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Abstract

We consider the poset P (N ;A1, A2, . . . , Am) consisting of all subsets
of a finite set N which do not contain any of the Ai’s, where the Ai’s are
mutually disjoint subsets of N . The elements of P are ordered by inclusion.
We show that P belongs to the class of Macaulay posets, i.e. we show a
Kruskal-Katona type theorem for P . For the case that the Ai’s form a
partition of N , the dual P ∗ of P became known as the orthogonal product
of simplices. Since the property of being a Macaulay poset is preserved
by turning to the dual, we show in particular that orthogonal products of
simplices are Macaulay posets. Besides, we prove that the posets P and
P ∗ are additive.
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1 Introduction

We study the poset P (N ; A1, A2, . . . , Am) of all subsets of a finite set N which do

not contain any of the non-empty, pairwise disjoint subsets A1, A2, . . . , Am ⊂ N .

The elements of P are ordered by inclusion. Our main result says that P belongs

to the class of Macaulay posets, i.e. we prove an analogue of the Kruskal-Katona

theorem [7, 8] for P . This generalizes a result from [10], where the case m = 2 is

covered. The proof given in this paper does apply to the case m ≥ 3, exclusively,
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m = 2 required a special treatment. In this sense, we continue the work begun

in [10].

In order to define what we mean by a Macaulay poset, we need to introduce

a few notions. Let (P,≤) be a poset. We use the notation x <· y to indicate that

x 6= y and that x ≤ z ≤ y implies z ∈ {x, y}, in this case we say that y covers x.

Furthermore, we assume P to be ranked, i.e. there is a function r : P → N such

that x <· y implies r(y) = r(x) + 1, where N denotes the set of natural numbers

(including 0). The rank of P is the number r(P ) := max{r(x) | x ∈ P}, and

for i = 0, 1, . . . , r(P ) the i-th level of P is the set Ni(P ) := {x ∈ P | r(x) = i}
which sometimes is also denoted by just Pi. For X ⊆ P we use the notation

Ni(X) = X ∩ Pi. The shadow of an element x ∈ P is the set ∆(x) := {y ∈
P | y ≤ x and r(y) = r(x) − 1}, and the shadow of a subset X ⊆ P is

∆(X) :=
⋃

x∈X ∆(x).

Consider a linear ordering ≺ of the elements of P . For X ⊆ Pi let C(X)

denote the set of the first |X| elements of Pi w.r.t. ≺. The set C(X) is called

the compression of X, and if X = C(X) holds, then X is called compressed. For

∅ ⊂ X ⊆ P and 1 ≤ m ≤ |X|, the set of the first m elements of X w.r.t. ≺ is

denoted by C(m, X). If necessary, we will write CP instead of C.

The poset P is said to be a Macaulay poset if the ordering ≺ can chosen such

that for all i ∈ {1, 2, . . . , r(P )} and all X ⊆ Pi the following inclusion holds:

∆(C(X)) ⊆ C(∆(X)) . (1.1)

In this case, we also say that (P,≤,≺) is a Macaulay structure.

It is well-known that (1.1) holds for all i and X ⊆ Pi if and only if for

i ∈ {1, 2, . . . , r(P )} and X ⊆ Pi the two conditions

|∆(C(X))| ≤ |∆(X)| (1.2)

and

C(∆(C(X))) = ∆(C(X)) (1.3)

are satisfied (cf. [2, 4]). By (1.2), compressed subsets have minimum-sized shadow

among all subsets of the same level with fixed cardinality. That means, the

solutions to the Shadow Minimization Problem (SMP) form a nested structure

since C(m, Pi) ⊂ C(m+1, Pi) for 1 ≤ m < |Pi|. By (1.3), shadows of compressed

subsets are compressed as well. Therefore, we speak of the continuity of the

solutions to the SMP.

The dual of (P,≤) is the poset (P,≤∗) with x ≤∗ y whenever y ≤ x holds in

P . If it is clear what ≤ is, then we will briefly denote (P,≤∗) by P ∗. Obviously,

P ∗ is ranked with the rank-function defined by r∗(x) = r(P ) − r(x) for x ∈ P .
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Let further be ≺∗ be the reverse of ≺, i.e. we have x ≺∗ y whenever y ≺ x. It is

not hard to show that (P,≤∗,≺∗) is a Macaulay structure if and only if (P,≤,≺)

is a Macaulay structure (see [2] or [4] for proof).

