consequence of (9), while the

left hand side follows from (8) when 0 < α(r, c) < ∞. Again α(r, c) = ∞ may be

excluded due to g(c) > 0, whereas the claim becomes trivial for α(r, c) = 0. This

proves g to be admissible.

If we restrict ourselves to dipaths, we may define the elementary distance from v to

w by

edist(v, w) = inf{ω( ~P ) : ~P is a dipath from v to w in ~D}.

In particular we have edist(v, v) = 1 for every vertex v, since the empty diwalk from

v to v is the only dipath from v to v. The interplay between both definitions of

distances is illustrated by the following result. A dicycle is said to be absorbing or

critical for ΣC if its weight is less than 1.

Lemma 17. Let v and w be object types in ~D.

(i) If there is a diwalk from v to w in ~D containing an absorbing dicycle, we have

dist(v, w) = 0.

(ii) Conversely, if none of the diwalks from v to w in ~D contains an absorbing

dicycle, then dist(v, w) = edist(v, w) holds.

Proof. (i) Suppose there is a diwalk ~P from v to w containing an absorbing dicycle ~C.

Then ~C has weight ω( ~C) < 1. On traversing ~C not only once but arbitrary often, we

obtain diwalks of arbitrary small (non-negative) weight. This proves dist(v, w) = 0

as claimed.

(ii) By definition, dist(v, w) ≤ edist(v, w) holds. Assume we have strict inequal-

ity. Then there is at least one diwalk from v to w, whose weight is smaller than

edist(v, w). Among all these diwalks, let ~P be one with a minimum number of arcs.

Due to the assumption, ~P is not a dipath but contains some dicycle ~C. Consider

the diwalk ~P ′ obtained from ~P by deleting all arcs in ~C. We have

ω(~P ′)ω( ~C) = ω(~P ) < edist(v, w) ≤ ω( ~P ′),

since ~P ′ has fewer arcs than ~P . Thus the dicycle ~C has weight ω( ~C) < 1 and is

absorbing which contradicts the presumption of (ii). Consequently, dist(v, w) =

edist(v, w) is true.

This lemma, in addition, shows that all distances in ~D belong to Q0 ∪ {∞}. As

mentioned in Section 2, the triple (Q0 ∪{∞}, min, ·) is a commutative dioid. In the
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case of weight functions mapping the arc set to a dioid, the emergence of absorb-

ing dicycles has been thoroughly discussed in combinatorial optimization, cf. [30].

Therein, the reader will also find a couple of results similar to Lemma 17.

7.2 Determination of redundant object types

We now present a characterization of all redundant object types for the constraint

set ΣC .

Theorem 18. An object type w is redundant for ΣC if and only if one of the following

three conditions holds:

(i) There is an object type v with dist(v, w) = 0.

(ii) There is a redundant object type u and a link from w to u.

(iii) There is a redundant object type v with dist(v, w) <∞.

Proof. (Necessity.) Suppose an object type w is redundant. Then every admissible

function g satisfies g(w) = 0. Our objective is to construct an admissible function g

such that g(w) = 0 holds only if one of the conditions (i) to (iii) applies.

Let Red0 be the set of all vertices in ~D satisfying (i). From Red0, we obtain Red by

applying (ii) and (iii) as long as possible. Since ~S is finite, this procedure terminates

after a finite number of steps. For all vertices w in Red, we put g(w) = 0. For every

other vertex v, we define

g(v) = min{dist(u, v) : u ∈ V }.

Clearly, g(v) > 0 holds for all vertices v not in Red. It remains to show that g is

admissible by checking (3) and (7).

Let ` = (r, c) be any link with g(c) = 0. Then c is in Red, and by (ii) we also have

r in Red. This gives us g(r) = 0 and thus (3).

Next we turn our attention to (7). If w ∈ Red, we have g(w) = 0 and the inequality

trivially holds. If v ∈ Red and dist(v, w) < ∞, then w belongs to Red due to (iii)

and (7) is true. Otherwise, if v ∈ Red but dist(v, w) =∞, the claimed inequality is

trivial again. Let us now assume that neither v nor w is in Red. For every vertex

u ∈ V , we have

dist(u, w) ≤ dist(u, v)dist(v, w)

min{dist(u, w) : u ∈ V } ≤ min{dist(u, v) : u ∈ V }dist(v, w)

g(w) ≤ g(v)dist(v, w).

Hence condition (7) holds. This shows g to be admissible. Since g(w) = 0 holds

only for the vertices in Red, every redundant object type belongs to Red as claimed.
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(Sufficiency.) We have to prove that each of the three conditions forces w to be

redundant. For that, we show g(w) = 0 for every admissible function g. If (i) holds,

then Lemma 16 provides g(w) = 0 due to (7). If (ii) holds, we apply (3) to derive

g(w) = 0. Finally, let (iii) be true. Since g(v) = 0, Lemma 16 again implies g(w) = 0

due to (7). This proves w to be redundant in all three cases.

It is noteworthy, that the admissible function g constructed to verify Theorem 18 is

an example for the claim of Lemma 14.
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Figure 4: A database schema ~S containing redundant object types for the specified

cardinality constraints.

Example. Consider the set ΣC of cardinality constraints specified on the database

schema in Figure 4. In the symmetric digraph ~D we have edist(r2, e1) = 1/3, but

dist(r2, e1) = 0. This is caused by the absorbing dicycle ~C from r2 via e1, r1 and

e2 back to r2. Its weight is ω( ~C) = 5/12. Consequently, e1 is redundant for ΣC .

Similarly all the object types in ~C turn out to be redundant. On the other hand, e3

is not redundant.

To apply Theorem 18 in practice, we need an efficient algorithm to calculate the

distances in the digraph ~D. This question has been widely studied in combinatorial

optimization, and is also known as the all-pairs-shortest-distance problem. For an

overview, we refer to [30, 37]. The difficulty in computing the distance between two

vertices is that the number of diwalks connecting them might be infinite. In many

cases, however, it suffices to consider dipaths. For our purposes here, Lemma 17

proposes an appropriate way of computing distances which is based on the inspection

of absorbing dicycles.

In the literature, a plenty of algorithms has been suggested to compute the distances

in a digraph. A major source book on this topic is again [30]. Recent results

including new subcubic algorithms for this problem are to be found in [46]. We

present here a variation of an algorithm by Noltemeier [44], which was originally

suggested for the dioid (R ∪ {∞}, min, +), but may easily be formulated for the

dioid (Q0 ∪ {∞}, min, ·).

Algorithm 19 (cf. [44]). Suppose we are given the digraph ~D = (V, A) and the

weight function ω : A→ Q0∪{∞}. The algorithm determines the distance dist(v, w)

for every pair of vertices in ~D:
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1. for v ∈ V do for w ∈ V do δ(v, w)←∞; od; od;

2. for u ∈ V do δ(u, u)← 1; od;

3. for a = (v, w) ∈ A do δ(v, w)← min{δ(v, w), ω(a)}; od;

4. for u ∈ V do for v ∈ V do for w ∈ V do

δ(v, w)← min{δ(v, w), δ(v, u)δ(u, w)};
od; od; od;

5. for u ∈ V with δ(u, u) < 1 do

for v ∈ V do

if δ(u, v) <∞ then δ(u, v)← 0; fi;

if δ(v, u) <∞ then δ(v, u)← 0; fi;

for w ∈ V do

if δ(v, u)δ(u, w) <∞ then δ(v, w)← 0; fi;

od;

od;

od;

6. for v ∈ V do for w ∈ V do dist(v, w)← δ(v, w); od; od.

Note, that steps 1–4 correspond to the well-known algorithm of Floyd-Warshall, cf.

[30, 37]. After step 4, we already have the distance for all vertex pairs satisfying

dist(v, w) = edist(v, w). Furthermore, all vertices on some absorbing dicycle satisfy

δ(u, u) < 1. This motivates step 5. For a detailed discussion of the algorithm, we

refer to [44]. Its complexity is O(|V |3 + |A|).

Once we succeeded in computing the distances, we may easily proceed in determining

all redundant object types.

Algorithm 20. Consider the constraint set ΣC declared on ~S = (V, L). For every

vertex pair (v, w) let dist(v, w) be its distance in the symmetric digraph ~D = (V, A).

For every vertex w, let A−(w) be the set of all arcs with initial vertex w in ~D, and

A+(w) be the set of all arcs with terminal vertex w in ~D.

The algorithm determines the set Red of redundant object types for ΣC :

1. Red0 ← ∅;
for v ∈ V do for w ∈ V do

if dist(v, w) = 0 then add w to Red0; fi;

od;

2. Red← Red0;

ANR ← ∅; ARN ← ∅; ANN ← ∅;
for a = (v, w) ∈ A do

if v ∈ Red and w 6∈ Red then add a to ANR; fi;

if v 6∈ Red and w ∈ Red then add a to ARN ; fi;

if v 6∈ Red and w 6∈ Red then add a to ANN ; fi;

od;
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3. while ANR ∪ ARN 6= ∅ do

choose a ∈ ANR ∪ ARN ;

if a ∈ ANR then delete a from ANR else delete a from ARN ; fi;

if (a = (w, u) ∈ ANR and a ∈ L) or (a = (v, w) ∈ ARN and dist(v, w) <∞)

then

add w to Red;

ANR ← ANR\(A
−(w) ∩ ANR) ∪ (A+(w) ∩ ANN);

ARN ← ARN ∪ (A−(w) ∩ ANN )\(A+(w) ∩ ARN);

ANN ← ANN\(A
−(w) ∪ A+(w));

fi;

od.

Proof. The algorithm is based on Theorem 18. In step 1, we determine the set Red0

of all object types which are redundant due to (i) in Theorem 18. In step 2, we

introduce three subsets ANR, ARN and ANN of the arc set. ANR consists of all arcs

which enter the set Red of all redundant object types recognized so far, ARN consists

of all arcs leaving this set and ANN consists of all arcs whose vertices both are not

in Red. In step 3, we use these sets to find further redundant object types due to

(ii) and (iii) in Theorem 18.

Note that the condition (iii) in Theorem 18 is equivalent to:

(iii’) There is a redundant object type v with an arc from v to w and dist(v, w) <∞.

In the algorithm, we use (iii’) instead of (iii) to keep the complexity small. Evidently,

(iii) yields (iii’). But also the converse is true. Suppose (iii’) holds. Since dist(v, w) <

∞, there is a diwalk ~P from v to w with finite weight. Consequently, any two vertices

on this diwalk have finite distance. On applying (iii’) successively to the arcs on ~P ,

we conclude that all vertices on ~P are redundant. This holds in particular for w and

proves (iii).

In step 3, we now check the conditions (ii) and (iii’) by studying all arcs entering

or leaving the set Red of those redundant object types which have already been

recognized. Whenever we find a new redundant object type w, we add it to the

set Red and update the sets ANR, ARN and ANN accordingly. Thus we find all

redundant object types by virtue of Theorem 18.

In every run of the while-loop in step 3, the size of ANR ∪ARN ∪ANN decreases by

at least one. Hence, the algorithm terminates after at most |A| runs.

Given all distances in ~D, this algorithm determines the set Red with complexity

O(|V |2 + |A|) = O(|V |2 + |L|). Thus we can determine the set of all redundant

object types with complexity O(|V |3 + |L|) on the basis of Theorem 18.
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7.3 Consistency of cardinality constraints

Theorem 18 also provides a nice graph-theoretic characterization of those sets of

cardinality constraints that do not cause redundant types, i.e. of consistent sets of

cardinality constraints. For special kinds of cardinality constraints, similar results

were given by Lenzerini and Nobili [38] and by Thalheim [49]. The importance

of absorbing dicycles was first pointed out in [38]. The consistency problem for

arbitrary sets of cardinality constraints was tackled in [35].

