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Abstract. This paper deals with completion of partial latin squares L =
(lij) of order n with k cyclically generated diagonals (li+t,j+t = lij + t if lij
is not empty; with calculations modulo n). There is special emphasis on
cyclic completion. Here, we present results for k = 2, . . . , 7 and odd n ≤ 21,
and we describe the computational method used (hill-climbing). Noncyclic
completion is investigated in the cases k = 2, 3 or 4 and n ≤ 21.

1. Introduction

A partial latin square L of order n is an n × n array in which each cell is
either empty or contains a single element from an n-set S of symbols, such
that each element occurs at most once in each row and at most once in each
column. If every cell is filled, then L is a latin square. If not explicitly stated
differently, we assume the elements of S to be the integers 0, 1, . . . , n− 1 and
also that the rows and columns are indexed by 0, 1, . . . , n−1. All calculations
are performed modulo n. A partial transversal of a partial latin square of
order n is a set of filled cells, at most one in each row, at most one in each
column, and such that no two of the cells contain the same symbol. A partial
transversal with n cells is called a transversal. We refer the reader to [4, 5] for
undefined terms as well as a general overview of latin squares.

Completion of partial latin squares has been investigated in a number of
papers. Best known is Evans’ conjecture [6] that an n× n partial latin square
which has n − 1 cells occupied can always be completed to a latin square
of order n. Based on work by Marica and Schönheim [11] and Lindner [10]
this conjecture was proved to be true by Häggkvist [9] for n ≥ 1111 and
independently by Smetaniuk [13] and by Andersen and Hilton [2] for all n. We
also like to mention a still unsolved conjecture stated by Daykin and Häggkvist
[3] that says if L is a partial n × n latin square where each row, column and
symbol is used at most un times (where u is some constant, e.g u = 1

4
), then

L can be completed. Daykin and Häggkvist proved this for n = 16k and
un =

√
k/32 where k ∈ N.

In connection with questions from design theory the following problem was
posed by Alspach and Heinrich in 1990 [1]: Does there exist an N(k) such that
if k transversals of a partial latin square of order n ≥ N(k) are prescribed, the
square can always be completed? For k = 1 one has N(1) = 3 since there exists
an idempotent latin square for every order n 6= 2. Giving an uncompletable
example Alspach and Heinrich also showed that N(4) ≥ 10. A more specific
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0 2 ∗ ∗ 6 4 ∗ 0 2 5 1 6 4 3
∗ 1 3 ∗ ∗ 0 5 4 1 3 6 2 0 5
6 ∗ 2 4 ∗ ∗ 1 6 5 2 4 0 3 1
2 0 ∗ 3 5 ∗ ∗ 2 0 6 3 5 1 4
∗ 3 1 ∗ 4 6 ∗ 5 3 1 0 4 6 2
∗ ∗ 4 2 ∗ 5 0 3 6 4 2 1 5 0
1 ∗ ∗ 5 3 ∗ 6 1 4 0 5 3 2 6

Figure 1. A partial latin square of order 7 with 4 prescribed
diagonals and its unique completion

version of their question was posed by Rees [12]: Does there exist an N such
that if four cyclically generated transversals li+t,j+t = lij + t of a partial latin
square of order n ≥ N are prescribed, the square can always be completed to
one which contains a further five transversals?

Figure 1 shows as an example a partial latin square with 4 cyclically gen-
erated diagonals together with its unique completion. Throughout this paper
an asterisk indicates an empty cell. Notice that the remaining 3 diagonals in
the completed latin square are also cyclically generated. Therefore, it seems
natural to try a completion to a cyclically generated latin square. We show
in Section 2 that such a cyclic completion is impossible if n is even. This
suggests the following question. Does there exist a constant C(k) such that if
k cyclically generated diagonals li+t,j+t = lij + t of a partial latin square of odd
order n ≥ C(k) are prescribed, the square can always be cyclically completed?
For example, an idempotent latin square L = (lij) can be constructed for all
odd n by defining lij = n − j + 2i. Note that L is cyclically generated. This
implies that C(1) = 1. To avoid trivial cases, we assume C(k) ≥ k if k is odd
and C(k) ≥ k + 1 if k is even.

In Sections 2 and 3, we prove lower bounds for C(k) and N(k). Moreover,
we conjecture the bound for C(k) to be sharp and provide strong evidence for
this claim by some computer constructions. Using hill-climbing (Section 4) we
show that every partial latin square L of order n with k cyclically generated
diagonals is cyclically completable for all k in the range 2 ≤ k ≤ 7 if n is
odd and 3k − 1 ≤ n ≤ 21. Furthermore, we show that L is (noncyclically)
completable for k = 2, 3 or 4 and arbitrary n with 4k − 1 ≤ n ≤ 21.