From now on let P = P (N ; A1, A2, . . . , Am). Throughout this paper we use

the notations A0 := N \ (A1 ∪ A2 ∪ · · · ∪ Am) and kj = |Aj| for j = 0, 1, . . . ,m.

Clearly, P can be represented as the cartesian product Bk0 × B′
k1
× · · · × B′

km
,

where by Bn we denote the Boolean lattice of order n and by B′
n the Boolean

lattice of order n without its maximal element. Hence, P ∗ can be seen as the

product Bk0 × (B′
k1

)∗ × · · · × (B′
km

)∗, where (B′
n)∗ stands for a Boolean lattice of

order n without its minimal element.

For number of special choices of the parameters, P (or, equivalently, P ∗) have

been considered w.r.t. the property of being a Macaulay poset:

In the special case k0 = 0, k1 = k2 = · · · = km = 2 the poset P ∗ is isomorphic

to the poset formed by all subcubes of an m-cube ordered by inclusion. In this

case, a linear ordering ≺ for which (1.1) holds has been introduced by Lindström

[12]. (The proof of (1.1) given in [12], however, contains a gap, as the author

himself pointed out later.) His result has been generalized to cartesian powers

of stars by Leeb [11] and, independently, by Bezrukov [1]. Essentially the same,

but in the dual version, has been found in [5]. The colored complexes introduced

there are cartesian products of stars of almost equal size. This case, however,

is somehow covered by the result for powers of stars because colored complexes

occur as left-compressed ideals there, as one can easily derive from the definition

of the corresponding ordering ≺. The observation that colored complexes are the

duals of the star powers in [11, 1] is due to Engel [4]. Finally, it has been shown

in [9] that products of stars of arbitrary sizes are Macaulay posets. To avoid

confusion, we recommend the study of chapter 8 of [4], where all these results are

summarized in a much more detailed way. Not recorded there is a very recent

generalization of the Leeb-Bezrukov result: Bezrukov and Elsässer [3] proved that

powers of spiders are Macaulay posets.

Sali [14] investigated P ∗ in the special case m = 2, k0 = 0. He interpreted P ∗

as the poset of all submatrices of a matrix ordered by containment. Furthermore,

he conjectured a Kruskal-Katona type theorem to hold and suggested a linear

order. His conjecture was proved in [10], also if the condition k0 = 0 is omitted.

In the case m ≥ 2, k0 = 0 (that is, if the “forbidden” Ai’s form a partition of N),

the poset P ∗ became known as the orthogonal product of simplices the study of

which has been suggested by Harper. Two of his former PhD students provided

essential contributions: Moghadam [13] settled the SMP in several special cases,

and Vasta [15] gave a solution to the related Maximum Rank Ideal Problem (MRI).

For an overview we refer to the forthcoming monograph [6]. Finally, note that the
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main theorem of this paper and a general theorem of Engel [4] on the Maximum

Weight Ideal Problem immediately yield a generalization of the mentioned result

by Vasta. (Vasta’s result covers the case of that the weight function is equal to

the rank function.)

2 The main result

We will now introduce a linear ordering ≺ of the elements of P . Throughout we

assume that N consists of positive integers, where n := |N | = k0 + k1 + · · ·+ km.

Hence, r(P ) = n − m. If we just want to indicate that we are considering

the poset P with these parameters, then instead of P (N ; A1, . . . , Am) we will

sometimes use the more abstract notation P (n; k1, . . . , km). Furthermore, we

suppose 2 ≤ k1 ≤ k2 ≤ · · · ≤ km, and that for j = 1, 2, . . . ,m the smallest

element of Aj is greater than the largest element of Aj−1, i.e.

Aj = {a1
j , a

2
j , . . . , a

kj

j }

with a1
j < a2

j < · · · < a
kj

j for j = 0, 1, . . . ,m and a
kj−1

j−1 < a1
j for j = 1, 2, . . . ,m.

Sometimes (when considering subposets of P ) we could possibly run into the case

k1 = 1. For this case, note that then P is equal to P (N \ {A1}; A2, . . . , Am).