Corollary 21. ΣC is consistent if and only if ~D contains neither absorbing dicycles

nor arcs of weight 0.

Proof. (Necessity.) Let ΣC be consistent. Assume there are absorbing dicycles

or arcs of weight 0. In both cases, we trivially have vertices v, w with distance

dist(v, w) = 0. This yields the existence of redundant object types by Theorem 18,

which is a contradiction to ΣC being consistent.

(Sufficiency.) Suppose there are neither absorbing dicycles nor arcs of weight 0.

By Theorem 18 the existence of redundant object types merely depends on the

existence of a vertex pair v, w with dist(v, w) = 0. Assume there is such a vertex

pair v, w in ~D. Since all diwalks from v to w are without absorbing dicycles, we

have edist(v, w) = dist(v, w) = 0 by Lemma 17. Consequently, there is a dipath ~P

from v to w with weight ω( ~P ) = 0. But this forces at least one of its arcs to be of

weight 0, which contradicts the presumption. Hence there are no redundant object

types.

8 More on admissible functions

In Section 5 we introduced the set CanDeg(r, c) of candidate degrees for every link

(r, c). By virtue of Lemma 7, ΣC always implies card(r, c) = CanDeg(r, c). However,

this does not mean that every candidate degree really occurs as a degree in some legal

database instance. The question arises, which candidate degrees may be excluded

due to the semantic power of ΣC .

As before, let ΣC be declared on a database schema ~S. Fix a link (r, c) and a

candidate degree d∗ ∈ CanDeg(r, c). Consider a population rt which satisfies ΣC .

This population supplies evidence of (r, c, d∗) if its codomain ct contains an object c

with degree deg(rt, c) = d∗. Similarly, a legal database instance ~St supplies evidence

of (r, c, d∗) if its population ct contains an object c whose degree deg(rt, c) equals

d∗.

ΣC implies card(r, c) = CanDeg(r, c)\{d∗} if and only if there is no legal database

instance ~St supplying evidence of (r, c, d∗). The investigation of evidence supply-

ing databases is motivated by the following result on closed sets in the class C of

cardinality constraints.
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Theorem 22. ΣC is C-closed if and only if it contains all constraints implied by ΣC

via (C1) to (C3) and, for every (r, c, d∗), there exists a database instance which is

legal for ΣC and supplies evidence of (r, c, d∗).

Proof. Note that for every cardinality constraint card(r, c) = M contained in ΣC

the set M is a superset of CanDeg(r, c). This simple observation is crucial for the

following proof.

(Necessity.) Let ΣC be C-closed. Lemma 5 verifies the correctness of (C1) to

(C3). Assume now, there is some (r, c, d∗) without a legal database instance sup-

plying evidence of it. Then ΣC implies the cardinality constraint card(r, c) =

CanDeg(r, c)\{d∗}. But CanDeg(r, c)\{d∗} is a proper subset of CanDeg(r, c).

Therefore, this cardinality constraint is not in ΣC , which contradicts ΣC to be C-
closed. Consequently, for every (r, c, d∗) there must be a legal database instance

supplying evidence.

(Sufficiency.) We have to show that ΣC is C-closed under the given conditions. Let

card(r, c) = M be some cardinality constraint implied by ΣC . For every candidate

degree d∗ in CanDeg(r, c), we have a legal database instance supplying evidence.

Therefore, M must be a superset of CanDeg(r, c). By (C2) this forces the cardinality

constraint under discussion to be in ΣC . Hence ΣC is C-closed.

In this section, we again use admissible functions to study the existence of evidence

supplying database instances. Actually, the results here are obtained by strengthen-

ing the results from Section 6. Throughout, consider a link ` = (r, c) in the database

schema ~S, and let d∗ be a fixed candidate degree in CanDeg(r, c).

A population rt supplies evidence of (r, c, d∗) with d∗ > 0 when the representation

graph Gt(r, c) has a clique of size d∗, whereas it supplies evidence of (r, c, 0) when

the size of the codomain ct exceeds the number of cliques in Gt(r, c). Together with

Lemma 9 and Theorem 10, this observation yields the following two results.

Lemma 23. Suppose we are given an object set ct
i of size g(ci) for every component

ci ∈ Co(r). Then there is a population rt with codomains ct
i, such that rt is of

size g(r), satisfies ΣC and supplies evidence of (r, c, d∗), if and only the condition

of Lemma 9 holds under the additional presumption xd∗ > 0 for the fixed candidate

degree d∗ ∈ CanDeg(r, c).

Proof. (Necessity.) The observation is an immediate consequence of Lemma 9. Let

rt be the claimed population supplying evidence of (r, c, d∗). As in the proof of

Lemma 9, let xd denote the number of objects c in the codomain ct with degree

deg(rt, c) = d. Since rt supplies evidence of (r, c, d∗), we have at least one object c

in ct with deg(rt, c) = d∗. Clearly, this gives us xd∗ ≥ 1.

(Sufficiency.) Suppose xd∗ > 0 holds. In the proof of Lemma 9, we constructed a

population rt which satisfies ΣC . Its codomain ct contains exactly xd∗ objects c with
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deg(rt, c) = d∗. Since xd∗ is positive, the population rt in fact supplies evidence of

(r, c, d∗).

Theorem 24. Let g : V → N0 be a given function. There is a database instance
~St with population sizes g(v), such that ~St is legal for ΣC and supplies evidence

of (r, c, d∗), if and only if the condition of Theorem 10 holds under the additional

presumption xd∗ > 0 for the fixed candidate degree d∗ ∈ CanDeg(r, c).

Proof. We proceed as in proof of Theorem 10, but use Lemma 23 instead of Lemma 9

for the relationship type r under discussion.

As pointed out in Section 6, the population sizes in a legal database instance yield

an admissible function g. The following result describes which admissible functions

correspond to database instances supplying evidence of (r, c, d∗).

Theorem 25. Let g : V → Q0 be a given function. There is a positive integer λ

and a database instance ~St with population sizes λg(v), such that ~St is legal for ΣC

and supplies evidence of (r, c, d∗), if and only if g is admissible for ΣC with g(c) > 0

and satisfies at least one of the relations

α(r, c)g(c) < g(r) < β(r, c)g(c) (10)

or

g(r) = d∗g(c). (11)

for the fixed link ` = (r, c).

Proof. (Necessity.) Consider a legal database instance ~St with population sizes

λg(vt) for some positive integer λ. By Theorem 11, the existence of ~St shows g to be

admissible, and we have (3) and (4). Suppose ~St supplies evidence of (r, c, d∗). Then
~St contains at least one object of type c. Therefore, the value of g(c) is positive.

Now we discuss the additional statements (10) and (11). By (4), we have

α(r, c)g(c) ≤ g(r) ≤ β(r, c)g(c).

Here g(r) either satisfies (10) or takes one of the bounds of that interval. Assume

g(r) equals the lower bound α(r, c)g(c). Applying Theorem 24, we observe

g(r) =
∑

d∈CanDeg(r,c)

dxd ≥ α(r, c)g(c) + (d∗ − α(r, c))xd∗ ≥ α(r, c)g(c) = g(r),

since α(r, c) is the minimum candidate degree and
∑

d∈CanDeg(r,c) xd = g(c) holds.

Herein, xd∗ > 0 gives us d∗ = α(r, c) which yields (11) as claimed. The case g(r) =

β(r, c)g(c) is treated in the same way.

(Sufficiency.) Suppose g is admissible and we have g(c) > 0 as well as one of (10)

or (11). Our goal is to apply Theorem 24: Since g is admissible, the condition of

Theorem 10 is satisfied for every link in ~S.
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We still have to verify xd∗ > 0 for the fixed link ` = (r, c). Recall the proof of

Theorem 11. Again we restrict ourselves to a finite subset CanDeg′(r, c) of candidate

degrees. We choose this subset CanDeg′(r, c) as done in the proof of Theorem 11,

but require β ′(r, c) to be larger or equal to the fixed candidate degree d∗. Thus d∗

lies in CanDeg′(r, c).

We want to use the theorem of Motzkin: There exist non-negative rationals xd with

xd∗ > 0 and satisfying the equations
∑

d∈CanDeg′(r,c)

xd = g(c),

∑

d∈CanDeg′(r,c)

dxd = g(r)

if and only if the inequalities

pg(c) + qg(r) ≥ 0 , (12)

pg(c) + qg(r) > 0 if p + d∗q > 0 (13)

hold for all rationals p, q with p+dq ≥ 0 for every candidate degree d ∈ CanDeg′(r, c).

The inequalities (4), g(c) > 0 and p + dq ≥ 0 for each d ∈ CanDeg′(r, c) imply (12)

as shown in Theorem 11.

It remains to discuss (13) when p + d∗q > 0. First, suppose that (11) holds. Since

g(c) > 0, we have pg(c) + qg(r) = (p + d∗q)g(c) > 0 which yields (13). Otherwise,

suppose that (10) holds. Due to our choice of β ′(r, c) we have

α(r, c)g(c) < g(r) < β ′(r, c)g(c).

We distinguish three cases. If q > 0, we obtain

pg(c) + qg(r) > (p + qα(r, c))g(c) ≥ 0,

since α(r, c) is in CanDeg′(r, c). If q < 0, we obtain

pg(c) + qg(r) > (p + qβ ′(r, c))g(c) ≥ 0,

since β ′(r, c) lies in CanDeg′(r, c). Finally, if q = 0, we have

pg(c) + qg(r) = pg(c) + 0 = (p + d∗q)g(c) > 0,

since both p + d∗q and g(c) are positive. In all three cases we derive (13). Hence

we may apply the theorem of Motzkin. For the remaining candidate degrees d not

in CanDeg′(r, c), we put xd = 0. This implies the condition of Theorem 10 for the

fixed link ` = (r, c) with the additional property xd∗ > 0.

We may now apply Theorem 24 to the integral function λg, where λ is a suitable

positive integer. This concludes the proof.
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The final result in this section continues our study of closed sets of cardinality

constraints.

Theorem 26. ΣC is C-closed if and only if it contains all constraints implied by

ΣC via (C1) to (C4) and there exists an admissible function g for ΣC , such that

g(v) > 0 holds for every non-redundant object type v and g satisfies either (10) or

α(r, c)g(c) = g(r) = β(r, c)g(c) (14)

for every link (r, c) with non-redundant c.

Proof. (Necessity.) Let ΣC be C-closed. The correctness of (C1) to (C4) follows

from Lemmas 5 and 15. It remains to construct a suitable function g. By Lemma 14

there is an admissible function g0 with g0(v) > 0 for every non-redundant object

type v. We shall discuss whether g0 has all the desired properties. For that, consider

a link (r, c) with non-redundant c.

Of course, CanDeg(r, c) is not empty. Suppose CanDeg(r, c) contains only one can-

didate degree d∗ = α(r, c) = β(r, c). By Lemma 12, we have d∗g0(c) = α(r, c)g0(c) ≤
g0(r) ≤ β(r, c)g0(c) = d∗g0(c), which implies (14).

Otherwise, suppose CanDeg(r, c) is of size 2 or larger. Lemma 22 provides legal

database instances ~St supplying evidence of every (r, c, d∗) with d∗ ∈ CanDeg(r, c).

Theorem 25 gives us an admissible function g satisfying g(c) > 0 and at least one of

the relations (10) or (11). Consider two candidate degrees d1 < d2 in CanDeg(r, c)

with corresponding admissible functions g1 and g2. Put g` = g1 + g2, which is again

admissible. Clearly, g` satisfies (10).