2. A Lower Bound for C(k)

In this section, we discuss some obvious necessary conditions and prove a
lower bound for C(k).

Clearly, a cyclically generated square of order n is completely described by
its first row (l0,0, l0,1, . . . , l0,n−1) (if there is no chance of confusion we write
(l0, l1, . . . , ln−1)) and it is a latin square if and only if all elements li and
all differences li − i (modulo n) are mutually distinct. The later condition
ensures that the elements in every column are pairwise different. It is easily
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Figure 2. A partial transversal in an LCUTLS of order 7

checked that there is no cyclically generated latin square of even order n since∑n−1
i=0 i ≡ n

2
mod n but

∑n−1
i=0 li− i ≡ 0 mod n. A proper partial row is a row

(l0, l1, . . . , ln−1) where some of the li are empty and all nonempty li and the
corresponding differences are mutually distinct. Of course, a proper partial
row with exactly k nonempty li corresponds to a partial latin square with k
cyclically prescribed diagonals.

A partial latin square L = (lij) of order n with

lij =

{
i + j if i + j < n, or
empty otherwise

is called a left cyclic upper triangle latin square (LCUTLS). We now give the
following preliminary result.

Lemma 2.1. Let L be an LCUTLS of order n. Then the number of cells in a
partial transversal of L of maximum size is

t(n) =

⌊
2n + 1

3

⌋
.

Proof. We first show that for every n there is a partial transversal in L with
b2n+1

3
c cells. Let n ≡ 1 mod 3 and T = {(i + n−1

3
, i) : i = 0, 1, . . . , n−1

3
} ∪

{(i− n+2
3

, i) : i = n+2
3

, . . . , 2n−2
3
} be a set of 2n+1

3
cells containing the elements

n−1
3

, n−1
3

+ 2, . . . , n − 1, n+2
3

, n+2
3

+ 2, . . . , n − 2. Clearly all cells are from
different rows and columns and all elements are pairwise distinct. Therefore,
T is a partial transversal. See Figure 2 for an example with n = 7. Now,
if n ≡ 0 or 2 mod 3 construct a partial transversal T ′ in an LCUTLS L′ of
order n + 1 or n + 2 with 2n+3

3
or 2n+5

3
cells. Then removing the back diagonal

containing n − 1 or the back diagonals containing n − 1 and n − 2 yields an
LCUTLS L of order n. Removing cells in T ′ which are in the deleted back
diagonals gives then a partial transversal in L with at least b2n+1

3
c cells.

It remains to show that there is no partial transversal T in an LCUTLS L of
order n with more than b2n+1

3
c cells. We do so by counting edges in a bipartite

graph G = (A ∪ (B ∪ C), E) in two ways. Let t denote the number of cells

in an arbitrary partial transversal T and assume |A| = n(n+1)
2

, |B| = t and
|C| = 3(n− t) where the vertices of A are labeled by the filled cells of L, the
vertices of B are labeled by the cells of T , and the vertices in C are labeled
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by those rows, columns and back diagonals which do not contain a cell from T
(note, two cells from the same back diagonal contain the same symbol implying
that T contains at most one cell from each back diagonal). Two vertices from
A and B are connected by an edge if and only if the corresponding cells occur
together in a common row, column or back diagonal. Furthermore, two vertices
from A and C are connected if and only if the corresponding cell occurs in the
corresponding row, column or back diagonal. Obviously, a vertex in A has
either degree 1 if it is labeled by a cell from T or degree 3 otherwise. Hence,

|E| = 3n(n+1)
2

− 2t. Every vertex in B has degree 2n − 1 and every vertex in
C has degree at least 1. Moreover, vertices in C which correspond to distinct
rows have different degrees. The same is true for distinct columns and back

diagonals. Therefore, |E| ≥ t(2n − 1) + 3 (n−t)(n−t+1)
2

. This in turn implies

0 ≥ t(t− 2n+1
3

). Hence, t ≤ 2n+1
3

. �

Theorem 2.2. The following inequality holds for every k > 2:

C(k) ≥ 3k − 1.

Proof. Define k entries of a proper partial row R as follows: l2i = i for i =
0, . . . , bk−1

2
c, l2i+1 = n − bk

2
c + i for i = 0, . . . , bk−2

2
c and li is empty for

i = k, . . . , n − 1. (For example, when k = 5 and n = 13 we obtain R =
(0, 11, 1, 12, 2, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗).) We prove that this partial row R cannot be
cyclically completed if n ≤ 3k − 2 and k is odd, or n ≤ 3k − 3 and k is even.