For F ∈ P and j = 1, 2, . . . ,m we define aj(F ) := max(Aj \ F ) and

A(F ) := {a1(F ), a2(F ), . . . , am(F )} .

Furthermore, for A ∈ A1 × A2 × · · · × Am we use the notation

B(A) := {F ∈ P | A(F ) = A} .

Note that, if A = {at1
1 , at2

2 , . . . , atm
m }, then the elements of B(A) form a Boolean

lattice of order k0 +
∑m

j=1(tj − 1) as a subposet of P .

Our definition of ≺ involves the reverse-lexicographic ordering which for any

F, G ⊆ N is given by

F ≺r` G ⇐⇒ max(F \G) < max(G \ F ) .

Now we can establish the ordering ≺ on P by the following two conditions:

(1) F ≺ G whenever A(F ) 6= A(G) and min[A(F )\A(G)] > min[A(G)\A(F )],

(2) F ≺ G whenever A(F ) = A(G) and F ≺r` G.

4



If it is necessary to indicate that we are considering the ordering ≺ on P , then

we will use the notation ≺P .

The main result of this paper is the following theorem which says that the

triple (P,⊆,≺) is a Macaulay structure.

Theorem 2.1 The inclusion ∆(C(F)) ⊆ C(∆(F)) holds for all F ⊆ Pi and all

i ∈ {1, 2, . . . , n−m} w.r.t. the linear ordering ≺.

The above result has been conjectured in an equivalent form by Moghadam

[13]. Therefore, the problem of proving such a theorem is also referred to as

Moghadam’s problem, for instance in [15].

3 Some preparations

In the sequel, we will make use of a few more definitions and notations. A segment

S is a subset of some level Pi of P which consists of elements that are consecutive

w.r.t. ≺. In particular, we call S an initial segment resp. final segment if

it consists of the first resp. last elements of Pi w.r.t. ≺. More generally, if

S1,S2 ⊆ Pi are segments, we say that S1 is an initial (resp. final) segment of S2

if S1 consists of the first (resp. last) elements of S2. The new-shadow ∆new(F ) of

an element F ∈ Pi is the set of all members of ∆(F ) which are not contained in

the shadow of any element of Pi preceding F in the ordering ≺. The new-shadow

of a subset F ⊆ Pi is defined by ∆new(F) :=
⋃

F∈F ∆new(F ). Finally, for two

subsets F ,G ⊆ P we use the notation F ≺ G to indicate that the last element of

F precedes the first element of G in the order ≺.

The following observation is immediately from the definition of≺ and the well-

known fact that (1.3) holds for Boolean lattices w.r.t. the reverse-lexicographic

order (see [4] for instance).

Proposition 3.1 Let i ∈ {1, 2, . . . , n−m} and A ∈ A1×A2×· · ·×Am such that

Ni−1(B(A)) and Ni(B(A)) are both non-empty. Furthermore, let S be an initial

segment of Ni(B(A)).

(a) ∆new(Ni(B(A))) = Ni−1(B(A)) holds.

(b) ∆new(S) is an initial segment of Ni−1(B(A)).

As a corollary we obtain that (1.3) is satisfied for P w.r.t. ≺.
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Corollary 3.2 The equation C(∆(C(F))) = ∆(C(F)) is satisfied for all F ⊆ Pi

and all i ∈ {1, 2, . . . , n−m}.

The next observation is also easy to verify. It will be important in proving

Theorem 2.1, in particular for the partial compression in Section 5.

Proposition 3.3 Let A be a singleton subset of A0 or one of the sets A1, A2, . . . , Am.

Furthermore, let P ′ := P (N \ A; A1, A2, . . . , Am) if A is a singleton subset of

A0, and let P ′ := P (N \ Aj; A1, . . . , Aj−1, Aj+1, . . . , Am) if A = Aj with j ∈
{1, 2, . . . ,m}. Suppose further that F, G ∈ P such that F ∩ A = G ∩ A. Then

F ≺P G holds if and only if (F \ A) ≺P ′ (G \ A).

For the forthcoming inductions in Sections 4 and 5, the partition of P which

we are going to introduce now is crucial. For ` = 1, 2, . . . , k1 let the subset

B(`) ⊆ P be defined by

B(`) :=
⋃

A ∈ A1 × · · · × Am,

a`
1 ∈ A

B(A) .