Unfortunately, g0 itself does not necessarily satisfy one of (10) or (14) for a given

link ` = (r, c) with two or more candidate degrees in CanDeg(r, c). For this reason,

we add g` to g0 for each of these links. The resultant function g is still admissible

and has all the desired properties.

(Sufficiency.) Our objective is to apply Theorem 22. For every link (r, c) and every

candidate degree d∗ ∈ CanDeg(r, c) we need a legal database instance supplying

evidence of (r, c, d∗). Theorem 25 gives us such database instance whenever there

exists a certain admissible function. As we shall see below, the given function g is

suitable for this.

Consider a link (r, c). Suppose c is redundant. ΣC contains card(r, c) = ∅ by

(C4). Thus CanDeg(r, c) is empty, and no candidate degree has to be discussed.

Conversely, let c be not redundant. Then we have g(c) > 0. We are ready if g

satisfies (10). Otherwise, if g satisfies (14), this yields α(r, c) = β(r, c). Hence

d∗ = α(r, c) = β(r, c) is the only candidate degree for this link, and we immediately

derive (11).

Consequently, the given function g allows us to apply Theorem 25. This ensures

the existence of legal database instances supplying evidence of every (r, c, d∗), and

proves ΣC to be C-closed by Theorem 22.
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9 Subcritical dicycles

In this section, we continue our study of dicycles in the symmetric digraph ~D with

weight function ω induced by a given set ΣC of cardinality constraints. We call a

dicycle ~C subcritical for ΣC if its weight satisfies ω( ~C) = 1. Similar to absorbing

dicycles, also subcritical dicycles play a crucial role for implications of cardinality

constraints.

Lemma 27. If g is an admissible function for ΣC , and a = (v, w) is an arc lying

on a subcritical dicycle for ΣC , then g(w) = g(v)ω(a) holds.

Proof. Let ~C be a subcritical dicycle containing the arc a. By ~P we denote the

dipath from w to v, obtained from ~C after deleting the arc a. Since g is admissible,

Lemma 14 implies g(w) ≤ g(v)dist(v, w) ≤ g(v)ω(a) as well as

g(v) ≤ g(w)dist(w, v) ≤ g(w)ω( ~P ),

g(v)ω(a) ≤ g(w)ω( ~P )ω(a) = g(w)ω( ~C) = g(w).

Together, these inequalities prove the claimed identity.

The next observation is a simple consequence of Lemma 27 and the definition of the

weight function ω. It should be mentioned, that every arc a on a subcritical dicycle

satisfies 0 < ω(a) < ∞. For this reason, it suffices to consider 0 < α(r, c) < ∞ to

verify the first claim.

Corollary 28. Let g be admissible for ΣC , and consider a link ` = (r, c) in ~S.

(i) If ` = (r, c) lies on a subcritical dicycle for ΣC , we have g(r) = α(r, c)g(c).

(ii) If `−1 = (c, r) lies on a subcritical dicycle for ΣC , we have g(r) = β(r, c)g(c).

The preceding result almost immediately gives rise to the following implication rules:

(C6) If the link (r, c) lies on a subcritical dicycle for ΣC , then ΣC |=
(

card(r, c) =

{α(r, c)}
)

.

(C7) If the reverse arc of the link (r, c) lies on a subcritical dicycle for ΣC , then

ΣC |=
(

card(r, c) = {β(r, c)}
)

.

Lemma 29. (C6) and (C7) are correct.

Proof. Suppose ` = (r, c) lies on a subcritical dicycle. Consider any candidate degree

d∗ ∈ CanDeg(r, c) admitting a legal database instance ~St which supplies evidence

for (r, c, d∗). For every object type v, let g(v) denote the size of the population vt

in ~St. The function g is admissible and satisfies g(c) > 0 for the component c. By

Theorem 25, we have α(r, c)g(c) < g(r) < β(r, c)g(c) or d∗g(c) = g(r). The first

inequality, however, does not apply here due to Corollary 28. For the same reason,

we obtain d∗g(c) = g(r) = α(r, c)g(c). This implies d∗ = α(r, c) and proves (C6) to

be true. A similar argument verifies (C7).
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Figure 5: A set of cardinality constraints which gives rise to a subcritical dicycle in
~D.

Example. Consider the set ΣC of cardinality constraints indicated by Figure 5.

Take the dicycle ~C from r2 via e1, r1 and e2 back to r2 in the symmetric digraph
~D. Its weight is ω( ~C) = 12/12 = 1. Hence ~C is subcritical. On applying rule (C6)

to the link (r2, e1), we derive the cardinality constraint card(r2, e1) = {3}. That is,

the candidate degrees 4 and 7 may be excluded.

Analogously, ΣC implies card(r1, e2) = {4} due to (C6) and card(r2, e2) = {12} due

to (C7). Of course, we may also apply (C7) to the link (r1, e1), but this will not give

us any new information: β(r1, e1) = 1 has already been the only candidate degree

for this link.

Remark 30. The example above points out that an application of (C6) or (C7)

to some link (r, c) makes sense only if CanDeg(r, c) is of size two or larger, i.e. if

we have at least two candidate degrees for this link. In particular, this observation

applies in the following case: Suppose we have a link (r, c) where c is redundant.

Then we may apply (C4) which excludes all candidate degrees. An application of

(C6) or (C7) to this link turns to be useless: There is no candidate degree to be

excluded any more.

It is noteworthy, that for an arc which lies on a subcritical dicycle either both vertices

are redundant or both are non-redundant. This is confirmed by the following lemma

which assembles observations on the interplay of subcritical dicycles and redundant

object types.

Lemma 31.

(i) Let ~C be a subcritical dicycle for ΣC . Then either all vertices on ~C are redun-

dant for ΣC or none of them.

(ii) Let ~C be a closed diwalk with weight ω( ~C) = 1. Then ~C either splits into

dicycles which are all subcritical for ΣC or all vertices on ~C are redundant for

ΣC .

Proof. (i) Any two vertices v and w on the dicycle ~C have finite distance dist(v, w) <

∞ since ω( ~C) = 1 holds. Whenever one of the vertices is redundant than all vertices

on ~C are redundant by the third condition in Theorem 18.
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(ii) Every closed diwalk ~C may be decomposed into a set of dicycles, say ~C1, . . . , ~Cs.

We have 1 = ω( ~C) = ω( ~C1) · · ·ω( ~Cs). Hence these dicycles either have all the weight

1, or at least one of them is absorbing. In the first case, we are ready. In the second

case, each vertex on this absorbing dicycle is redundant. Moreover, the distance of

any two vertices on the diwalk ~C is finite since ω( ~C) = 1 holds. Theorem 18 again

proves all vertices on ~C to be redundant.

9.1 Determination of arcs on subcritical dicycles

We are interested in an efficient method to detect all arcs on subcritical dicycles.

Fortunately, we can restrict ourselves to those arcs that connect two non-redundant

vertices as detailed above.

Theorem 32. Let a = (v, w) be an arc such that neither v nor w is redundant for

ΣC . Then a lies on a subcritical dicycle for ΣC if and only if ω(a)dist(w, v) = 1

holds.

Proof. (Necessity.) Suppose a lies on a subcritical dicycle ~C. Let ~P denote the

dipath obtained from ~C by deleting the arc a. Since v is not redundant, we have

dist(v, v) = edist(v, v) = 1 by the first condition in Theorem 18. This yields

1 = dist(v, v) ≤ dist(v, w)dist(w, v) ≤ ω(a)dist(w, v) ≤ ω(a)ω( ~P ) = ω( ~C) = 1,

and thus ω(a)dist(w, v) = 1 as desired.

(Sufficiency.) Suppose ω(a)dist(w, v) = 1 holds. Clearly, we have 0 < dist(w, v) <

∞. By Lemma 16, we also have dist(w, v) = edist(w, v). Hence there is a dipath ~P

from w to v with ω(~P ) = edist(w, v). When adding the arc a to the dipath ~P , we

obtain a dicycle ~C of weight

ω( ~C) = ω(a)ω(~P ) = ω(a)edist(w, v) = ω(a)dist(w, v) = 1,

that is, a subcritical dicycle containing the arc a.

By Theorem 32, the set of all arcs lying on subcritical dicycles, but without redun-

dant vertices may be detected with complexity O(|A|) = O(|L|), supposed we are

given the distances for all vertex pairs in ~D. This enables us to apply the rules (C6)

and (C7) efficiently.

9.2 Subcritical dicycles and admissible functions

Before we turn our attention to the characterization of closed sets, we still give a

result on the relation of admissible functions introduced in Section 6 and subcritical

dicycles.
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Theorem 33. Let a = (v, w) be an arc such that neither v nor w is redundant for

ΣC . Then a lies on a subcritical dicycle if and only if every admissible function g

for ΣC satisfies g(w) = ω(a)g(v).

Proof. For the necessity, see Lemma 27.

(Sufficiency.) Suppose g(w) = ω(a)g(v) holds whenever g is admissible. Assume

now, a lies not on a subcritical dicycle. We are going to construct an admissible

function g which meets g(w) < ω(a)g(v) to cause a contradiction.

To begin with, we introduce a slightly modified weight function on the digraph ~D.

Let πα be the product of the values α(r, c), where (r, c) runs over the set of all links

with 0 < α(r, c) < ∞ in the schema. If this set is empty, we put πα = 1. For

every arc a′, its original weight ω(a′) is ∞ or an integral multiple of 1/πα. For every

dicycle ~C, its original weight ω( ~C) is ∞ or an integral multiple of 1/π
|V |
α .

As announced, we define a new weight function ωa : A→ Q0 ∪ {∞} by

ωa(a
′) =

{

π
|V |
α

1+π
|V |
α

ω(a) if a′ = a,

ω(a′) otherwise,

for every arc a′ ∈ A. Since w is not redundant, we have ω(a) > 0 and thus also

ωa(a) > 0. Again, this weight function may be extended to diwalks in ~D. We have

ωa(~P ) =

{

ω(~P ) ωa(a)
ω(a)

if ~P contains a,

ω(~P ) otherwise.

It is interesting to observe, that a dicycle ~C is absorbing with respect to the new

weight function ωa exactly when it is absorbing with respect to the original weight

function ω. This is trivial when ~C does not contain the arc a. So suppose a lies on
~C. If ~C is absorbing with respect to ω, we immediately have ωa( ~C) < ω( ~C) < 1.

Thus ~C is absorbing with respect to ωa, too. Conversely, if ~C is absorbing with

respect to ωa, we have

ω( ~C) = ωa( ~C)
ω(a)

ωa(a)
<

ω(a)

ωa(a)
= 1 +

1

π
|V |
α

.

As mentioned, ω( ~C) is an integral multiple of 1/π
|V |
α . This gives us ω( ~C) ≤ 1, and

yields ω( ~C) < 1 since a does not lie on any subcritical dicycle. Hence ~C is absorbing

with respect to the original weight function ω.

As in Section 7, we may define the distance dista(v
′, w′) and the elementary distance

edista(v
′, w′) for any vertex pair in ~D. We always have dista(v

′, w′) ≤ dist(v′, w′).

This, in particular, implies dista(v
′, w′) = 0 whenever dist(v′, w′) = 0 holds.

But the converse is also true: Suppose dista(v
′, w′) = 0. First, let there be a

diwalk from v′ to w′ containing an absorbing dicycle with respect to ω. Lemma 17
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immediately provides dist(v′, w′) = 0. Otherwise, let all diwalks from v′ to w′ be

without absorbing dicycles with respect to ω. As shown above, the same holds for

ωa. Similar to Lemma 17, we may conclude edista(v
′, w′) = dista(v

′, w′), which

equals 0 as supposed. Consequently, there is a dipath ~P from v′ to w′ with ωa(~P ) =

0. However, this implies ω( ~P ) = 0. Thus the original distance from v′ to w′ is

dist(v′, w′) = 0 as claimed.