Let k be odd. In this case we have not used indices k, . . . , n − 1, elements
k+1
2

, . . . , n− 1− k−1
2

and differences 1, . . . , n− k. We may represent possible
relations between indices, differences and elements by an (n − k) × (n − k)
array A whose rows are indexed by unused differences and whose columns
are indexed by unused indices. An entry in this array contains the element
corresponding to the row and column index if that element is unused or is
empty otherwise, i.e. arc = r + c if there is no li in R with li = r + c, or
arc = ∗ otherwise. In Figure 3 the general case is exhibited. It is easy to
see that R is cyclically completable if and only if the partial latin square A (on
the set of symbols S = {k+1

2
, . . . , n − 1 − k−1

2
}) has a transversal. Note that

both the upper left triangle and the lower right triangle in A are equivalent
to an LCUTLS of order n − 3k−1

2
− 1. If there is a transversal in A, then

one of these triangles contains at least n−k
2

cells. Hence, Lemma 2.1 implies
2(n− 3k−1

2
−1)+1

3
≥ n−k

2
. Thus, n ≥ 3k.

If k is even a similar argument shows that one needs a partial transversal
in an LCUTLS of order n − 3

2
k − 1 having n−k−1

2
cells. Consequently, n ≥

3k − 1. �

We remark that in the case k = 2, not covered in the above discussion, we
have only the trivial bound C(2) ≥ 3 since the two possible proper partial
rows of length 3 (0, 2, ∗) and (0, ∗, 1) are completable to (0, 2, 1).
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k k + 1 k + 2 . . . 3k+1
2

. . . n− k−1
2

−2 . . . n− 1
1 k + 1 k + 2 k + 3 . . . . . . n− k−1

2
−1 ∗ ∗

2 k + 2 k + 3 ..
. ∗ ...

3 k + 3
...

... ∗
k+3
2

∗ k+1
2

...
... . .

. * . .
. ...

n− 3k−1
2

−1 n− k−1
2

−1 ∗
... ∗ ∗ . .

. ...
n− k ∗ . . . ∗ k+1

2
. . . . . . n−k−1

Figure 3. Partial latin square A of order (n−k) containing un-
used elements; indexed by unused differences (rows) and unused
indices (columns)

3. A Lower Bound for N(k)

Similarly as in the previous section we obtain a lower bound for N(k) by
showing that a special type of partial latin squares with k prescribed transver-
sals (we use again k cyclically generated diagonals for that purpose) is not
completable.

Theorem 3.1. The following inequality holds for every k ≥ 1:

N(k) ≥ 4k − 1.

Proof. Let L be a partial latin square of even order n with k cyclically generated
diagonals where all elements in the first row (row index 0) are even and con-
tained in a cell with even column index, take l2i = n−2i for i = 0, 1, . . . , k−1
as an example for n = 4k − 2. Let L′ be a completion of L. Consider the
set A of cells in L′ with even row index and odd column index. An arbitrary
even element x occurs in k prescribed cells (with even row and column index).
Thus, x occurs in at most n

2
− k cells of A. Therefore, there are at most

n
2
(n

2
− k) cells in A containing even elements. On the other hand consider the

cells from A which are in a fixed column. At least k of these cells contain an
even element since the column contains k odd elements in cells with odd row
index. Hence, there are at least n

2
k cells in A containing even elements. Con-

sequently, n
2
k ≤ n

2
(n

2
− k). This implies n ≥ 4k, but then we cannot complete

the example from the beginning of the proof with n = 4k − 2. �
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4. Computational Construction Methods

In this section, we describe the way in which a nonexhaustive search tech-
nique called hill-climbing was applied to construct cyclically generated latin
squares with prescribed diagonals. Hill-climbing has been successfully applied
to a variety of combinatorial problems, for background information see e.g.
[7, 8]. A hill-climbing problem can be specified as a set Σ of feasible solutions,
together with a cost c(R) associated with each feasible solution R ∈ Σ. Here,
let Σ be the set of proper partial rows and define c(R) of a proper partial
row R to be the number of empty cells in R. A cyclically generated latin
square has no empty cells and, therefore, corresponds to a feasible solution R
with minimum cost c(R) = 0. Starting with an initial solution R (the first
row of the prescribed partial latin square) our hill-climbing algorithm works
by transforming R = (l0, . . . , ln−1) into another feasible solution in which the
cost either remains the same or decreases by one. We use two different trans-
formations:

Transformation T1

1. Choose an unused index i at random;
2. Choose an unused difference d at random;
3. Let a := i + d mod n;
4. If there is an lj with lj = a and a is not prescribed then

put lj := ∗;
5. If a is not prescribed then

put li := a;

Transformation T2

1. Choose an unused index i at random;
2. Choose an unused element a at random;
3. Let d := a− i mod n;
4. If there is an lj with lj − j ≡ d mod n and lj is not prescribed then

put lj := ∗;
5. If lj is not prescribed then

put li := a;