In other words, B(`) is the collection of all F ∈ P such that the greatest element

of A1 which is not contained in F is a`
1. Clearly,

P = B(k1) ∪ B(k1 − 1) ∪ · · · ∪ B(1)

is a partition of P . From the definitions of p and ≺ we obtain the following

proposition.

Proposition 3.4 The sets B(`) (` = 1, 2, . . . , k1) have the following properties:

(a) B(k1) ≺ B(k1 − 1) ≺ · · · ≺ B(1),

(b) P \ B(1) is equal to P ′ = P (N ; A1 \ {ak1
1 }, A2, . . . , Am). Furthermore, for

F, G ∈ P ′ we have F ≺P G if and only if F ≺P ′ G.

(c) P \ B(k1) consists of all F ∪ {ak1
1 } with

F ∈ P ′ = P (N \ {ak1
1 }; A1 \ {ak1

1 }, A2, . . . , Am).

Furthermore, for F, G ∈ P ′ we have (F ∪{ak1
1 }) ≺P (G∪{ak1

1 }) if and only

if F ≺P ′ G.
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Sometimes it will be necessary to refine the above partition, i.e. to consider

a partition of B(`). Let ` ∈ {1, 2, . . . , k1}. For h = 1, 2, . . . , k2 define

B(`, h) :=
⋃

A ∈ A1 × · · · × Am,

a`
1, a

h
2 ∈ A

B(A) .

That means, B(`, h) consists of all F ∈ P with max(A1 \ F ) = a`
1 and max(A2 \

F ) = ah
2 . Hence,

B(`) = B(`, k2) ∪ B(`, k2 − 1) ∪ · · · ∪ B(`, 1)

is a partition of B(`). This partition has the following properties.

Proposition 3.5 Let ` ∈ {1, 2, . . . , k1}.

(a) B(`, k2) ≺ B(`, k2 − 1) ≺ · · · ≺ B(`, 1),

(b) B(`) \ B(`, 1) consists of all F ∪ {a`+1
1 , a`+2

1 , . . . , ak1
1 } with

F ∈ P ′ = P
(
N \ {a`

1, a
`+1
1 , . . . , ak1

1 }; A2 \ {a1
2}, A3, . . . , Am

)
.

Furthermore, for F, G ∈ P ′ we have(
F ∪ {a`+1

1 , a`+2
1 , . . . , ak1

1 }
)
≺P

(
G ∪ {a`+1

1 , a`+2
1 , . . . , ak1

1 }
)

if and only if F ≺P ′ G.

(c) B(`) \ B(`, k2) consists of all F ∪ {a`+1
1 , a`+2

1 , . . . , ak1
1 } ∪ {ak2

2 } with

F ∈ P ′ = P
(
N \ ({a`

1, a
`+1
1 , . . . , ak1

1 } ∪ {ak2
2 }); A2 \ {ak2

2 }, A3, . . . , Am

)
.

Furthermore, for F, G ∈ P ′ we have(
F ∪ {a`+1

1 , a`+2
1 , . . . , ak1

1 } ∪ {ak2
2 }

)
≺P

(
G ∪ {a`+1

1 , a`+2
1 , . . . , ak1

1 } ∪ {ak2
2 }

)
if and only if F ≺P ′ G.

Propositions 3.5 (b) and (c) imply an important observation.

Corollary 3.6 For ` = 1, 2, . . . , k1 − 1 the subposets B(` + 1) \ B(` + 1, k2) and

B(`) \ B(`, 1) are both isomorphic to P (n− k1 + `− 1; k2 − 1, k3, . . . , km).

We conclude the section with another statement we will need in proving the

main theorem.
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Lemma 3.7 Let i ∈ {1, 2, . . . , n−m}, and let F ∈ Pi.

(a) Suppose that k0 = 0 and that F /∈ B(1). Then ∆new(F ) 6= ∅ holds if and

only if a1
1 ∈ F .

(b) Suppose that k0 ≥ 1. Then ∆new(F ) 6= ∅ holds if and only if a1
0 ∈ F .