Now we consider the function g : V → Q0 defined by

g(v′) =

{

0 if v′ is redundant,

min{dista(u
′, v′) : u′ ∈ V } otherwise.

First we show that g is admissible. For that we use Lemma 16, that is, we have

to verify (3) and (7) for every link (r, c). Suppose g(c) = 0. Then c is redundant,

and by Theorem 18 the object type r is redundant, too. This implies g(r) = 0 and

proves (3). Furthermore, we have

g(w′) ≤ g(v′)dista(v
′, w′) ≤ g(v′)dist(v′, w′),

which proves (7). Thus g is admissible.

We still have to confirm that g is suitable for our purposes here. By the discussion

above and Theorem 18, we have g(v′) = 0 if and only if v′ is redundant. Moreover,

dista(u
′, w′) ≤ dista(u

′, v′)dista(v
′, w′) trivially holds for any three vertices u′, v′, w′.

For our fixed arc a = (v, w), this implies

g(w) ≤ g(v)dista(v, w) ≤ g(v)ωa(a) < g(v)ω(a)

since v is not redundant. Hence g satisfies the desired inequality g(w) < ω(a)g(v).

The existence of g causes the claimed contradiction. Consequently, a lies on some

subcritical dicycle.

Corollary 34. Let ` = (r, c) be a link such that both r and c are non-redundant for

ΣC . If neither ` nor `−1 lies on a subcritical dicycle, then there exists an admissible

function g for ΣC satisfying α(r, c)g(c) < g(r) < β(r, c)g(c).

Proof. Since c is non-redundant, CanDeg(r, c) is not empty. Every admissible func-

tion g satisfies the inequality α(r, c)g(c) ≤ g(r) ≤ β(r, c)g(c) by Lemma 12. We

are now looking for two admissible functions g1 and g2 with g1(r) < β(r, c)g1(c) and

α(r, c)g2(c) < g2(r), respectively. Their sum g1 + g2 is again admissible and has the

claimed property.

It remains to find g1 and g2. By Theorem 33 there is an admissible function g1

with g1(r) < ω(`−1)g1(c) = β(r, c)g1(c) as desired. Further, Theorem 33 gives us an

admissible function g2 with g2(c) < ω(`)g2(r). That is, α(r, c)g2(c) < g2(r) when

0 < α(r, c) <∞ holds. The case α(r, c) =∞ may be excluded because CanDeg(r, c)

is not empty. If α(r, c) = 0, we may choose any admissible function g2 with g2(r) > 0.

Such a function exists since r is not redundant.
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9.3 Updating the weight function

Suppose we derive a new cardinality constraint by applying one of the rules (C4) to

(C7) to some link ` = (r, c). When adding the new constraint to the set ΣC we obtain

a new constraint set Σ′
C , which is semantically equivalent to ΣC . Usually, this allows

us to exclude some of the candidate degrees from CanDeg(r, c), i.e. CanDeg′(r, c)

will be a proper subset of CanDeg(r, c). We mention this because we calculated the

weight function ω on the basis of CanDeg(r, c).

The question arises whether there are dicycles which have not been subcritical for

ΣC , but are subcritical for the new constraint set Σ′
C , that is, we ask for dicycles ~C

satisfying ω( ~C) 6= 1 and ω′( ~C) = 1. The next results cover this problem.

Lemma 35. Let Σ′
C be derived from ΣC by adding a new cardinality constraint

implied by ΣC via (C4) or (C5). A dicycle ~C is subcritical for Σ′
C only if it is

subcritical for ΣC .

Proof. Suppose the new cardinality constraint is card(r, c) = ∅ due to (C4). With

respect to Σ′, we obtain CanDeg′(r, c) = ∅, α′(r, c) =∞ and β ′(r, c) = 0. This gives

us the new weights ω′(`) = ω′(`−1) = 0 for the link ` = (r, c) and its reverse arc.

Clearly, the weight of every arc a different from ` and `−1 remains unchanged, that

is, ω′(a) = ω(a) holds. Consider a dicycle ~C with ω′( ~C) 6= ω( ~C). Then ~C contains

` or `−1. But both have weight 0, and thus ω′( ~C) is either 0 or ∞.

Next suppose the new cardinality constraint is card(r, c) = {0} due to (C5). This

time, we obtain CanDeg′(r, c) = CanDeg(r, c)∩{0}, α′(r, c) = 0 or∞, and β ′(r, c) =

0. This gives us the new weights ω′(`) =∞ or 0, as well as ω′(`−1) = 0 for the link

` = (r, c) and its reverse arc. Again consider a dicycle ~C with ω′( ~C) 6= ω( ~C). Then
~C contains ` or `−1. Each of them has weight 0 or ∞, and thus ω′( ~C) is either 0 or

∞.

In both cases ω′( ~C) equals ω( ~C) or 0 or ∞. Therefore we have ω′( ~C) = 1 only if

ω( ~C) = 1 holds.

Lemma 36. Let Σ′
C be derived from ΣC by adding a new cardinality constraint

implied by ΣC via (C6) or (C7) applied to a link ` = (r, c). Let a be an arc different

from ` and `−1 such that its vertices are both non-redundant for ΣC . Then a lies on

a subcritical dicycle for Σ′
C only if it lies on a subcritical dicycle for ΣC .

Proof. Suppose the new cardinality constraint is card(r, c) = {α(r, c)} due to (C6).

We obtain CanDeg′(r, c) = {α(r, c)}, and α′(r, c) = β ′(r, c) = α(r, c). For the link

` = (r, c) we have ω′(`) = ω(`). For its reverse arc we derive ω(`−1) = α(r, c). The

weight of every arc different from ` and `−1 remains unchanged, too.

Of course, there must be a dicycle ~C0 which contains ` and satisfies ω( ~C) = 1. The

existence of this dicycle allows us to apply (C6). Let ~P0 be the dipath from r to c
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which we obtain from ~C0 after deleting the link `. We have

1 = ω( ~C0) = ω(`)ω(~P0) =
1

α(r, c)
ω(~P0),

where 0 < α(r, c) <∞ holds as pointed out in the proof of Corollary 28.

Let ~C be some dicycle with ω′( ~C) 6= ω( ~C). Then ~C contains `−1. Let ~P be the

dipath from r to c, which we obtain from ~C by deleting the arc `−1. Here we have

ω′( ~C) = ω′(`−1)ω′(~P ) = α(r, c)ω(~P ).

If ω′( ~C) = 1 holds, too, we conclude

1 = ω′( ~C)ω( ~C0) = ω(~P )ω(~P0) = ω(~P ∪ ~P0),

where ~P ∪ ~P0 is the closed diwalk obtained by stringing together ~P and ~P0.

Now consider the arc a under discussion. Assume it lies on a dicycle ~C which is

subcritical for Σ′
C , that is, with ω′( ~C) = 1. We are ready if ω( ~C) = 1 holds.

Otherwise consider the closed diwalk ~P ∪ ~P0 described above. It contains a and thus

some non-redundant vertices for ΣC . By Lemma 31, ~P ∪ ~P0 splits into dicycles which

are all subcritical for ΣC . One of them contains a and proves the claim for (C6).

For (C7) we use a similar argument. This concludes our proof.

It remains to study the link ` = (r, c) and its reverse arc `−1 = (c, r) after an

application of either (C6) or (C7) to `. Evidently, these two arcs together form a

subcritical dicycle for Σ′
C . With respect to Σ′

C , however, there is only one candidate

degree left over, i.e. CanDeg′(r, c) is of size 1. Another application of (C6) or (C7)

will not give us any new information as discussed in Remark 30: It suffices to apply

(C6) and (C7) to those links which admit two or more candidate degrees. An update

of the weight function does not result in any new link of this kind. Hence, for our

purposes here, it is not necessary to update the weight function after an application

of one of the rules (C4) to (C7).

10 Closed sets of cardinality constraints

10.1 Proof of the main theorem

In the preceding sections, we assembled a number of results to derive new constraints

implied by an original set ΣC of cardinality constraints. Due to their correctness

proved above, the implication rules (C1) to (C7) may now be used as inference

rules. The question arises whether these rules are complete, i.e. enable us to derive

all cardinality constraints implied by ΣC . The answer to this question is positive as

claimed in Section 5.
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We are now in the position to prove our main result, that is, Theorem 6. Let ~S be a

database schema and ΣC a set of cardinality constraints declared on ~S. We claimed

that the constraint set ΣC is C-closed if and only if it contains all constraints implied

by ΣC due to the rules (C1) to (C7).

Proof of Theorem 6. (Necessity.) The rules are correct as proved in Lemmas 5, 15

and 29. Since ΣC is C-closed, all constraints derived by any of these rules belong to

ΣC .

(Sufficiency.) Our aim is to apply Theorem 26. For this, it suffices to find an

admissible function g such that g(v) > 0 holds for every non-redundant object type

v and g satisfies (10) or (14) for every link (r, c) with non-redundant c.

Consider a link (r, c) where c is not redundant. Of course, CanDeg(r, c) is non-empty.

First, suppose CanDeg(r, c) contains only one candidate degree d∗ = α(r, c) =

β(r, c). For every admissible function g we have d∗g(c) = α(r, c)g(c) ≤ g(r) ≤
β(r, c)g(c) = d∗g(c) by Lemma 12. That is, condition (14) holds.

Otherwise, suppose CanDeg(r, c) is of size 2 or larger. By (C5), r may not be

redundant. Due to (C6) and (C7), we have neither ` = (r, c) nor its reverse arc

`−1 on a subcritical dicycle. Hence Corollary 34 provides an admissible function g`

satisfying (10) for the link ` under consideration.

By Lemma 14 there is an admissible function g0 with g0(v) > 0 for every non-

redundant object type v. Of course, we do not know whether g0 itself satisfies one

of (10) or (14) for every link ` = (r, c) with non-redundant c. Therefore, we add

g` to g0 for each of these links. The resultant function g is still admissible and has

all the properties under discussion. This allows us to apply Theorem 26, and ΣC is

C-closed as claimed.

10.2 How to decide implication

Theorem 6 gives a solution to the implication problem. In order to decide whether

ΣC |= σ holds for some cardinality constraint σ, it suffices to check whether σ is in

the C-closure of ΣC or not. An efficient way to determine this closure is provided by

the following algorithm.

Algorithm 37. Given a set ΣC of cardinality constraints declared on a database

schema ~S, the algorithm determines the C-closure ΣC of ΣC :

1. Determine ΣCan
C from ΣC by applying (C1) and (C3) to every suitable link.

2. Determine the set Red of redundant object types for ΣC .

3. Determine a superset Σ′
C of ΣCan

C by applying (C4) to (C7) to every suitable

link.

4. Determine Σ
′Can
C from Σ′

C by applying (C3) to every suitable link.
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5. Determine ΣC from Σ
′Can
C by applying (C2) to every suitable link.

Proof. Every constraint in ΣC is implied by ΣC . It remains to check whether ΣC is

C-closed as claimed. For this task, we shall apply Theorem 6. Due to steps 1 and

5, ΣC contains the trivial cardinality constraint proposed by (C1) for every link. In

steps 4 and 5, we made sure that ΣC contains every constraint derivable by (C2) and

(C3). In step 2, we determined the set of redundant object types for ΣC . Since ΣC

and ΣC are semantically equivalent, the redundant object types for ΣC are exactly

the same as for ΣC . Due to step 3, ΣC contains every constraint proposed by (C4)

and (C5).