The hill-climbing algorithm is now given below. There are situations in
which the construction gets stuck. Therefore, we use a threshold value tmax to
specify the maximum number of consecutive cost-preserving transformations
allowed before we abandon the algorithm and restart with a new random seed.
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Hill-climbing algorithm to complete a proper partial row R

1. Mark all elements in the given proper partial row R as prescribed;
2. Let t := 0;
3. While c(R) > 0 and t < tmax do
3.1 Increase t by one;
3.2 choose r = 1 or 2 at random with equal probability;
3.3 perform Tr;
3.4 If c(R) has been decreased by one in Tr then

put t := 0;

In order to complete all possible partial latin squares of order n with k cycli-
cally prescribed diagonals one has to compute all proper partial rows of length
n with exactly k nonempty cells. Two proper partial rows R = (l0, . . . , ln−1)
and R′ = (l′0, . . . , l′n−1) are called isomorphic if there are integers r, s such that
li = l′i+r +s for i = 0, . . . , n−1. It is easy to verify that if R and R′ are isomor-
phic and R is cyclically completable, then also is R′. We avoid unnecessary
work by considering only one canonical representative from each isomorphism
class, for example the lexicographically smallest row (assume ∗ = ∞).

We also used hill-climbing for the completion of partial latin squares of even
order as very briefly explained in the sequel. Define Σ to be the set of all
partial latin squares of order n. For L ∈ Σ define the cost c(L) to be the
number of empty cells in L. Clearly, L is a latin square if and only if c(L) = 0.
An admissible transformation consists of choosing an empty cell lij and filling
it with an element x not used in row i (column j), i.e. lij := x. If there is a
cell li′j in column j (a cell lij′ in row i) containing x and x is not prescribed
in cell li′j (lij′), then put li′j := ∗ (lij′ := ∗). If x is prescribed in cell li′j
(lij′), then put lij := ∗. Clearly, the cost of a partial latin squares during such
a transformation remains unchanged or decreases by one. Again, it might
be possible that at some point the algorithm makes no further progress (in
particular with partial latin squares described in the proof of Theorem 3.1 and
n = 4k), so that one needs to restart the construction.

5. Results and Conjectures

We constructed all canonical proper partial rows for given k and odd n
with a backtracking algorithm (see Table 1 for the number of rows considered)
and tried to complete these rows with the hill-climbing algorithm for proper
partial rows. Using tmax = 1000 and at most 5 restarts we made the following
observation.

Proposition 5.1. Let k be an integer in the range 2 ≤ k ≤ 7. Every partial
latin square of odd order n with 3k − 1 ≤ n ≤ 21 and k cyclically generated
diagonals can be completed to a cyclically generated latin square.
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(k, n) (2,5) (2,7) (3,9) (4,11) (4,13)
NCPPR(k, n) 6 15 346 11,030 41,885

(k, n) (5,15) (6,17) (6,19) (7,21)
NCPPR(k, n) 2,172,003 133,073,720 582,669,528 47,765,113,158

Table 1. NCPPR(k, n) – Number of canonical proper partial
rows of length n with k nonempty cells

n 4 6 8 10 12 14 16 18 20
NCPPR(2) 3 10 21 36 55 78 105 136 171
NUCPPR(2) 3 7 0 0 0 0 0 0 0
NCPPR(3) - 34 182 600 1504 3172 5950 10246 16530
NUCPPR(3) - 34 30 10 0 0 0 0 0
NCPPR(4) - 34 674 4972 22300 74110 201614 475384 1006872
NUCPPR(4) - 34 590 1396 291 181 0 0 0

Table 2. NCPPR(k) – Number of canonical proper partial rows
of length n with k nonempty cells; NUCPPR(k) – Number of
uncompletable canonical proper partial rows of length n with k
nonempty cells

We believe that this result provides significant evidence in support of the
following conjecture.

Conjecture 5.2. Every partial latin square of odd order n with k cyclically
generated diagonals can be cyclically completed if n ≥ 3k − 1. This means
C(k) = 3k − 1.

In addition, we constructed all canonical proper partial rows for even n
(see Table 2) and the corresponding partial latin squares. These partial latin
squares were tried to complete with the second hill-climbing approach de-
scribed. Choosing tmax = 5000 and at most 100000 restarts we proved the
following result.

Proposition 5.3. Let k = 2, 3 or 4. Every partial latin square of order n with
4k − 1 ≤ n ≤ 21 and k cyclically generated diagonals can be completed to a
latin square.

In view of the foregoing, we are prompted to pose the following.

Conjecture 5.4. Every partial latin square of order n with k cyclically gen-
erated diagonals can be completed if n ≥ 4k − 1.
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[4] J. Dénes and A.D. Keedwell. Latin Squares and Their Applications. English University
Press, London, 1974.
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