Proof. (a) Let k0 = 0, and let H ∈ Pi−1 \ B(1). The assertion is implied by

the following statement which is easily verified: The first element of Pi w.r.t. ≺
which contains H as a subset is H ∪ {a1

1}.
(b) If k0 ≥ 1, then the claim follows by the simple observation that for every

H ∈ Pi−1 with a1
0 ∈ H the first element of Pi w.r.t. ≺ which contains H as a

subset is H ∪ {a1
0}. �

4 Additivity of the shadow-function

In this section we will establish the additivity of the so-called shadow-function

on the level Pi. In general, this is a useful property in many applications (see

[4]). In particular, we will make use of it in the proof of Theorem 2.1.

Let i ∈ {1, 2, . . . , n−m}. The shadow-function sfi is defined for t = 1, 2, . . . , |Pi|
by

sfi(t) := |∆(C(t, Pi))| .

The function sfi is called little-submodular if for all 1 ≤ t1, t2 ≤ |Pi| the

inequality

sfi(t1) + sfi(t2) ≥

{
sfi(t1 + t2) if t1 + t2 ≤ |Pi|,
|Pi−1|+ sfi(t1 + t2 − |Pi|) if t1 + t2 > |Pi|

holds. sfi is said to be additive if the inequality

|∆(S1)| ≥ |∆new(S2)| ≥ |∆new(S3)| (4.1)

is satisfied for all segments S1,S2,S3 ⊆ Pi with |S1| = |S2| = |S3|, where S1 is

initial and S3 is final.

The following observation is due to Engel [4] (of course, not only for the poset

P ).

Lemma 4.1 Let i ∈ {1, 2, . . . , n − m}. The shadow-function sfi is additive if

and only if it is little-submodular.
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Theorem 4.2 The shadow function sfi is additive for all i ∈ {1, 2, . . . , n−m}.

Proof. Let i ∈ {1, 2, . . . , n−m}, and let S1,S2,S3 ⊆ Pi be like above. We have

to show that (4.1) holds.

We proceed by double induction on m and s := |S1| = |S2| = |S3|. If m = 0,

then P is a Boolean lattice and Theorem 4.2 is well-known (see [4] for instance).

For m = 1 Theorem 4.2 has been proven to be true in [10]. Hence, we assume

m ≥ 2 and that the assertion holds for all P ′ with m′ < m. If s = 1, then

|∆(S1)| = i, |∆new(S3)| = 0, and (4.1) is satisfied thereby. Consequently, we

assume that s ≥ 2 and that (4.1) holds for segments of cardinality s′ < s.

Furthermore, without loss of generality we can assume that either k1 = 2 or

that the assertion is true for all P ′ with m′ = m and k′1 < k1.

1. We first show |∆(S1)| ≥ |∆new(S2)|. By the induction hypothesis (in-

duction on s), it suffices to find a final segment S ′
1 of S1 and an initial or final

segment S ′
2 of S2 such that |S ′

1| = |S ′
2| and |∆new(S ′

1)| ≥ |∆new(S ′
2)|. Hence, we

can assume S1 ∩ S2 = ∅.
If S2 ∩ B(1) = ∅, then we are done by Proposition 3.4 (b) and by the choice

of k1. Hence, we suppose that S2 ∩ B(1) 6= ∅. If S2 6⊆ B(1), then S ′
2 := S2 \ B(1)

is an initial segment of S2 and a final segment of Ni(P \ B(1)). Now, again by

Proposition 3.4 (b) and the choice of k1, the inequality |∆new(S ′
1)| ≥ |∆new(S ′

2)|
holds, where S ′

1 consists of the last |S ′
2| elements of S1 w.r.t. ≺. Therefore, we

can assume S2 ⊆ B(1). Similarly, if S1 6⊆ B(k1), then put S ′
1 := S1 \ B(k1) and

S ′
2 := C(|S ′

1|,S2). Now we are done by Proposition 3.4 (c) and the choice of k1.

Consequently, we also suppose that S1 ⊆ B(k1).