It remains to discuss (C6) and (C7). Due to Remark 30, it is sufficient to apply (C6)

and (C7) to those links which admit at least two candidate degrees. Consider a link

of this kind such that the link itself or its reverse arc lies on a subcritical dicycle for

Σ′
C . Then the link or its reverse arc, respectively, lies on a subcritical dicycle for

ΣC , too, as described in Section 9.3. Hence ΣC contains every constraint proposed

by (C6) and (C7) due to step 3. By our main Theorem 6, the generated constraint

set ΣC is C-closed as desired.

The application of (C4) to (C7) to the set ΣCan
C has been discussed in Sections 7 and

9. This is possible in polynomial time. Now, let σ be a given cardinality constraint,

say card(r, c) = M . To decide ΣC |= σ, we have to consider the unique cardinality

constraint card(r, c) = M ′ in Σ
′Can
C = Σ

Can

C , which is specified for the link (r, c).

Then ΣC |= σ holds if and only if M is a superset of M ′.

As mentioned earlier, Armstrong databases are a popular way to represent all impli-

cations of a given constraint set. The following result tells us which sets of cardinality

constraints admit Armstrong databases.

Theorem 38. There exists a C-Armstrong database for ΣC if and only if ΣC implies

a finite cardinality constraint for every link in the database schema ~S.

Proof. Without loss of generality, we may assume that ΣC is C-closed.

(Necessity.) Let ~St be an C-Armstrong database for ΣC . Then ~St is legal for ΣC

and violates every cardinality constraint not in ΣC . Since we restricted ourselves to

finite databases, every population in ~St is finite. Consider a link (r, c). Let M be the

set containing all the degrees deg(rt, c) where c runs over the population ct. Since

ct is finite, the resultant set M is finite, too. Hence ~St satisfies the finite cardinality

constraint card(r, c) = M . Consequently, this constraint belongs to ΣC .

(Sufficiency.) Suppose ΣC implies a finite cardinality constraint for every link.

Consider a link (r, c). Since ΣC is C-closed, it contains the cardinality constraint

card(r, c) = CanDeg(r, c). Due to its definition and the existence of a finite cardi-

nality constraint for the link (r, c) in ΣC , the set CanDeg(r, c) has to be finite.
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Let d∗ be a candidate degree in CanDeg(r, c). In the proof of Theorem 6, we con-

structed a database instance which supplies evidence of (r, c, d∗). We choose such

a database instance for every link (r, c) and every d∗ ∈ CanDeg(r, c), and denote

their disjoint union by ~St. Since all the sets CanDeg(r, c) are finite, the resultant

database instance ~St is finite, too.

Clearly, ~St is legal for ΣC . It is easy to see that ~St satisfies a cardinality constraint

card(r, c) = M only if M is a superset of CanDeg(r, c). But in this case, the

cardinality constraint belongs to ΣC . Hence ~St satisfies exactly those cardinality

constraints that are in ΣC , and is C-Armstrong as claimed.

11 Interactions with key dependencies

In this section, we turn our attention to key dependencies and their interplay with

cardinality constraints. A population which is empty or contains only a single re-

lationship obviously satisfies every possible key dependency. Thus, sets of key de-

pendencies are always satisfiable and even consistent. But as seen in the example

of Figure 2, this is no longer true if we are given cardinality constraints, too. The

reason for this are the following simple observations which hold for every link (r, c)

(see also [49]):

(KC) If Σ contains the key dependency r : {c} → r, then Σ |= (card(r, c) = {0, 1}).

(CK) If Σ contains the cardinality constraint card(r, c) = {0, 1}, then Σ |=
(r : {c} → r).

Lemma 39. (KC) and (CK) are correct, that is, the constraints r : {c} → r and

card(r, c) = {0, 1} are semantically equivalent for every link (r, c).

Proof. We start with (KC). Let rt be a population satisfying r : {c} → r. Consider

an object c in the codomain ct. If c participates in two (or more) relationships

r1 and r2 in rt, then their restrictions r1[{c}] and r2[{c}] are equal. This gives a

contradiction to {c} being a key for rt. Hence the claimed implication holds.

Next, we treat (CK). Let rt satisfy card(r, c) = {0, 1}. Again, consider an object c

in the codomain ct. There is at most one relationship r in rt whose restriction r[{c}]
gives c. Thus {c} is a key for rt as claimed.

According to the previous result, certain cardinality constraints may be used to

express unary key dependencies, and vice versa. As we shall see below, Lemma 39

describes the only nontrivial interaction between cardinality constraints and key

dependencies. Throughout, let ~S be a database schema. Given a constraint set Σ

specified on ~S, let

ΣCard = {(card(r, c) = {0, 1}) : (r : {c} → r) ∈ Σ}
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contain all cardinality constraints obtained from key dependencies in Σ via (KC),

and

ΣKey = {(r : {c} → r) : (card(r, c) = {0, 1}) ∈ Σ}

contain all key dependencies derived from cardinality constraints in Σ via (CK). In

this section, we consider sets ΣC and ΣK of cardinality constraints and key depen-

dencies, respectively, declared on ~S. Moreover, we usually put Σ = ΣC ∪ ΣK .

11.1 Construction of legal databases

Lemma 40. Let rt be a given population with codomains ct, c ∈ Co(r), such that rt

satisfies ΣCard
K . Then there exists a population rt′ which satisfies the whole set ΣK

and exactly the same cardinality constraints as rt does.

Proof. Denote the size of rt by g(r) and the size of any codomain ct by g(c). Let

r be of arity n, that is, with n components. We choose a positive integer q ≥ g(r)

such that there exists a resolvable transversal design TD(n, q). By the theorem of

MacNeish, we may choose q as a prime power satisfying q ≥ max{n, g(r)}. From rt

we shall construct a new population rt′ of size qg(r).

Let c be a component of r. For every old object c in ct, we introduce q new objects

(c, 1), . . . , (c, q). Denote the resultant object set by ct′ . The population rt′ to be

constructed will have the codomains ct′ , c ∈ Co(r).

Due to our choice of q, there is a resolvable transversal design TD(n, q). For every old

relationship r in rt, we fix an own resolution class in the transversal design. Let r =

r(c1, . . . , cn) be an old relationship in rt, and (i1, . . . , in) be a block in the associated

resolution class. Then we generate a new relationship r′ = r′((c1, i1), . . . , (cn, in)).

Doing the same for every old relationship and every block in the corresponding

resolution class, we obtain a new population rt′ over r with exactly qg(r) members.

Every new object (c, i) in a codomain ct′ participates in the same number of new

relationships as the old object c ∈ ct does in old relationships. Hence, the new

population rt′ satisfies exactly the same cardinality constraints as the old population

rt does.

Consequently, rt′ satisfies ΣCard
K , and thus every unary key dependency in ΣK due

to Lemma 39. Moreover, any two new relationships in rt′ share at most one entry.

Therefore rt′ satisfies every possible non-unary key dependency, particularly those

in ΣK . Together this proves the new population rt′ to satisfy ΣK as desired.

Theorem 41. Let ~St be a given database instance which is legal for ΣCard
K . Then

there exists a database instance ~St′ which is legal for the whole set ΣK and satisfies

exactly the same cardinality constraints as ~St does.

Proof. In a database instance ~St, the codomains ct of a population rt over a relation-

ship type r are just the populations over the object types c ∈ Co(r). To generate the
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new populations rt′ we always use the same integer q. Therefore we choose q such

that it exceeds the size of all the old populations rt, and such that it ensures the

existence of a resolvable transversal design TD(n, q) even for the largest arity n of a

relationship type in ~S. With this, the claim is an easy consequence of Lemma 40.

Theorem 42. An object type v is redundant for Σ = ΣC ∪ ΣK if and only if it is

redundant for ΣC ∪ ΣCard
K .

Proof. (Necessity.) Let v be redundant for Σ. Assume v is not redundant for

ΣC ∪ΣCard
K . Then there is a database instance ~St, which is legal for ΣC ∪ΣCard

K , and

whose population vt is non-empty. By virtue of Theorem 41, we also have a database

instance ~St′, which is legal for Σ. But due to its construction, the population vt′ is

q times larger than vt, where q is some suitable positive integer. Therefore, vt′ is

non-empty, too. But this contradicts our assumption. Thus v has to be redundant

for ΣC ∪ ΣCard
K .

(Sufficiency.) This part of the claim is obvious since Σ semantically implies ΣC ∪
ΣCard

K by Lemma 39.

Corollary 43. Σ = ΣC ∪ ΣK is consistent if and only if ΣC ∪ ΣCard
K is consistent.

The consistency of ΣC ∪ ΣCard
K may be checked in polynomial time as proposed

above. In particular, a consistent set of cardinality constraints together with a set

of non-unary key dependencies is always consistent.

Example. Recall the database schema ~S in Figure 3. The set ΣC of cardinality

constraints declared on it is consistent. However, the situation changes if we add

the key dependency r2 : {e2} → r2. The resultant constraint set Σ is no longer

consistent. Here ΣCard
K contains the additional cardinality constraint card(r2, e2) =

{0, 1}. With respect to ΣC ∪ΣCard
K , the set of candidate degrees for the link (r2, e2)

is CanDeg(r2, e2) = {0, 1}. This leads to a modification of the weight function ω

defined on the symmetric digraph ~D as shown in Figure 6. The dicycle from e2 via

r2, e1 and r1 back to e2 has weight 1/12, i.e. is absorbing for ΣC ∪ ΣCard
K . Thus all

object types on this dicycle are redundant for Σ.
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Figure 6: The modified weight function under consideration of an additional key

dependency r2 : {e2} → r2.

Theorem 44. Σ = ΣC ∪ ΣK is C-closed if and only if ΣC is C-closed and contains

every constraint implied by ΣK due to (KC).
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Proof. (Necessity.) Let Σ be C-closed. The correctness of (KC) was shown in

Lemma 39. This gives us ΣCard
K ⊆ ΣC . Now consider a cardinality constraint σ

not in ΣC and thus not Σ. Since Σ is C-closed, there exists a database instance ~St

which is legal for Σ, but violates σ. As ΣC is a subset of Σ, this proves ΣC to be

C-closed, too.

(Sufficiency.) Suppose ΣC is C-closed and contains ΣCard
K as a subset. Let σ be a

cardinality constraint not in Σ and, consequently, not in ΣC . Since ΣC is C-closed, we

find a database instance ~St which is legal for ΣC , but violates σ. Due to ΣCard
K ⊆ ΣC ,

this database instance is in particular legal for ΣCard
K . Now we apply Theorem 41.

This gives us a database instance ~St′ , which is legal for ΣK . Moreover ~St′ satisfies

the same cardinality constraints as ~St does. Therefore, it is legal for ΣC , but violates

σ. This proves Σ to be C-closed.

11.2 Implications from key dependencies

To continue with, we restate a well-known result on implications of key dependencies.

The combinatorial structure of key dependencies was investigated in [2, 20, 24].

These papers, in particular, contain a simple observation which we record here for

future reference.

Lemma 45 (cf. [2, 19, 20]). Let r be a relationship type, and X be a non-empty

subset of Co(r). The following rule is correct:

(K) If ΣK contains r : X → r, then ΣK |= (r : Y → r) for every Y ⊆ Co(r) with

X ⊆ Y .

As shown by Armstrong [2] and Demetrovics [20], a set ΣK of key dependencies

is K-closed if and only if it contains all constraints obtained from ΣK by applying

Lemma 45.