Assume now that k1 ≥ 3. If s ≤ |Pi \ (B(k1) ∪ B(1))|, then let S :=

C(s, Pi \ B(k1)). By the minimality of k1 and Proposition 3.4 (b) we have

|∆(S1)| ≥ |∆new(S)|, and by the minimality of k1 and Proposition 3.4 (c) we

have |∆new(S)| ≥ |∆new(S2)|. Consequently, we are done in this case. If s >

|Pi \ (B(k1) ∪ B(1))|, then put S := Pi \ (B(k1) ∪ B(1)). Further let S ′
1 be the

final segment of S1 of size |S|, and let S ′
2 := C(|S|,S2). By the minimality of k1

and Proposition 3.4 (b) we have |∆new(S ′
1)| ≥ |∆new(S)|, and by the minimality

of k1 and Proposition 3.4 (c) we have |∆new(S)| ≥ |∆new(S ′
2)|. Again, this yields

the claim.

Finally, assume that k1 = 2. If S2 6⊆ B(1, 1), then put S ′
2 := S2 \ B(1, 1),

and let S ′
1 be the final segment of size |S ′

2| of S1. By Corollary 3.6, for the

final segment S ′′
2 of Ni(B(2)) of size |S ′

2| the equality |∆new(S ′′
2 )| = |∆new(S ′

2)|
holds. By Proposition 3.4 (b) and the induction hypothesis (induction on m),

we have |∆new(S ′
1)| ≥ |∆new(S ′′

2 )| which implies the claim. Therefore, we can

assume S2 ⊆ B(1, 1). Similarly, if S1 6⊆ B(2, k2), then put S ′
1 := S1 \ B(2, k2)
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and S ′
2 := C(|S ′

1|,S2). By Corollary 3.6, |∆new(S ′′
1 )| = |∆new(S ′

1)| holds, where

S ′′
1 := C(|S ′

1|,B(1)). By Proposition 3.4 (c) and the induction hypothesis we

have |∆new(S ′′
1 )| ≥ |∆new(S ′

2)|, which implies the claim. Consequently, we assume

S1 ⊆ B(2, k2). If s ≤ s′ := |Ni(B(2) \B(2, k2))|, then, by Propositions 3.4 (b),(c),

Corollary 3.6, and the induction hypothesis, we have

|∆(S1)| ≥ |∆new(S)| = |∆new(S ′)| ≥ |∆new(S2)| ,

where S := C(s, Ni(B(2) \ B(2, k2))) and S ′ := C(s, Ni(B(1))). If s > s′, then,

again by Propositions 3.4 (b),(c), Corollary 3.6, and the induction hypothesis, we

have

|∆(S ′
1)| ≥ |Ni−1(B(2) \ B(2, k2))| = |Ni−1(B(1) \ B(1, 1))| ≥ |∆new(S ′

2)| ,

where S ′
1 is the final segment of S1 of size s′ and S ′

2 := C(s′,S2). This implies

the assertion.

2. The inequality |∆new(S2)| ≥ |∆new(S3)| can be shown in an absolutely

analogous way. �

Finally, let us remark that Macaulay posets for which each of the functions sfi

(i = 1, 2, . . . , r(P )) is additive are called additive as well. According to Engel [4],

for Macaulay posets additivity is preserved when turning to the dual. So, as an

application of the above theorem and Theorem 2.1, we obtain that, in particular,

orthogonal products of simplices are additive.

5 Proof of Theorem 2.1

According to the introduction and by Lemma 3.2, it remains to show that the

inequality |∆(C(F))| ≤ |∆(F)| is satisfied for all F ⊆ Pi with i ∈ {1, 2, . . . , n−
m}.

We proceed by induction on m. If m ∈ {0, 1}, then the assertion is implied

directly by the Kruskal-Katona Theorem [7, 8]. For m = 2, Theorem 2.1 has

been established in [10]. Hence, we assume that m ≥ 3 and that the claim is true

for all P ′ with m′ < m. Furthermore, without loss of generality we can assume

that k1 = 2 or that the assertion holds for all P ′ with m′ = m and k′1 < k1. Also

without loss of generality, we can assume that k0 = 0 or that the assertion is true

for all P ′ with m′ = m, k′1 = k1 and k′0 < k0. (So, in fact, we are going to run a

triple induction.)

Next, we define the partial compression operators CA. Let A be a either a

singleton subset of A0 (if k0 ≥ 1) or one of the sets A1, A2, . . . , Am. For F ∈ Pi
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and S ⊆ A define

F(S) := {F ∈ F | F ∩ A = S}

and

F(S) := {F \ S | F ∈ F(S)} .

Further, let

P ′ :=

{
P (N \ A; A1, A2, . . . , Am) if A ⊆ A0,

P (N \ Aj; A1, . . . , Aj−1, Aj+1, . . . , Am) if A ∈ {A1, A2, . . . , Am}.

Hence, F(S) ⊆ P ′
i−|S|. Finally, put

CA(F(S)) :=
{
S ∪G | G ∈ CP ′

(
F(S)

)}
and

CA(F) :=
⋃
S⊆A

CA(F(S)) .

Lemma 5.1 Let A be either a singleton subset of A0 or A ∈ {A1, A2, . . . , Am}.
The inclusion ∆(CA(F)) ⊆ CA(∆(F)) holds for all i ∈ {1, 2, . . . , n−m} and all

F ⊆ Pi.

Proof. By the above definition of CA, we have ∆(CA(F)) = F1 ∪ F2, where

F1 =
⋃
S⊆A

{
G ∪H | G ∈ ∆(S), H ∈ CP ′

(
F(S)

)}
and

F2 =
⋃
S⊆A

{
S ∪G | G ∈ ∆

(
CP ′

(
F(S)

))}
.

On the other hand,

∆(F) =
⋃
S⊆A

({
G ∪H | G ∈ ∆(S), H ∈ F(S)

}
∪

{
S ∪G | G ∈ ∆

(
F(S)

)})
holds. Hence, F1 ⊆ CA(∆(F)) and F3 ⊆ CA(∆(F)), where

F3 =
⋃
S⊆A

{
S ∪G | G ∈ CP ′

(
∆

(
F(S)

))}
.

Now F2 ⊆ F3 since, by the above assumptions, (1.1) holds for P ′ and ≺. This

implies the claim. �
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Let us fix now a family F ⊆ Pi with the property that |∆(F)| ≤ |∆(F ′)|
holds for all F ′ ⊆ Pi with |F ′| = |F|. We have to show

|∆(F)| ≥ |∆(C(F))| . (5.1)

According to Proposition 3.3, the partial compression operators CA work from

right to left, i.e. for all A like in Lemma 5.1 there is a bijection ϕA : F → CA(F)

such that ϕA(F ) � F for all F ∈ F . Consequently, by Lemma 5.1, without loss

of generality we can assume

CA(F) = F for all A ∈
{
{a1

0}, {a2
0}, . . . , {a

k0
0 }, A1, A2, . . . , Am

}
. (5.2)

If F ∩ B(1) = ∅ or Ni(B(k1)) ⊆ F , then (5.1) follows by Propositions 3.4

(b),(c) and the induction hypothesis (for k1 = 2) resp. the choice of k1 (for

k1 ≥ 3). Hence, from now on we assume

F ∩ B(1) 6= ∅ (5.3)

and

Ni(B(k1)) 6⊆ F . (5.4)

If i < k2, then we have Pi = P ′
i , where P ′ = P (n; a1). Clearly, the elements

of A1 are not the greatest elements of the ground set N since m ≥ 3. Therefore,

the ordering ≺P on Pi is different from the order ≺P ′ on P ′
i . Nevertheless, it is

an easy exercise to show that

|∆(CP (t, Pi))| = |∆(CP ′(t, P ′
i ))| (5.5)

holds for all t ∈ {1, 2, . . . , |Pi|}. (In fact, on both sides of the equation the bound

given by the Kruskal-Katona theorem is attained.) To show the equation we can

argue like this: If t ≤ |Ni(P \ B(1))|, then (5.5) holds by CP (t, Pi) ⊆ P \ B(1)

and CP ′(t, P ′
i ) ⊆ Ni(P (n, a1 − 1)) together with Proposition 3.4 (b) and the

choice of k1. Similarly, using Proposition 3.4 (c), the equation (5.5) holds also

for t > |Ni(P \ B(1))|. Hence, we suppose

i ≥ k2 . (5.6)

Let F be the first element of Ni(B(1)) w.r.t. ≺. By (5.3) and (5.2) with

A = A1, we have

F ∈ F . (5.7)

If k0 ≥ 1, then, by (5.6), a1
0 ∈ F . By (5.2) with A = {a1

0} and Lemma 3.7

(b), we obtain then ∆(Ni(P \B(1))) ⊆ ∆(F). Without loss of generality, we can
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assume then that Ni(P \ B(1)) ⊂ F which contradicts (5.4). In the sequel, we

therefore suppose

k0 = 0 . (5.8)

Let G denote the last element of Ni(B(k1)) w.r.t. ≺.