At this point a brief remark is called for. In a number of papers on database design,

the key dependencies r : Co(r) → r are assumed to be ‘built-in axioms’. This

forces the relationships in a population rt to yield mutually distinct mappings from

Co(r) = {c1, . . . , cn} to the cartesian product ct
1× · · ·× ct

n. Under this presumption,

the relationships may be identified by their components r(ci). For a discussion of

identification mechanisms in the entity-relationship model, we refer to [5, 50]. In

the definition of database instances in Section 3, we do not explicitly claim the

relationships in a population to have this property. However, this can easily be

reached if desired: We must simply add these key dependencies as trivial constraints

to every set ΣK, that is, agree on the following rule (KA) for every relationship type

r:

(KA) ΣK |= (r : Co(r)→ r).
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A key X ⊆ Co(r) for a population rt is said to be minimal if no proper subset of

X is a key for rt again. By Lemma 45, the set of minimal keys for a population

rt completely determines the set of all keys for rt. This gives a special motivation

for the investigation of minimal keys. Two different minimal keys will never contain

each other: Sets of minimal keys correspond to Sperner families over the component

set Co(r), see [20]. In that paper, the interested reader will also find a construction

of K-Armstrong populations for a given set of key dependencies. Complexity issues

concerning this construction are tackled by Demetrovics and Thi [24].

11.3 Ingredients from graph theory

Our aim is to give a characterization of (C ∪K)-closed sets, where C ∪K is the joint

class of cardinality constraints and key dependencies. Again we use representation

graphs which have been introduced in Section 6. The reader is reminded that,

for every link (r, c), we considered a clique graph Gt(r, c) whose vertices are the

relationships in rt. Two distinct relationships r1 and r2 are connected by an edge

in Gt(r, c) if r1(c) = r2(c) holds. Moreover, let Gt(r, X) denote the intersection of

the representation graphs Gt(r, c), c ∈ X, for any subset X of Co(r). It is easy to

check, that Gt(r, X) contains an edge connecting r1 and r2 exactly when we have

r1[X] = r2[X], and thus is a clique graph again.

As on cardinality constraints, representation graphs give us useful information on

the key dependencies satisfied by a population rt.

Lemma 46. The population rt satisfies the key dependency r : X → r if and only

if Gt(r, X) is edgeless.

Proof. In Gt(r, X), two vertices r1 and r2 are connected by an edge if and only if

the restrictions r1[X] and r2[X] are equal. However, X is a key if and only if the

restrictions r[X] are mutually distinct for the relationships r in rt. This verifies the

claimed result.

We collect a few more notations from graph theory. By Kk we denote the complete

graph on k vertices. The vertex-disjoint union of µ copies of Kk yields a clique

graph which we denote by µKk. Given a graph G, the valency of a vertex specifies

the number of edges containing this vertex. The minimum valency over all vertices

in G is usually denoted by δ(G). A major tool for our further investigation is the

following theorem of Hajnal and Szemerédi [33]. This result was first conjectured

by Erdős [27] and gives a necessary condition on the occurrence of clique graphs as

subgraphs in a given graph H. For a detailed discussion, we refer to [11].

Theorem 47 (Hajnal and Szemérdi). Let H be a graph with m = µk vertices

and minimum valency δ(H) ≥ m − µ. Then H has a subgraph isomorphic to the

clique graph µKk.



44 Sven Hartmann

Using the theorem of Hajnal and Szemerédi we derive the following result which

happens to be essential for the solution of the implication problem for cardinality

constraints and key dependencies.

Theorem 48. Suppose we are given positive integers n and k ≥ 2. Further, let

Y be a subset of {1, . . . , n}, and e be a fixed edge in the complete graph Km with

m = kn vertices. Then there is a collection of spanning subgraphs H1, . . . , Hn of Km

satisfying the following conditions:

(i) For every j with 1 ≤ j ≤ n, the subgraph Hj is isomorphic to the clique graph

µKk with µ = kn−1.

(ii) For every pair i, j with 1 ≤ i < j ≤ n and {i, j} 6⊆ Y , the subgraphs Hi and

Hj are edge-disjoint.

(iii) For every pair i, j with 1 ≤ i < j ≤ n and {i, j} ⊆ Y , the subgraphs Hi and

Hj share exactly one edge, namely the fixed edge e.

Before we start our proof, we like to recall that Bernoulli’s inequality

ks ≥ 1 + s(k − 1) (15)

holds for every non-negative integer s and every positive integer k.

Proof. We choose a complete subgraph Fy of size k in Km for every y ∈ Y , such

that any two of these subgraphs have exactly the fixed edge e in common. This is

possible since

m = kn ≥ 2 + n(k − 2) ≥ 2 + |Y |(k − 2)

holds due to our choice of m and (15). In the sequel, Fy will always be a first clique

in the subgraph Hy to be constructed. This is to ensure condition (iii).

Assume we already have suitable subgraphs Hi for i < j, and we are now going

to construct Hj. First, suppose j is not in Y . We have to arrange the m vertices

in cliques of size k each. For that, however, we may use neither the edges in the

subgraphs Hi, i < j, nor the edges in the cliques Fy, y ∈ Y . Let G be the spanning

subgraph of Km containing all the remaining, i.e. permitted edges for Hj. It is not

difficult to see, that every vertex in G has valency at least

δ(G) ≥ δ(Km)− (n− 1)δ(Kk) = (m− 1)− (n− 1)(k − 1).

By (15) we derive µ = m/k = kn−1 ≥ 1 + (n − 1)(k − 1) and thus δ(G) ≥ m − µ.

Hence we may apply the theorem of Hajnal and Szemerédi to G. This gives us a

subgraph which is isomorphic to µKk and will be chosen for Hj.

Otherwise, suppose j is in Y . This time we already have a first clique Fj, and

it remains to arrange the m − k vertices not in Fj in cliques of size k each. As

above, let G be the spanning subgraph of Km containing all the permitted edges for
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Hj. Furthermore, let G′ be the subgraph of G induced by the remaining vertices

under discussion. Analogously, we derive δ(G′) ≥ (m − k) − (µ − 1). On applying

the theorem of Hajnal and Szemerédi to G′, we obtain a subgraph isomorphic to

(µ− 1)Kk. Its union with the first clique Fj provides the desired subgraph Hj.

When constructing subgraphs H1, . . . , Hn as described above, the validity of (i) to

(iii) is easy to check. This concludes the proof.

Lemma 49. Let ΣC be C-closed, ΣK be K-closed and suppose ΣCard
K ⊆ ΣC as well as

ΣKey
C ⊆ ΣK hold. Consider a relationship type r and a non-empty subset Y ⊆ Co(r).

If ΣK does not contain the key dependency r : Y → r, then there is a population rs

which satisfies Σ = ΣC ∪ ΣK , but violates r : Y → r.

Proof. Since ΣK is K-closed, there is a population rt which satisfies ΣK and violates

r : Y → r. But unfortunately, rt will usually not satisfy ΣC . In fact, the difficulty

arises from the simultaneous consideration of key dependencies and cardinality con-

straints.

Suppose now the set Y is of size one, say Y = {c}. Then Σ may not contain the car-

dinality constraint card(r, c) = {0, 1} which is semantically equivalent to the unary

key dependency under discussion. The constraint set Σ is C-closed by Theorem 44.

Hence there is a population rs which satisfies Σ, but violates card(r, c) = {0, 1}
and therefore violates r : Y → r, too. As an example for rs, we may choose the

population constructed in Lemma 40.

Otherwise let Y be of size at least two. ΣK does not contain any of the unary

key dependencies r : {c} → r with c ∈ Y . Consequently, none of the cardinality

constraints card(r, c) = {0, 1} is in ΣC . Thus, for every c ∈ Y , the set CanDeg(r, c)

contains a candidate degree d∗ ≥ 2.

Let rt be a population with codomains ct, c ∈ Co(r), such that rt satisfies ΣC . As

usual, we denote the size of this population and its codomains by g(r) and g(c),

respectively. Put µ = g(r)n−1, where n is the arity of r. We aim at constructing a

population rs of size h(r) = µg(r). For every component c ∈ Co(r), the codomain cs

will just be the disjoint union of µ copies of ct. Thus cs will be of size h(c) = µg(c).

We are going to construct the desired representation graphs Gs(r, c) as subgraphs

of the complete graph Kh(r). Let e be a fixed edge in this complete graph. By

Theorem 48, we find subgraphs H(r, c) such that each of them is isomorphic to the

clique graph µKg(r) and contains the fixed edge e exactly when c lies in Y .

Now consider the representation graphs for the old population rt. Gt(r, c) is a

clique graph on g(r) vertices and with clique sizes in CanDeg(r, c). On replacing

every clique in H(r, c) by a copy of the corresponding graph Gt(r, c), we obtain the

desired representation graph Gs(r, c) for our new population rs.

It remains to check whether the population rs with these representation graphs has

the claimed properties. Clearly, rs satisfies exactly the same cardinality constraints
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as rt does. In particular, rs satisfies ΣC .

Let r : X → r be a key dependency in ΣK . We treat two cases. If X is of size one,

say X = {c}, then ΣC contains the cardinality constraint card(r, c) = {0, 1}. The

population rs satisfies ΣC and therefore the unary key dependency r : X → r, too.

Conversely, let X be of size two or larger. Since ΣK is K-closed, X is not a subset

of Y . By Theorem 48, the intersection of the graphs H(r, c), c ∈ X, is edgeless.

Due to our construction, the same holds for Gs(r, X) which is the intersection of the

representation graphs Gs(r, c), c ∈ X. Hence the key dependency under discussion

is satisfied by rs.

Finally, consider the subset Y . The graphs H(r, c), c ∈ Y , have exactly the fixed

edge e in common. We want to ensure the same for the graphs Gs(r, c). Therefore,

we have to replace the clique containing the edge e in such a way by a copy of

Gt(r, c), that e will not be deleted. This is easy to guarantee as long as Gt(r, c) is

not a collection of isolated vertices. For this reason, we have to guarantee for every

c ∈ Y that the old representation graph Gt(r, c) contains a clique of size at least 2.

Fortunately, every set CanDeg(r, c), c ∈ Y , contains a candidate degree d∗ ≥ 2 as

pointed out above. It suffices to start with a population rt which supplies evidence

of every (r, c, d∗) where c is in Y and d∗ is the corresponding candidate degree. The

existence of such a population is guaranteed by Theorem 22. In this case, the new

population rs violates the key dependency r : Y → r as desired.

11.4 Closed sets of cardinality constraints and key depen-

dencies

We are now in the position to establish the main result of this section. It provides a

complete characterization of closed sets in the joint class of cardinality constraints

and key dependencies.

Theorem 50. Σ = ΣC ∪ ΣK is (C ∪ K)-closed if and only if ΣC is C-closed, ΣK is

K-closed and Σ contains every constraint implied by Σ due to (KC) or (CK).

Proof. (Necessity.) Suppose Σ is C-closed as well as K-closed. By Theorem 44, also

ΣC is C-closed and contains all constraints derived by (KC). Since ΣK consists of

all key dependencies in Σ, it is K-closed, too. The correctness of (CK) is due to

Lemma 39.

(Sufficiency.) Again by Theorem 44, Σ is C-closed under the specified conditions. It

remains to verify that Σ is K-closed. Consider an arbitrary key dependency σ not

in Σ, that is, not in ΣK. We have to find a database instance which is legal for Σ,

but violates σ. This is easily done if σ is a unary key dependency: According to

(CK), Σ does not contain the corresponding cardinality constraint, and this yields

the existence of the desired database instance since Σ is C-closed.
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Hence we may restrict ourselves to non-unary key dependencies σ 6∈ Σ. Let σ be the

key dependency r : Y → r where r is a relationship type in ~S and Y ⊆ Co(r) holds.

Clearly, Σ does not contain any cardinality constraint card(r, c) = {0, 1} with c ∈ Y .

For each component c ∈ Y , we fix a candidate degree d∗ ≥ 2. By Theorem 22, there

is a database instance ~St which is legal for ΣC and supplies evidence of every (r, c, d∗)

under discussion. As usual, let g(v) denote the size of the population vt in ~St.

Now we apply Theorem 45 to obtain a database instance ~St′ which is legal for

Σ. Its populations vt′ are of size qg(v) where q is some sufficiently large integer.

Unfortunately, ~St′ will usually not violate r : Y → r as desired. On the other hand,

Lemma 49 gives us a population rs which satisfies Σ, but violates r : Y → r. This

population is of size h(r) = µg(r) and has codomains cs of size h(c) = µg(c).

The idea is to combine both results. For that, we take the disjoint union of µ copies

of ~St′ . In the resultant database instance ~St′′ we replace the population rt′′ by the

disjoint union of q copies of rs. This provides a database instance which is still legal

for Σ, but violates the key dependency r : Y → r under inspection.

Due to discussion above, Σ is K-closed and, consequently, (C ∪K)-closed as claimed.

The condition on the constraints derived from Σ via (CK) or (KC) may also be

expressed as follows.

Corollary 51. Σ = ΣC ∪ ΣK is (C ∪ K)-closed if and only if ΣC is C-closed, ΣK is

K-closed and we have

{(r, c) ∈ L : (card(r, c) = {0, 1}) ∈ ΣC} = {(r, c) ∈ L : (r : {c} → r) ∈ ΣK}. (16)

Moreover, Theorem 50 gives us an efficient method to decide implication in C ∪ K.

Algorithm 52. Given ΣC and ΣK specified on ~S, the algorithm determines the

(C ∪ K)-closure Σ of the constraint set Σ = ΣC ∪ ΣK :

1. Determine ΣCard
K from ΣK by applying (KC) to every suitable link.

2. Determine the C-closure ΣC of ΣC ∪ ΣCard
K as proposed in Section 10.

3. Determine Σ
Key

C from ΣC by applying (CK) to every suitable link.

4. Determine the K-closure ΣK of ΣK ∪ Σ
Key

C as proposed above.

5. Join ΣC and ΣK , and denote the union by Σ.

Proof. Every constraint in Σ is implied by the given constraint set Σ. It suffices to

check whether Σ is (C ∪ K)-closed as claimed. We shall apply Theorem 50 to the

derived constraint set Σ. Note, that ΣC consists of all cardinality constraints in Σ,

while ΣK consists of all key dependencies in Σ. Clearly, ΣC is C-closed due to step 2,

and ΣK is K-closed due to step 4. Furthermore, Σ
Key

C is a subset of Σ due to step 3.
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It remains to show that Σ
Card

K is a subset of Σ, too. Every unary key dependency in

ΣK belongs to ΣK or is implied by ΣC ∪ ΣCard
K . Consequently, every constraint in

Σ
Card

K lies in ΣCard
K or is implied by ΣC ∪ ΣCard

K . Thus Σ
Card

K has to be a subset of

the C-closure of ΣC ∪ ΣCard
K , that is, a subset of ΣC due to step 2.

Theorem 53. There exists a database instance over ~S which is (C ∪ K)-Armstrong

for Σ = ΣC ∪ ΣK if and only if Σ implies a finite cardinality constraint for every

link in ~S.

Proof. Without loss of generality, we may suppose that Σ is (C ∪ K)-closed. Obvi-

ously, the condition is necessary as in Theorem 38.

(Sufficiency.) We are looking for a database instance which satisfies a constraint σ

from C ∪ K just when σ belongs to Σ. Recall that K was the set of all possible key

dependencies with respect to the given database schema ~S. Clearly, this set is finite.

For every key dependency σ ∈ K which is not in Σ, we take a database instance

which is legal for Σ but violates σ. We constructed such a database instance in the

proof of Theorem 50. Now we take the disjoint union of all these database instances.

The resultant database instance ~Ss is K-Armstrong for Σ.

Furthermore, Theorem 38 yields a database instance ~St which is C-Armstrong for

ΣC . As supposed, Σ is (C ∪ K)-closed. This gives us ΣCard
K ⊆ ΣC by Theorem 50.

Hence, Theorem 44 provides a database schema ~St′ which is C-Armstrong for Σ.

Finally, the disjoint union of ~St′ and ~Ss is (C ∪ K)-Armstrong for Σ and establishes

the claimed result.

12 Interactions with functional dependencies

Let ΣC , ΣK and ΣF denote sets of cardinality constraints, key dependencies and

functional dependencies, respectively, declared on a database schema ~S. In addition,

we usually put Σ = ΣC ∪ΣK ∪ΣF . It is well-known that the Armstrong rules [2, 19]

provide a solution to the implication problem for functional dependencies. We record

these rules for future reference.

Lemma 54 (Armstrong). Let r be a relationship type, and X, Y and Z be non-

empty subsets of Co(r). The following rules are correct:

(F1) Σ |= (r : X → Y ) whenever Y ⊆ X holds.

(F2) If Σ contains r : X → Y and r : Y → Z, then Σ |= (r : X → Z).

(F3) If Σ contains r : X → Y , then Σ |= (r : X ∪ Z → Y ∪ Z).

Due to their definition, key dependencies happen to be special functional dependen-

cies. Some observations may be noted immediately.
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Lemma 55. Let r be a relationship type, and X be a non-empty subset of Co(r).

The following rules are correct:

(KF) If Σ contains r : X → r, then Σ |= (r : X → Co(r)).

(FK) If Σ contains r : X → Co(r) and r : Co(r)→ r, then Σ |= (r : X → r).

Armstrong [2] proved the rules given in Lemmas 54 to be correct and complete.

Hence, ΣF is F -closed if and only if it contains all constraints obtained by applying

(F1) to (F3). Similarly, ΣK ∪ ΣF is (K ∪ F)-closed if and only if it contains all

constraints derived by (K), (F1) to (F3), (KF) and (FK).

The Armstrong rules gave rise to a considerable number of papers concerning ap-

plications, consequences and alternative rules. For a discussion, see [47]. In [2, 25],

one finds methods for constructing F -Armstrong populations.

Theorem 56. Let ΣF contain non-unary functional dependencies only, and let ~St

be a given database instance. There exists a database instance ~St′ , which is legal for

ΣF and satisfies exactly the same cardinality constraints as ~St does.

Proof. We apply the construction presented in the proof of Theorem 41 to ~St. In

the resultant database instance ~St′ , any two relationships in a population rt′ agree

in at most one component. Hence, ~St′ trivially satisfies every non-unary functional

dependency.

As for Theorem 41 in the case of key dependencies, we derive a couple of interesting

consequences from Theorem 56 for a set Σ = ΣC ∪ ΣK ∪ ΣF containing cardinality

constraints, key and functional dependencies. The proofs are analogous to the proofs

of Theorem 42, Corollary 43 and Theorem 44. The major tool in these proofs is the

construction introduced to verify Theorem 41. The resultant database instance ~St′

satisfies every possible non-unary key or functional dependency.

Corollary 57. Let ΣF contain non-unary functional dependencies only.

(i) An object type v is redundant for Σ = ΣC ∪ ΣK ∪ ΣF if and only if it is

redundant for ΣC ∪ ΣK .

(ii) Σ is consistent if and only if ΣC ∪ ΣK is consistent.

(iii) Σ is C-closed if and only if ΣC ∪ ΣK is C-closed.

The question whether ΣC ∪ ΣK is closed with respect to the class of cardinality

constraints may be decided according to Theorem 44. We continue our study by

investigating closed sets with respect to the joint class of cardinality constraints,

key and functional dependencies. Again, representation graphs Gt(r, c) and their

intersections are profitable to derive the desired characterization.
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Lemma 58. The population rt satisfies the functional dependency r : X → Y if and

only if Gt(r, X) is a subgraph of Gt(r, Y ).

Proof. In Gt(r, X) two vertices r1 and r2 are connected by an edge whenever the

restrictions r1[X] and r2[X] of the relationships r1 and r2 are equal. The definition

of the functional dependency r : X → Y verifies the claimed result.

Attention to combinatorial properties of functional dependencies has been drawn e.g.

in [6, 7, 21, 22]. As already pointed out by Codd [17] and Armstrong [2], functional

dependencies can be represented by closure operations. For a relationship type r

and any non-empty subset X ⊆ r, we put

cl(X) = {c ∈ Co(r) : ΣF |= (r : X → {c})}.

This induces a closure operation on the subsets of Co(r). We call X functionally

closed under ΣF if cl(X) = X holds. Conversely, for every closure operation cl on

Co(r), the set

ΣF = {(r : X → Y ) : Y ⊆ cl(X), Y 6= ∅}

is semantically closed in the class F of functional dependencies. A complete theory

of closure operations to handle sets of functional dependencies was developed in [12].

Next, we give a result analogous to Lemma 49, but for key and non-unary functional

dependencies. For that, we need an interesting observation that enables us to reuse

the populations constructed to verify Lemma 49.

Lemma 59. Let r be a relationship type, and X, Z be non-empty subsets of Co(r).

The population rs constructed in Lemma 49 satisfies a non-unary functional depen-

dency r : X → Z if and only we have either X 6⊆ Y or X ∪ Z ⊆ Y .

Proof. Suppose the subset Y ⊆ Co(r) in Lemma 49 is of size 1. The corresponding

population rs generated in Lemma 49 satisfies every possible non-unary functional

dependency r : X → Z. Since Y is of size one and X of size at least two, we

evidently have X 6⊆ Y .

Otherwise, suppose Y is of size 2 or larger. The population rs satisfies r : X → Z

exactly when Gs(r, X) is a subgraph of Gs(r, Z). We treat two cases. If X 6⊆ Y

holds, the Gs(r, X) is edgeless by our construction and in particular by Theorem 48).

In this case, Gs(r, X) is a trivial subgraph of Gs(r, Z).

Conversely, if X ⊆ Y holds, the graph Gs(r, X) contains a single edge, namely the

fixed edge e. However, Gs(r, Z) contains this edge just when Z is a subset of Y , too.

This gives us X ∪ Z ⊆ Y and proves the claim.

Lemma 60. Let all functional dependencies in ΣF be non-unary, trivial or implied

by ΣK . Moreover, let ΣC ∪ ΣK be (C ∪ K)-closed and ΣK ∪ ΣF be (K ∪ F)-closed.

Consider a relationship type r and non-empty subsets Y, W ⊆ Co(r). If ΣF does not

contain the functional dependency r : Y → W , then there is a population rs which

satisfies Σ = ΣC ∪ ΣK ∪ ΣF , but violates r : Y →W .
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Proof. A population violates r : Y → W if and only if it violates r : cl(Y ) → W .

Thus we may suppose that Y is functionally closed under ΣF , that is, Y = cl(Y )

holds.

Let us consider the population rs constructed in Lemma 49, which satisfies ΣC ∪ΣK

and violates the key dependency r : Y → r. As we shall see below, this population

is also suitable for our purposes here.

We have to check that rs satisfies ΣF . Of course, it suffices to discuss the non-unary

functional dependencies in ΣF . Let r : X → Z be an arbitrary non-unary functional

dependency in ΣF . Note, that X ⊆ Y gives us Z ⊆ cl(X) ⊆ cl(Y ) = Y and

thus X ∪ Z ⊆ Y . Therefore, the population rs satisfies every non-unary functional

dependency in ΣF by Lemma 59.

Further, we shall verify that rs violates r : Y → W . By Lemma 59, rs violates

r : Y → W if and only if W 6⊆ Y holds. However, since ΣF is F -closed and

r : Y →W is not in ΣF , we have W 6⊆ cl(Y ) = Y . This concludes the proof.