Lemma 5.2 G /∈ F holds.

Proof. Assume the contrary, i.e. G ∈ F . We construct a contradiction to (5.4)

by showing H ∈ F for all H ∈ Ni(B(k1)).

We proceed by induction on k := k2 − |H ∩ A2|. By Lemma 3.5 (a) and

(5.6), we have G ∈ B(k1, 1), i.e. A2 \ {a1
2} ⊂ G. By (5.2) with A = A2, this

implies Ni(B(k1, 1)) ⊆ F . If k = 1 and H /∈ Ni(B(k1, 1)), then H ∈ F follows by

(H \ {a1
2}) ∪ {a} ∈ B(k1, 1) and (5.2) with A = A1, where {a} = A2 \H. Hence,

we are done for k = 1.

Suppose that k ≥ 2, and that H ′ ∈ F for all H ′ with k′ < k. Put a :=

max(A2 \H). By (5.6), there is an aj ∈ H ∩Aj for some j ∈ {1, 2, . . . ,m} \ {2}.
By Proposition 3.5 (a), H ≺ H ′ := (H \{aj})∪{a}. Now the claims follows from

the induction hypothesis and (5.2) for A = Ap with p ∈ {1, 2, . . . ,m} \ {2, j}.
(Such a p exists because of m ≥ 3.) �

Case 1. Suppose that k1 = 2.

First, note that F ∩B(1, 1) = ∅ because of Lemma 5.2 and (5.2) with A = A2.

Hence,

F = F1 ∪ F2 ∪ F3

with F1 ⊆ B(2, k2), F2 ⊆ B(2) \ B(2, k2), F3 ⊆ B(1) \ B(1, 1).

By the definition of ≺ and (5.6), F = {a2
1}∪(A2\{ak2

2 })∪H, where H consists

of the smallest i− k2 elements of (A3 \ {ak3
3 }) ∪ · · · ∪ (Am \ {akm

m }). Using (5.7)

and (5.2) with A = A3, this implies F ′ := {a1
1}∪ (A2 \{a1

2})∪H ∈ F . Obviously,

F ′ ∈ B(2, 1). From this and (5.2) with A = A1, it follows that all elements of

Ni(B(2) \ B(2, 1)) which contain a1
1 are in F . Now by (5.8) and Lemma 3.7 (a),

Ni−1(B(2) \ B(2, 1)) ⊆ ∆(F) holds. Therefore, without loss of generality we can

assume that Ni(B(2) \ B(2, 1)) ⊆ F . Consequently,

F1 = B(2, k2)

and

B(2) \ (B(2, k2) ∪ B(2, 1)) ⊆ F2 .

By (5.2) with A = A2, we know that F2 ∩ B(2, 1) is an initial segment of

Ni(B(2, 1)). Thereby, in total F2 is an initial segment of Ni(B(2) \ B(2, k2)). On
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the other hand, again by (5.2) with A = A2, the family F3 is an initial segment of

Ni(B(1) \ B(1, 1)). Now (5.1) is implied by Corollary 3.6 together with Theorem

4.2 and Lemma 4.1.

Case 2. Suppose that k1 ≥ 3.

Here we show that F ∈ F implies G ∈ F , and we are done by (5.7) and Lemma

5.2. By the definition of ≺, we know that F = (A1 \ {a1
1})∪H, where H consists

of the i− k1 + 1 smallest elements of (A2 \ {ak2
2 })∪ · · · ∪ (Am \ {akm

m }). Now (5.6)

and (5.2) with A = Am imply the existence of an F ′ = {ak1
1 }∪(A2\{a1

2})∪H ′ ∈ F
such that H ′ ∩ Am = H ∩ Am and a2

1 /∈ H ′. Clearly, H ′ /∈ B(k1) and therefore

G ≺ H ′. Together with (5.2) for A = A2 this yields G ∈ F .

This concludes the proof.
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