From Lemma 60, we derive a nearly complete characterization for closed sets in the

class of cardinality constraints, key and functional dependencies.

Theorem 61. Let all functional dependencies in ΣF be non-unary, trivial or implied

by ΣK . Then Σ = ΣC ∪ ΣK ∪ ΣF is (C ∪ K ∪ F)-closed if and only if ΣC ∪ ΣK is

(C ∪ K)-closed and ΣK ∪ ΣF is (K ∪ F)-closed.

Proof. The necessity is obvious. To prove the sufficiency we proceed as in Theo-

rem 50.

(Sufficiency.) By Theorem 44, Σ is C-closed under the specified conditions. It

remains to check that Σ is also K-closed and F -closed. First, we show that Σ is

F -closed. Consider a functional dependency σ not in Σ, that is, not in ΣF . We

have to find a database instance which is legal for Σ, but violates σ. Similar to

Theorem 50, we may construct such a database instance involving the population

established in Lemma 60. This proves Σ to be F -closed.

Next, we verify that Σ is K-closed. Consider a relationship type r in the database

schema. Suppose Σ does not contain any key dependency declared on r, i.e. ΣK is

empty for r. It suffices to find a database instance which is legal for Σ and violates

r : Co(r) → r. Take the database instance ~St′′ generated in Theorem 50 with

Y = Co(r). It is legal for ΣC ∪ ΣK and violates the key dependency r : Co(r) → r

under discussion. In addition, it satisfies every non-unary functional dependency in

ΣF due to our construction and Lemma 59. Hence, this database instance is legal

for the whole constraint set Σ. On the other hand, it violates r : Co(r) → r and

consequently every possible key dependency on r.

Conversely, suppose Σ contains at least one key dependency declared on r. Since

ΣK is K-closed, it contains the key dependency r : Co(r) → r due to (K). Under

this presumption, the key dependency r : Y → r is semantically equivalent to the
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corresponding functional dependency r : Y → Co(r). Thus, for any key dependency

r : Y → r not in Σ, we simply take the database instance established above which

is legal for Σ and violates the functional dependency r : Y → r and thus the key

dependency under inspection. This proves Σ to be K-closed, too.

As in Section 11, we also obtain a condition on the existence of Armstrong databases.

To verify this result, we proceed as is the proof of Theorem 53, but use the databases

constructed in Theorem 53 and in Theorem 61.

Theorem 62. Let all functional dependencies in ΣF be non-unary. There exists a

database instance over ~S which is (C ∪ K ∪ F)-Armstrong for Σ if and only if Σ

implies a finite cardinality constraint for every link in ~S.

13 Unary functional dependencies

Until now, we usually excluded unary functional dependencies. In this section, we

give a brief impression why these dependencies play a special role in the presence

of cardinality constraints. However, it is noteworthy that a set ΣC of cardinality

constraints will never imply a functional dependency different from those obtained

via (CK) and (KF).

Lemma 63. Let r be a relationship type, and v, w be components of r. ΣC implies a

functional dependency r : {v} → {w} if and only if ΣC implies card(r, v) = {0, 1}.

Proof. (Necessity.) Suppose ΣC does not imply card(r, v) = {0, 1}. We have to

check that ΣC does not imply r : {v} → {w} either. We do this by constructing

suitable representation graphs for v and w. Note that the representation graph

Gt(r, v) may contain cliques of size 2 or larger. Thus it is not forced to be edgeless.

We first choose Gt(r, w) with at least two cliques. Afterwards, we choose Gt(r, v)

such that it contains an edge which does not occur in Gt(r, w). Then the functional

dependency r : {v} → {w} does not hold. Hence ΣC does not imply this dependency.

(Sufficiency.) Let ΣC imply card(r, v) = {0, 1}. Then {v} is key, and the claimed

functional dependency holds due to (CK) and (KF).

Conversely, if we are given cardinality constraints and unary functional dependen-

cies, then one may conclude further implications.

Example. Consider the schemas in Figure 7. The specified sets of cardinality

constraints are both consistent. Assume, we are given the functional dependency

r : {v} → {w}, too. In every legal database instance, the representation graph

Gt(r, v) has to be a subgraph of Gt(r, w).

For the first schema, the cliques of Gt(r, v) are complete graphs on 4 to 6 vertices,

while the cliques of Gt(r, w) are complete graphs on 5 to 7 vertices. The only
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Figure 7: Examples for interactions with a functional dependency r : {v} → {w}.

possible decomposition of cliques of Gt(r, w) into those of Gt(r, v) is the trivial one.

Hence, both representation graphs are isomorphic. This gives us the new constraints

r : {w} → {v} as well as card(r, v) = {5, 6} and card(r, w) = {5, 6}.

For the second schema in Figure 7, the situation is even worse. A similar argumen-

tation shows the specified set of constraints to be inconsistent: The object types r,

v and w are redundant for this constraint set.

The following result summarizes the observations indicated by the examples. A

rigorous exploitation of the argumentation gives further results. But this is out of

the scope of the present paper.

Lemma 64. Let r be a relationship type, and v, w be components of r. Then we

have:

(CUF1) ΣC ∪ {r : {v} → {w}} implies card(r, v) = {z ∈ N0 : z ≤ β(r, w)}.

(CUF2) ΣC ∪ {r : {v} → {w}} implies card(r, w) = {z ∈ N0 : z ≥ α(r, v)}.

(CUF3) ΣC ∪{r : {v} → {w}} implies r : {v} → {w} whenever β(r, w) < 2α(r, v).

Proof. To verify the claimed statements, we consider the representation graphs

Gt(r, v) and Gt(r, w) for a population rt which satisfies ΣC ∪{r : {v} → {w}}. Due

to the functional dependency r : {v} → {w}, the first one will always be a subgraph

of the second one. In Gt(r, v) all components are of size at least α(r, v), while in

Gt(r, w) all components are of size at most β(r, w). This motivates the first two

implications. In the third case, it is not difficult to see, that both graphs have to be

isomorphic. This gives the unary functional dependency r : {v} → {w}, too.

An interesting idea to handle unary functional dependencies was introduced by

Biskup et al. [10]. They suggested to use these constraints to decompose re-

lationship types by pivoting. Though pivoting was originally introduced in an

object-oriented data model, it is not difficult to translate this idea to the entity-

relationship model. In our example from Section 3, the unary functional dependency

Lecture:{Hall} → {Building} may be used for this approach. As a result we

would obtain the schema in Figure 8. In the transformed database schema, this

functional dependency is naturally enforced due to the structure of the schema.

Decomposition by pivoting is closely related to decomposition into BCNF. A rela-

tionship type r is in Boyce-Codd Normal Form (BCNF) with respect to Σ if every
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Figure 8: The transformed database schema after decomposition by pivoting.

functional dependency r : X → Y in Σ is trivial or Σ contains the key dependency

r : X → r, too. Applying Theorem 61 and Corollary 59, we conclude as follows.

Theorem 65. Let every relationship type r in the database schema ~S be in BCNF

with respect to Σ = ΣC ∪ ΣK ∪ ΣF .

(i) Σ is consistent if and only if ΣC ∪ ΣK is consistent.

(ii) Σ is (C ∪K∪F)-closed if and only if ΣC ∪ΣK is (C ∪K)-closed and ΣK ∪ΣF

is (K ∪ F)-closed.

Recall that (C ∪K)- and (K∪F)-closures can be determined applying Algorithm 52

and the Armstrong rules, respectively. This gives us an efficient procedure to check

implication under the assumption of BCNF.

14 Concluding remarks and open problems

In this paper, we provided an efficient method for reasoning about a constraint

set comprising cardinality constraints as well as key and functional dependencies.

Reasoning means checking consistency and logical implication. Today, cardinality

constraints are embedded in most CASE tools, which are usually based on the entity-

relationship model. Although these tools include basic reasoning methods, they

do not offer intelligent consistency checking routines for constraint set containing

not only functional dependencies, but also cardinality constraints. Applying the

ideas presented in this paper, it would be possible to derive interesting properties of

schemas, or to detect conflicts among the constraints under discussion.

There are at least three open problems which should be investigated in future. In

the last section, we gave examples for interactions between cardinality constraints

and unary functional dependencies. It would be profitable to have a characterization

of semantically closed sets in the presence of unary dependencies without additional

assumptions such as BCNF.

As mentioned, pivoting may be used to decompose relationship types in order to

naturally enforce unary functional dependencies. Here a second problem arises. So
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far, pivoting has not been studied in the presence of cardinality constraints. We

are particularly interested in the question which cardinality constraints declared on

the original database schema may be translated to the transformed schema after

pivoting.

The third problem concerns Armstrong databases. The Armstrong databases con-

structed in the present paper are rather huge. In order to use Armstrong databases

for database mining, they have to be of reasonable size. Thus we are looking for

Armstrong databases of minimum size.

For key and functional dependencies this has been done in [21]. Even though far

from being solved this problem gave rise to a considerable number of partial results.

We refer the interested reader to [6, 7, 28, 52] for various research papers. In [23],

Demetrovics, Katona and Sali give a survey on recent results and show how this

question leads to the design-theoretic concept of orthogonal double covers (ODCs).

The investigation of ODCs turned out to be of interest for its own sake, as well. For

details, we refer to [1, 31, 32, 36] and a forthcoming survey paper by Gronau et al.

[29].

For cardinality constraints a similar problem was asked in [35]. Unfortunately, it

turned out to be NP-complete to decide whether there exists a legal database whose

population sizes are bounded by a given integer.
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[21] J. Demetrovics, Z. Füredi, and G. O. H. Katona. Minimum matrix representations

of closure operations. Discrete Appl. Math., 11:115–128, 1985.

[22] J. Demetrovics and G. O. H. Katona. A survey on some combinatorial problems

concerning functional dependencies in relational databases. Ann. Math. Artificial

Intelligence, 7:63–82, 1993.

[23] J. Demetrovics, G. O. H. Katona, and A. Sali. Design type problems motivated by

database theory. J. Statist. Plann. Inference, 72:149–164, 1998.

[24] J. Demetrovics and V. Thi. Relations and minimal keys. Acta Cybernet., 8:279–285,

1988.

[25] J. Demetrovics and V. Thi. Some results about functional dependencies. Acta Cy-

bernet., 8:273–278, 1988.



On the implication problem for cardinality constraints and functional dependencies 57

[26] J. H. Dinitz and D. R. Stinson, editors. Contempory design theory. Wiley, New York,

1992.
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and V. T. Sós, editors, Combinatorial theory and its applications, volume 4 of Colloq.

J. Bolyai Math. Soc., pages 601–623. North-Holland, Amsterdam, 1970.

[34] S. Hartmann. Graphtheoretic methods to construct entity-relationship databases. In

M. Nagl, editor, Graphtheoretic concepts in computer science, volume 1017 of LNCS,

pages 131–145. Springer, Berlin, 1995.

[35] S. Hartmann. On the consistency of int-cardinality constraints. In T. Ling, S. Ram,

and M. Li, editors, Conceptual Modeling, volume 1507 of LNCS, pages 150–163.

Springer, Berlin, 1998.

[36] S. Hartmann. Orthogonal decompositions of complete digraphs. Graphs Combin.,

1999, to appear.

[37] D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI, Mannheim, 1994.

[38] M. Lenzerini and P. Nobili. On the satisfiability of dependency constraints in entity-

relationship schemata. Inform. Systems, 15:453–461, 1990.

[39] S. W. Liddle, D. W. Embley, and S. N. Woodfield. Cardinality constraints in semantic

data models. Data Knowledge Eng., 11:235–270, 1993.

[40] H. F. MacNeish. Euler’s squares. Ann. of Math., 23:221–227, 1922.
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